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Abstract

In this paper we give a construction of T -shift synchronization codes, i.e. block codes
capable of correcting synchronization shifts of length at most T in either direction
(left or right). We prove lower and upper bounds on the maximal cardinality of such
codes. An infinite number of the constructed codes turn out to be asymptotically
optimal.

1 Introduction

Problems of synchronization are of basic importance in coding theory. Such
problems arise naturally in situations when, due to some shift in the transmis-
sion (caused for example by insertion or deletion of some amount of informa-
tion), the receiver gets out of synchronism meaning that he does not anymore
know the starting points of the codewords. Even in the case of noiseless trans-
mission, asynchronism can cause false decoding, i.e. incorrect word separation.
Thus, the problem is to find encoding schemes which enable the two parties
to regain synchronism in their communication.

There are two conflicting goals when designing appropriate codes for this pur-
pose. First, one tries to minimize the synchronization delay, i.e. the number s
of consecutive symbols which must be read by the receiver for correct decoding
of the messages. Second, the code designer tries to maximize the code size.
Among different classes of synchronization codes the statistically synchroniz-
able codes are defined by the most relaxed condition on the delay s requiring
that limS→∞ Pr (s ≤ S) = 1 holds. As a result, these codes achieve minimal
redundancy like the Huffman codes [2].

Synchronization codes with finite delay [3] assume a fixed upper bound S on
the random variable s. Already this condition essentially reduces the code size.
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It implies the asymptotical upper bound qn/n for q-ary codes of block length
n. Obviously the same bound holds also for more restrictive classes of comma-
free codes [9] and overlap-free codes [5]. The latter ones, however, being more
redundant than general synchronization codes with finite delay, show better
synchronization capability: for the maximal delay we have S = 2n−1 where n
is the block length. For the purpose of simple encoding and decoding one also
considers synchronizable codes in the family of cosets of cyclic codes [7], [8].
The so-called prefix-synchronized codes [6] also admit easy implementation
due to simplicity of the encoding and decoding procedures. However, all these
codes have high redundancy.

The model which we disscuss in this paper is motivated by the following
situation of data storage. Suppose that the data is encoded by means of a
code of block length n and the encoded information is stored (for instance,
written on a disc) without any disturbance. However, some random words of
random length (breaks) may be added between the codewords causing loss of
synchronism at the receiver end. We assume that there is an upper threshold T
for the length of each inserted word. For the decoder this means that the first
n symbols of the received message do not necessarily constitute a codeword
but are rather a left-shift of a codeword whereby the shift length t is upper-
bounded by T . Shifts in both directions arise when the receiver decodes the
message starting at some position in the received sequence (not necessarily
the beginning). Thereby he knows with some precision the locations of the
codewords separation points. In other words, he knows that the actual starting
point of a codeword which is next to the position where the decoding process
begins is at most T symbols apart. The aim now is to design maximal (in terms
of the code size) codes capable of correcting shifts of the above-mentioned type,
T -shift synchronization codes.

This model was first considered in [4], where 1-shift synchronization codes
were constructed. Further progress was made in [1] providing a construction
of 2-right shift and asymptotically optimal 1-right shift synchronization codes.
In this paper we improve the lower bound given in [4] and generalize the results
of [1] and [4] to the case of T -shifts. The method used here is a refinement of
the method proposed in [1].

The paper is organized as follows. In Section 2 we give some basic notation
and necessary definitions. In Section 3 the code construction is presented.
Hereby (until Section 5) we restrict ourselves to the case of unidirectional
shifts. Theorem 1 proves that the codes thus constructed are indeed right-shift
and left-shift synchronizing. In Section 4 lower and upper bounds are given
for asymptotical behavior of an optimal unidirectional T -shift synchronization
code (Theorem 3). In Section 5 we show that the problem with shifts in both
directions reduces to the case of unidirectional shifts. The final Remark 3
indicates some features of the codes constructed. For simplicity of presentation
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we discuss only the case of a fixed threshold T and the binary alphabet. The
results hold also for arbitrary finite alphabets and any threshold function T
depending on the block length n with an order of growth T (n) = o(n · log−2 n)
(see Remark 3).

