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Abstract

Recently, Andrés Seb6 and Nicola Apollonio considered the following
generalization of the problem to determine a matching of size k. Given a
graph G = (V, E) and an integer k, determine a subgraph H = (V, F) of G
that minimizes ) . du (v)? or more general £(dg), where £: NV — R is
a separable convex function, and |F'| = k. They proved, that the problem
is polynomially solvable in two ways. First, it admits “augmenting pairs of
alternating paths” which, according to their analysis, yields a complexity
of O(n®?), if £ is a quadratic convex function. On the other hand they
reduced the problem to a single minimum weight f-factor problem. Their
reduction introduces quite a few new vertices and edges such that the
resulting complexity is higher.

We present a simpler reduction of “minconvex factor of prescribed size”
to a single minimum weighted f-factor problem resulting in an overall
complexity of O(m?log(n)).

1 Introduction

Starting from the problem to cover as many edges as possible with k vertices in
a line graph, Nicola Apollonio and Andras Sebd [1, 2] considered the problem to
find k edges in a given graph G = (V, E') such that the sum of the squares of the
degrees of the subgraph formed by these edges is minimized. More generally,
they examine the problem to find F C FE in a given, not necessarily simple,
graph G = (V, E), such that |F| = k and

U(dp) = Z by(dp(v))
veV

is minimized, where ¢ is a discrete separable convex function on the degree
sequence, i.e. for each v € V £, : N — R is a discrete convex function.



They could show that the problem, while being N P-complete for general
convex functions, is solvable in polynomial time in the separable case. In par-
ticular they prove that the global optimality criterion can be replaced by a local
one, allowing for incremental search algorithms. This approach was generalized
by Murota [6] to minimizing M-convex functions in the intersection of a hy-
perplane of constant component sum with a jump system. Apollonio and Seb6
also presented a reduction to a weighted f-factor problem. Unfortunately, the
number of vertices in this reduction increases considerably.

We present a simpler reduction which uses just one additional vertex. To-
gether with the algorithm of Gabow [3] this yields an overall complexity of

O(m?logn).
The paper is organized as follows: In Section 2 we provide necessary notation
and some prerequisites. In Section 3 we review the main results of [1, 2] pro-

viding simplified proofs. In Section 4 we present our reduction and in Section 5
we conclude with algorithmic consequences.
2 Prerequisites
A function k£ : N — R is a discrete convex function if for all 1 € N
k(1 +2)—k(i+1) > k(i +1) — k(i). (1)
By induction this immediately implies

Proposition 2.1. If k is a discrete convex function and ni,nq,ng € N. Then

k(ny + na +ng) — k(ny + n2) > k(ng +n3) — k(ny). (2)
Proof.
ns
k:(n1 +n2+n3)7k(n1 +7’L2) = Zk(nl +n2+z)7k(n1 +7’L2+Z*1)

=1

> k(ng +i) —k(ng +i—1)
i=1

v

= kznl +ng) — k(ni1).
O

Let G = (V, E) be a not necesserily simple graph. If F' C E, by dr(v) we
denote the degree of vertex v in the graph H = (V, F) and by dr : V — N its
degree sequence. Let 2F denote the power set of E. A function £ : 2F — R is
called a discrete separable convex function on the degree sequences of subgraphs
of G if there exist discrete convex functions ¢, for each v € V such that for all

F C FE we have
(F) =Y Lu(dr(v)).
veV



For an introduction to general discrete convex functions see [5].

If f:V — N then an f-factor of G is a subgraph H = (V, F) such that
drp(v) = f(v) for all v € V.

In this paper we consider the problem

Problem 2.2 (MCFS). Given a graph G = (V, E), an integer k > 0 and a
discrete separable convex function on the degree sequences of subgraphs of G.
Determine F C E such that |F| =k and £(dF) is minimized.

If F,F/ C E then an F-F’-alternating walk is a walk which alternates be-
tween edges from F'\ F' and F'\ F. An F-(E \ F) alternating path is simply
called F-alternating. By FAF' we denote the symmetric difference

FAF = (FUF)\(FNF).

