The number of tree stars is $O^{*}\left(1.357^{k}\right)$

Bernhard Fuchs ${ }^{2}$
University of Cologne, Center for Applied Computer Science Cologne, Group AFS, Weyertal 80, 50931 Köln, Germany

Walter Kern ${ }^{3}$

University of Twente, Department of Applied Mathematics, Faculty of EEMCS, P.O.Box 217, 7500 AE Enschede, The Netherlands

Xinhui Wang ${ }^{1,4}$

University of Twente, Department of Applied Mathematics, Faculty of EEMCS, P.O.Box 217, 7500 AE Enschede, The Netherlands

Abstract

Every rectilinear Steiner tree problem admits an optimal tree T^{*} which is composed of tree stars. Moreover, the currently fastest algorithms for the rectilinear Steiner tree problem proceed by composing an optimum tree T^{*} from tree star components in the cheapest way. The efficiency of such algorithms depends heavily on the number of tree stars (candidate components). Fößmeier and Kaufmann [4] showed that any problem instance with k terminals has a number of tree stars in between 1.32^{k} and 1.38^{k} (modulo polynomial factors) in the worst case. We determine the exact bound of $O^{*}\left(\alpha^{k}\right)$ where $\alpha \approx 1.357$ and mention some consequences of this result.

Keywords: Rectilinear Steiner tree, Terminal points, Tree star, Components

[^0]Given a weighted graph (V, E) on $n=|V|$ nodes, non-negative edge weight $c: E \rightarrow \mathbb{R}_{+}, Y \subseteq V$ of k terminal nodes (or terminals, for short), the Steiner tree problem asks for exhibiting a shortest (i.e., min cost) subtree $T^{*}=T^{*}(Y)$ of (V, E) spanning all terminals.

The most well-known algorithm for solving Steiner tree problem is the so-called Dreyfus-Wagner algorithm [1], a certain dynamic programming approach that computes an optimum tree T^{*} in time $O^{*}\left(3^{k}\right)$. Here and in what follows, we use the O^{*}-notation to indicate that polynomial factors are suppressed. The currently fastest algorithm, due to [5] resolves the problem in $O^{*}\left((2+\epsilon)^{k}\right)$ for any $\epsilon>0$. We admit, however, that the result is purely theoretical and the algorithm is not expected to be of any use in practice.

The most interesting problems in practice are so-called rectilinear problems, where the terminal set is a finite set $Y \subseteq \mathbb{R}^{2}$ and the underlying graph is the Hanan grid gererated by Y.

In general, every leaf of an optimal Steiner tree T^{*} is necessarily a terminal. But T^{*} may also contain some terminals in its interior. These interior terminals define a partition of T^{*} into components. In the rectilinear case, a well known result of Hwang [2] states the existence of an optimum Steiner tree $T^{*}=T^{*}(Y)$ with each component of special form (Hwang topology).

We call a Steiner tree with Hwang topology a Hwang tree. Any set $X \subseteq Y$ which is the terminal set of a Hwang tree is called a Hwang set. For a Hwang set $X \subseteq Y$, we let $H(X)$ denote the shortest Hwang tree connecting X. So Hwang trees are candidates for T^{*}-components. Ganley and Cohoon [3] present a straightforward dynamic program for computing an optimal Steiner tree T^{*} :

- Compute $H\left(X_{0}\right)$ for all Hwang sets $X_{0} \subseteq Y$.
- Compute recursively for all $X \subseteq Y$

$$
T^{*}(X)=\min _{X=X_{1} \bowtie X_{0}} T^{*}\left(X_{1}\right) \cup H\left(X_{0}\right)
$$

where

$$
X=X_{1} \bowtie X_{0} \quad \Leftrightarrow \quad X=X_{1} \cup X_{0}, \text { and }\left|X_{1} \cap X_{0}\right|=1 .
$$

In [3], it is shown that there are at most 1.62^{k} Hwang sets $X_{0} \subseteq Y$. More generally, every $X \subseteq Y$ of size $i \leq k$ has at most 1.62^{i} Hwang subset $X_{0} \subseteq X$. So the above dynamic program has a running time of order

$$
O^{*}\left(\sum_{i=1}^{k}\binom{k}{i} 1.62^{i}\right)=O^{*}\left(2.62^{k}\right) .
$$

Fößmeier and Kaufmann [4] further restrict the set of candidates for T^{*} components by showing that each T^{*}-components can be assumed to be a so-called tree star. They showed that, in the worst case, the number of tree stars is in between 1.32^{k} and 1.38^{k}, yielding an improvement of the running time in the above dynamic program to $O^{*}\left(1.38^{k}\right)$. We present a somewhat simper approach, yielding a tight bound of $O^{*}\left(\alpha^{k}\right)$ for $\alpha \approx 1.357$.

References

[1] S. E. Dreyfus and R. A. Wagner, (1972) The Steiner problem in graphs. Networks, 1, 195-207.
[2] F. K. Hwang, (1976) On Steiner Minimal Trees with Rectilinear Distance. SIAM Journal on Applied Mathematics, 30(1), 104-114.
[3] J. L. Ganley and J. P. Cohoon, (1994) Optimal rectilinear Steiner minimal trees in $O\left(n^{2} 2.62^{n}\right)$ time, in: Proceedings of the Sixth Canadian Conference on Computational Geometry, 308-313.
[4] U. Fößmeier and M. Kaufmann, (2000) On exact solutions for the rectilinear Steiner tree problem Part 1: Theoretical results. Algorithmica, 26, 68-99.
[5] B. Fuchs, W. Kern, D. Mölle, S. Richter, P. Rossmanith and X. Wang, (2005) Dynamic Programming for Minimum Steiner Trees, preprint.

[^0]: ${ }^{1}$ Supported by Netherlands Organization for Scientific Research (NWO) grant 613.000.322 (Exact Algorithms).
 ${ }^{2}$ Email: bfuchs@zpr.uni-koeln.de
 ${ }^{3}$ Email: kern@math.utwente.nl
 ${ }^{4}$ Email: xinhuiw@math.utwente.nl