2 Notation and definitions

For a finite set X = {0, . . . , q − 1} called q-ary alphabet, we form X n =
{0, . . . , q − 1}n, the words of length n, with letters from X .

Definition 1 The word bn = (b1, · · · , bn) is said to be a t-right shift of the
word an = (a1, · · · , an) for a non-negative integer t < n iff the first n − t
symbols of bn coincide with the last n − t symbols of an, that is,

(b1, · · · , bn−t) = (at+1, · · · , an).

In this case, an is called a t-left shift of the word bn.

Note that the 0-shifting (the case t = 0) leaves words unchanged. The following
notions are central in the paper.

Definition 2 Let T < n be a positive integer. The numbers t1 and t2 below
are assumed to be non-negative integers satisfying t1, t2 ≤ T . Consider a block
code C ⊆ {0, 1}n.

(a) C is called T -right shift synchronizing iff for all distinct t1 and t2, no
t1-right shift of any codeword is a t2-right shift of any codeword,

(b) Symmetrically, C is called T -left shift synchronizing iff for all distinct t1
and t2, no t1-left shift of any codeword is a t2-left shift of any codeword,

(c) Finally, C is called T -shift synchronizing iff it is T -right shift synchroniz-
ing, T -left shift synchronizing and for all positive t1 and t2, no t1-right shift
of any codeword is a t2-left shift of any codeword.

Remark 1. We infer from Definition 2 that in any code of one of the mentioned
types no positive shift of a codeword can be a codeword. This is easily seen
by taking t1 = 0.
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3 The code construction

Our aim is to construct T -shift synchronization codes of maximal cardinality.
It turns out that the problem reduces to the case of shifts in one direction (see
Section 5).

We need the following relations between two real numbers a and b. For the
binary alphabet we write:

a >T b iff a − b > T

a <−T b iff a − b < −T

a ∼T b iff −T ≤ a − b ≤ T

a =k b iff a − b = k with −T ≤ k ≤ T

We note that in the general case of a q-ary alphabet we have to replace here
all appearances of T by T (q − 1). Now, choose a natural number m in such
a way that 2m−1 ≤ T < 2m holds. Let n be the block length of the code to
be constructed. Since we later let n grow, we can assume that n ≥ 2m. So
represent n in the form n = 2m · r +n1 with 0 ≤ n1 < 2m. Now, let the last n1

positions in a codeword take all possible 2n1 values. The construction below
shows that the first 2m ·r positions already enforce the code properties sought.
Therefore, without loss of generality, we can assume n1 = 0, which means that
2m divides n.

Let (µm, . . . , µ1) be any m-tuple of relations with µi ∈ {>T , <−T , ∼T , =k}.
The following m (in)equalities for a word (x1, . . . , xn) are basic in our code
construction:

n/2j

∑

i=1

x2j ·i µj

n/2j

∑

i=1

x2j ·i−2j−1 (j∗)

for j = 1, . . . ,m. Expanded they look as follows.

(x2 + x4 + x6 + x8 + · · · ) µ1 (x1 + x3 + x5 + x7 + · · · ) (1∗)

(x4 + x8 + · · · ) µ2 (x2 + x6 + · · · ) (2∗)

(x8 + · · · ) µ3 (x4 + · · · ) (3∗)

......... ... .........

(x2m + x2·2m + · · · ) µm (x2m−1 + x3·2m−1 + · · · ) (m∗)

Now, for each 1 ≤ s ≤ m, define

C(µs, . . . , µ1) :=
{

(x1, . . . , xn) satisfying (1∗), (2∗), . . . , (s∗)
}

4



Remark 2. (a) To be more precise, we should have included the word length
n in the notation C(µs, . . . , µ1), but we leave it out for the sake of simplicity.
By convention, we assume that all words in C(µs, . . . , µ1) always have the
same length n.

(b) We use the shorthand Cs(>T ) for the set C(µs, . . . , µ1) when all the rela-
tions µ1, . . . , µs are equal to the same relation >T .

Now we complete our code construction by taking s = m and µm = · · · =
µ1 = >T . In other words, Cm(>T ) is the constructed code. In Theorem 1
below we will show that Cm(>T ) is unidirectionally T shift synchronizing. It
will provide the lower bound in Theorem 3. We need the following key result.