3 Alternating walks

If £ is the sum of squares of the degrees and GG has a matching M C E of size
k then clearly M is optimal for Problem 2.2 which, thus, generalizes matching
(see e.g. [1]). Applying the established solution concept of alternating paths
yields:

Proposition 3.1 ([1, 2]). 1. If F,F' C E and |F| = |F'| then FAF’ can
be decomposed into pairwise edge disjoint F-F'-alternating walks such that
in every vertex v € V exactly |dp(v) — dp (v)| of these walks end.

2. These walks can be grouped into even alternating walks Q;,5 = 1,...,¢
and pairs of odd alternating walks P;", P i = 1,...,s where |P;" N F|

=|Pt\F| -1, but [P, NF|=|P7 \ F|+1 and
V1<i<s,1<j<t:|FAQ,|=|F|=|FAPTAP]|.

Considering a pair af adjacent edges in two vertex disjoint triangles, it is
immediate that modifying an edge set along even alternating walks may not be
sufficient in order to optimize. Also note, that the walks may not be paths and
their end vertices may coincide.

Since the alternating paths are pairwise edge disjoint their effect on the
degree sequence of F' decomposes, too. To be more precise, for an edge set
Q C E we denote by §r(Q) € ZV its effect on the degree sequence of F, i.e.

5F(Q) = dFAQ — dF
Then

t t
dpr =dp + (SF(F/AF) =dp + Z(SF(Q]> + Zép(f’f @] f);)

j=1 =

The functions or — as we prefer to call them — vectors d#(Q;) of even alter-
nating paths are non-zero only on two vertices, namely equal to 1 on one end



vertex of the path and —1 on the other. The functions 6z(P;” U P;”), however,
may have two 1’s and two —1s, a 2 and two —1s, two 1s and a —2 or a 2 and a
—2. As a consequence of Proposition 3.1 (2) all these vectors are compatible, i.e.
if in a fixed coordinate some vector is negative (positive), then all other have to
non-positive (non-negative) in that coordinate.

Compatible vectors behave nicely with respect to discrete separable convex
functions.

Lemma 3.2 ([1, 2]). Let A\,Aa : V. — Z be compatible vectors such that
dr +X1,dr + X2 and dp + A1 + Ao are non-negative and £ : 2 — R be a discrete
separable convex function. Then

Udp + M+ A2) —U(dp) > (U(dp + A1) — £(dFp)) + (U(dp + A2) — £(dF)). (3)

Proof. By definition £(dr) = ), cy fu(dr)(v). Thus it suffices to show that for
all v e Vi Ly(dr + A1+ A2)(v) > Ly(dp + A1) (V) + Lp(dr + X2)(v) — £y (dp). If
A1(v), A2(v) > 0 then by Proposition 2.1

Co(dp + A1+ A2)(v) — U(dp + M) (v) = Cy(dp + A2)(v) — (dp)(v).
If A1 (v), A2(v) < 0 again Proposition 2.1 yields
ty(dp)(v) = Ly(dp + A2)(v)

= Lo(dp + X1+ X+ M|+ 2))(0) = Lo(dr + A1+ g + X)) (v)
> Ly(dr + M)(0) = Lo(dp + A1 + A2)(v)

implying the assertion. O

Theorem 3.3 ([1, 2]). Let (G, k,£) be an instance of Problem 2.2 and F C E
satisfy |F| = k. Then F is an optimum solution of MCFS if and only if there
exrists neither an even alternating walk Q nor a pair of odd alternating walks
PT,P? as in Proposition 3.1 such that

f(dFAQ) < E(dp) TeSp. g(dFAP-FAP—) < f(dp).

Proof. If there exists such a alternating walks then clearly F' is not optimal. On
the other hand let F' C F satisfy |F'| = k and £(dp+) < £(dr). Then Lemma 3.2
inductively implies

0o > E(dp/)*g(dp)

t 5
Ol dr+ Y 00(@Q) + Y 6r(PTUP) | - (dr)
j=1 i=1
> Y (Udr +0r(Q)) = dr)) + Y (Udr +p (P U PT) = U(F)).
i=1 i=1
Hence, at least one of the summands from the last expression must be negative,
implying the assertion. O



4 A Construction

In this section we reduce MCFS to a maximum weighted f-factor problem by
adding an extra vertex that “attracts” edges of vertices of high degree. If a
vertex has degree d(v) then the first edge, if not included in F' will save £, (d(v))—
£,(d(v) — 1), the second ¢,(d(v) — 1) — £, (d(v) — 2) and so on. If we connect v
to a new vertex x with d(v) parallel edges e, ;, assigning to them the weights
Ly(i) — Ly(i — 1) for ¢ = 1,...,d(v), then a maximum weighted f-factor will
prefer edges of larger index from these.

Hence, we construct an auxiliary graph G’ = (V U {z}, FU E®) by adding a
vertex = to G that is adjacent to each v € V by dg(v) parallel edges e, ; where
1 <1 <d(v) and set

E* = |J{ewi |1 <i<d(v)}.
veV

We define a weight function on the edgeset E' := EU E*

wle) == 0 if eek
L) —lE—-1) if e=e,,; € E”.

The function f: V U {z} for our f-factor problem is defined as

[ 2El-2 if v=x
fv):= { de(v) it veVW

We say that an f-factor H' of G’ is proper, if
Vo e VV1 <i<degy(v)—1:(ey; € E(H') = e,,41 € E(H")).

Thus, an f-factor is proper if and only if it prefers parallels of larger to those
of smaller index. We have the following one-one-correspondence between edge
sets F' C E of size k and proper f-factors of G'.

Lemma 4.1. If H' is an f-factor of G' then F = E N E(H') determines a
subgraph H = (V,F) of G such that |F| = k. If on the other hand F C E
determines a subgraph H = (V, F) of G such that |F| =k, then

E(H'):=FU | J {ev | deggr(v) + 1 < i < degg(v)}
veV
yields a proper f-factor H' of G'. If H' is proper we furthermore have

Udp) =Y wle)— Y wle)+ Y £(0) =w(G)—wH)+ Y £,0).

ecE’ ecE(H') veV veV

Proof. If H' is an f-factor then F' = E N E(H') determines a subgraph H =
(V,F) of G such that

> dr(v) =Y da(v) - (2|E| — 2k) = 2k.

veV veV



Hence |F| = k.

If, on the other hand, F is given and H' is as above, then dp/(z) =
Y wev(da(v) —dp(v)) = 2|E| — 2k and Vv € V we have dp/(v) = dp(v) +
(dg(v) — dp(v)) = dg(v). Hence H' is an f-factor of G’, which is proper by
construction. If H' is proper then furthermore

w(@) —w(H') = Y we)— Y w(e)

ecE’ ecE(H')
da (v) da(v)
=22 -2 2 G@)-6iE-1)
veV i=1 VeV i= dF(U)+1
dr (v)
= Z Z v - Z - 1 Zév
veV =1 veV

O
Theorem 4.2. F determines a subgraph H = (V, F) of G such that |F| = k

and
=" tu(dr(v)

veV
is minimized if and only if H' is an f-factor of G' mazimizing w(F).
Proof. If F is any set of k edges of G then H’ constructed as in Lemma 4.1
is a proper f-factor of G’ of weight w(G’) — £(dr) + ),y £+(0) which is of
maximum weight if and only if £(dr) is a minimizer of MCFS.

If on the other hand H’ is an f-factor such that w(H’) is maximized then
since [ is a discrete convex function and hence

Vi > 1V € Vi £y(i) — Lo(i — 1) < €,(i + 1) — £,(3),

eventually exchanging some parallel edges of equal weight we may assume that
H'’ is proper and the claim follows. O

5 Algorithmic consequences

The algorithm of Gabow [3] solves the weighted f-factor problem for |V| =
n, |[E| =m in O((3_,cy f(v))mlogn) (see e.g. [7]). It actually does not require
the underlying graph to be simple, although we could eliminate parallels without
increasing the order of its complexity by subdividing each parallel edge twice.

Since
> fw)=2El-2k+ > da(v) = O(m)

veVU{z} veV

Gabow’s algorithm will solve our problem in O(m?logn).
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