Lemma 1 Suppose that a t1-right shift of the word an = (a1, . . . , an) coincides
with a t2-right shift of the word bn = (b1, . . . , bn) where t1, t2 < n. If t2 − t1 is
an odd natural number, then

−t2 ≤
n/2
∑

i=1

b2i −
n/2
∑

i=1

a2i−1 ≤ t2

−t2 ≤
n/2
∑

i=1

b2i−1 −
n/2
∑

i=1

a2i ≤ t2

Proof. This is immediate, since if the conditions of the lemma are fulfilled,
then the entries of the even positions in bn coincide with the entries of the odd
positions in an except of at most t2 positions. The same is true for the odd
positions of bn and even positions of an. 2

By symmetry the result of Lemma 1 also holds for left shifts.

Theorem 1 The code Cm(>T ) is a T -right shift and T -left shift synchroniza-
tion code.

Proof. We only prove the result for right shifts. Left shifts are settled com-
pletely symmetrically. Suppose that the assertion of the theorem is not true.
This means that there are two codewords an, bn ∈ Cm(>T ) and two distinct
non-negative integers t1, t2 ≤ T such that a t1-right shift of an coincides with
a t2-right shift of bn. Without loss of generality we can assume that t1 < t2.
We come to contradiction by showing that bn does not satisfy one of the in-
equalities (1∗), (2∗), . . . , (m∗).

First case: t2 − t1 is odd. We have that an as a codeword satisfies (1∗), (2∗),
. . . , (m∗). Then inequality (1∗) implies

∑

i
a2i −

∑

i
a2i−1 > T (1)
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For bn we obtain

∑

i

b2i −
∑

i

b2i−1 ≤
∑

i

a2i−1 + t2 −
∑

i

a2i + t2 (Lemma 1)

< −T + 2t2 (Inequality (1))

≤ T (t2 ≤ T )

Thus, inequality (1∗) does not hold for bn and therefore bn cannot be a code-
word.

Second case: t2 − t1 is even. Separating the maximal power of 2 we represent
this difference in the form t2 − t1 = 2k · t′ where t′ is an odd natural. Since
t1, t2 ≤ T < 2m, we have 1 ≤ k ≤ m−1. Recall that without loss of generality
we have assumed the divisibility of n by 2m. Therefore also 2k divides n.

The main idea of the proof is already contained in the previous case. We reduce
the present case to that one by concentrating on the positions of an and bn

which are multiples of 2k. So consider the following two words:

a′ = (a2k a2·2k a3·2k · · · an)

b′ = (b2k b2·2k b3·2k · · · bn)

We leave it to the reader to easily verify that a t′1-right shift of a′ coincides
with a t′2-right shift of b′ if we take t′1 = ⌊t1/(2k)⌋ and t′2 = t′1 + t′. But we
know that a′ satisfies the inequality (k + 1)∗, and now t′2 − t′1 = t′ is odd. As
in the previous case we infer that inequality (k + 1)∗ cannot hold for b′. This
means that bn is not a codeword. This contradiction proves the theorem. 2

4 Lower and upper bounds

To evaluate the size of Cm(>T ) we need some auxiliary results.

Lemma 2 The sets C(>T , µs, . . . , µ1), C(<−T , µs, . . . , µ1), C(∼T , µs, . . . , µ1)
are pairwise disjoint and their union is equal to C(µs, . . . , µ1).

Proof. Obvious, since >T , <−T , and ∼T are mutually excluding and comple-
ment each other. 2

Lemma 3
∣

∣

∣C(>T , µs, . . . , µ1)
∣

∣

∣ =
∣

∣

∣C(<−T , µs, . . . , µ1)
∣

∣

∣
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Proof. By symmetry. For each sequence (x1, . . . , xn) ∈ C(>T , µs, . . . , µ1), we
exchange the positions x2s+1·i and x2s+1·i−2s for all 1 ≤ i ≤ n/2s+1 and keep
all other positions unchanged. The obtained sequence is in C(<−T , µs, . . . , µ1)
and this correspondence is a bijection. 2

Lemma 4 Let s be a non-negative integer such that 2s+1 divides the block
length n, so n = 2s+1 · r. For any integer k satisfying −T ≤ k ≤ T it holds

∣

∣

∣C(=k, µs, . . . , µ1)
∣

∣

∣ ≤
(

2r

r + k

)

2n−2r. (2)

Proof. Each word from C(=k, µs, . . . , µ1) satisfies inequalities (1∗), · · · , (s∗),
(s + 1)∗ where relation =k is substituted for µs+1. Ignoring the first s of these
restrictions would increase the size of C(=k, µs, . . . , µ1). So now we upper-
bound the number of words of length n satisfying inequality (s + 1)∗. This
inequality refers to the 2r positions 2s, 2 ·2s, 3 ·2s, . . . , n. Since the remaining
n− 2r positions have no any restriction, they contribute with the factor 2n−2r

in (2). Therefore the problem reduces to the following one.

Denote

Ar = {a2r = (a1, a2, . . . , a2r) :
r

∑

i=1

a2i −
r

∑

i=1

a2i−1 = k}.

Show that

∣

∣

∣Ar

∣

∣

∣ ≤
(

2r

r + k

)

. (3)

We proceed as follows. Each word a2r from Ar we transform into a new word
b2r by negating the letters in odd positions of a2r. It is easily seen that b2r has
r +k ones. Since every a2r produces a different b2r, inequality (3) follows. The
lemma is proved. 2

Lemma 5

∣

∣

∣C(∼T , µs, . . . , µ1)
∣

∣

∣

2n
→ 0 as n → ∞

Proof. We evaluate the size of C(∼T , µs, . . . , µ1) from above.
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∣

∣

∣C(∼T , µs, . . . , µ1)
∣

∣

∣ =
∣

∣

∣

T
⋃

k=−T

C(=k, µs, . . . , µ1)
∣

∣

∣

≤
T

∑

k=−T

∣

∣

∣C(=k, µs, . . . , µ1)
∣

∣

∣

≤
T

∑

k=−T

(

2r

r + k

)

2n−2r (Lemma 4)

≤ (2T + 1)

(

2r

r

)

2n−2r

The well–known formula
(

2r
r

)

22r
=

1√
πr

(1 + α(r))

with vanishing α(r) as r → ∞ completes the proof. 2

As a consequence we obtain the following result about the asymptotical be-
havior of the code

∣

∣

∣Cm(>T )
∣

∣

∣.

Theorem 2 For 2m−1 ≤ T < 2m we have

lim
n→∞

∣

∣

∣Cm(>T )
∣

∣

∣

2n
=

1

2m

Proof. Lemmas 2, 3 and 5 imply that the size of the code C(>T , µs, . . . , µ1)

has the same asymptotical behavior as the half of
∣

∣

∣C(µs, . . . , µ1)
∣

∣

∣. By iterating

this m times for Cm(>T ), we get the result. 2

Theorem 3 For any optimal T -right shift synchronization code of block length
n we have

1

2m
≤ lim

n→∞

∣

∣

∣Copt

∣

∣

∣

2n
≤ 1

T + 1
(4)

where 2m−1 ≤ T < 2m. The same is true for optimal T -left shift synchroniza-
tion codes.

Proof. Again, by symmetry, we only need to settle the case of right shifts.
The lower bound follows directly from Theorem 2. To show the upper bound,
let C be any T -right shift synchronization code. For each 1 ≤ t ≤ T and
xt ∈ {0, 1}t we consider the function fxt acting on the set C as follows. The
fxt-image of a codeword cn ∈ C is obtained by removing the first t symbols
of cn and appending xt on the right. By Cxt we denote the fxt-image of C.
Obviously, for distinct words xt the corresponding sets Cxt are disjoint. Now
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put
Ct :=

⋃

xt∈{0,1}t

Cxt .

In other words, Ct is the set of all t-right shifts of codewords from C. To
evaluate the size of Ct we notice the following. If two codewords from C (they
are words of length n) have the same fxt-image, then their last n− t positions
must coincide. But there are at most 2t possibilities for the first t positions.
This implies that no more than 2t words from C can have the same image
under the mapping fxt . Consequently,

∣

∣

∣Cxt

∣

∣

∣ ≥ 2−t ·
∣

∣

∣C
∣

∣

∣,

and therefore
∣

∣

∣Ct

∣

∣

∣ =
∑

xt∈{0,1}t

∣

∣

∣Cxt

∣

∣

∣ ≥
∣

∣

∣C
∣

∣

∣.

Now, according to the definition of a T -right shift synchronization code, the
code C and the sets Ct for 1 ≤ t ≤ T must be pairwise disjoint. We obtain

∣

∣

∣

T
⋃

t=1

Ct ∪ C
∣

∣

∣ ≤ 2n (the whole space)

This implies
(T + 1) ·

∣

∣

∣C
∣

∣

∣ ≤ 2n

and hence the assertion. 2

When T = 1 and T = 2, we obtain the results of [1] as a consequence of the
lower bound in (4).

5 Shifts in both directions

It turns out that the synchronization problem for shifts in both directions can
be easily reduced to the case of unidirectional shifts. The next lemma shows
the connection.

Lemma 6 If a t1-right shift of a word an is equal to a t2-left shift of a word
bn, where t1 + t2 < n, then bn is a (t1 + t2)-right shift of an.

Proof. Let zn be a t1-right shift of an and at the same time a t2-left shift of
bn. Then bn is a t2-right shift of zn. Therefore we can obtain bn from an by
moving to the right: first by t1 steps (obtaining zn) and then by t2 steps. 2

This implies

Lemma 7 Each code which is simultaneously 2T -right shift and 2T -left shift
synchronizing, is a T -shift synchronization code.
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Now, as a consequence of this lemma and Theorem 3, we obtain corresponding
lower and upper bounds for T -shift synchronization codes.

Theorem 4 For any optimal T -shift synchronization code we have

1

2m
≤ lim

n→∞

∣

∣

∣Copt

∣

∣

∣

2n
≤ 1

2T + 1

where 2m−1 ≤ 2T < 2m.

Proof. According to Theorem 1, the code Cm(>2T ) obtained by our construc-
tion is 2T -right shift and 2T -left shift synchronizing. Therefore it is a T -shift
synchronization code. Due to Theorem 2 this gives the lower bound. To show
the upper bound, let C be an arbitrary T -shift synchronization code. Consider
for all values t = 1, 2, . . . , T the sets

Cright
t := {All t-right shifts of codewords from C}

and

C left
t := {All t-left shifts of codewords from C}

Like in the proof of Theorem 3, these sets and C are pairwise disjoint and
each of them has size greater or equal to

∣

∣

∣C
∣

∣

∣. Hence the upper bound. 2

Theorem 4 improves the lower bound on the size of an optimal 1-shift syn-
chronization code (the case T = 1) stated in [4].

The next remark summarizes some features of the codes constructed and the
results obtained in the paper.

Remark 3.

(a) Although formulated for the binary case, all theorems hold also for arbi-
trary q-ary alphabets. Only the denominator 2n has to be replaced then by
qn, the size of the whole space. Everything else remains unchanged.

(b) By a slight modification of the code construction, the same arguments
show that the results are true also for a more general situation, namely when
the maximal shift length T (n) depending on the block length n has order of
growth

T (n) = o(n · log−2 n). (5)

For this, we just have to consider the new relations >T ·2−i , <−T ·2−i , ∼T ·2−i

for i = 0, 1, . . . ,m− 1. The relations considered earlier correspond to the case
i = 0. Now, we obtain the modified code by putting in C(µm, . . . , µ1) the
values µi+1 = >T ·2−i for i = 0, 1, . . . ,m− 1. Note that equation (5) is fulfilled
for any function T (n) = O(na) with a < 1. For T (n) = n − 1, the class
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of T -right shift synchronizable codes coincides with the class of overlap-free
codes.

(c) The smaller the positive difference between 2m and T , the smaller is the gap
between the lower and upper bounds. Especially, in the model of unidirectional
shifts, the bounds coincide for T = 2m − 1, m = 1, 2, . . . (see Theorem 3),
thus providing asymptotically optimal synchronization codes.

(d) Like for comma-free codes and overlap-free codes, the maximal synchro-
nization delay is S = 2n − 1, which means that at most 2n − 1 consecutive
symbols have to be read by the decoder in order to regain synchronism.

(e) The constructed codes allow easy encoding and decoding, since no look-up
table is needed in order to decide whether a sequence of symbols is a codeword
or not. One has to verify the equations (1∗), (2∗), . . . , (m∗).
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