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Abstract

[S, S] denotes the set of edges with exactly one end vertex in S. The density of
an edge cut [S, S] is |[S, S]|/(|S||S|). A sparsest cut is an edge cut with minimum
density. We characterize the sparsest cuts for unit interval graphs, complete bipar-
tite graphs and cactus graphs. For all of these classes, the characterizations lead to
linear time algorithms to find a sparsest cut.
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1 Introduction

For basic graph theoretic terms that are not explained here we refer the reader
to [4]. Let G = (V, E) be a graph. For two disjoint non-empty sets S ⊂ V
and T ⊂ V , [S, T ] denotes the set of edges of G with one end vertex in S and
one end vertex in T . An edge cut of G is a set M ⊆ E such that M = [S, S]
for some S ⊂ V , S �= ∅, where S denotes V \S. Edge cuts will also be called
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cuts for short. The density of an edge set [S, T ] is defined as d(S, T ) = |[S,T ]|
|S||T | .

An edge cut [S, S] of G with minimum density is called a sparsest cut of G.

Finding a sparsest cut or the density of a sparsest cut is NP-hard [6].
Accordingly, it is unlikely that there are straightforward methods to prove
that a cut is a sparsest cut. A lot of study has been done on approximation
algorithms for finding sparsest cuts and generalizations thereof (see [5] for a
good introduction). We ask a different question: for which graph classes can
the sparsest cuts be found efficiently? Not much is known about this: in [6], a
linear time algorithm is given for trees. In [1], sparsest cuts are characterized
for Cartesian product graphs G×H . This leads to a polynomial time algorithm
when sparsest cuts of the factors G and H can be found in polynomial time.

In this paper, we characterize sparsest cuts for three graph classes: unit
interval graphs (for the definition see below), cactus graphs and complete
bipartite graphs. Cactus graphs are connected graphs in which every edge is
part of at most one cycle (cactus graphs generalize trees and cycles). These
results have appeared previously in [2]. These graph classes are very restricted
and well-structured, but surprisingly, two of the proofs are still non-trivial. For
all of these classes, the characterizations lead to linear time algorithms. Thus
the result for cactus graphs generalizes the result for trees in [6].

In Section 2 we study unit interval graphs and cactus graphs. A graph G
is a unit interval graph (UIG) if a function I : V (G) → R exists such that
uv ∈ E(G) if and only if I(u)−1 ≤ I(v) ≤ I(u)+1. I is called a unit interval
representation (UIR) of G. We show that every UIG G with UIR I has a
sparsest cut [S, S] such that for all u ∈ S, v ∈ S, I(u) ≤ I(v). This is then
used to construct a linear time algorithm to find sparsest cuts for UIGs. To
prove the result, we develop some basic but useful techniques and lemmas for
comparing densities in a graph.

It is easy to show that a sparsest cut in a cactus always contains one or
two edges. This is used to give a linear time algorithm to find a sparsest cut
for these graphs.

In Section 3 we study complete bipartite graphs Km,n with m ≤ n and n ≥
2. We show that d(Km,n) = min{1

2
, m

m+n−1
}, and construct the corresponding

cuts. This obviously gives a linear time algorithm that either returns a sparsest
cut, or shows that the input graph is not complete bipartite.

For complete graphs and disconnected graphs finding a sparsest cut is
trivial. To summarize, the current results and the results in [1] show that
sparsest cuts can be found efficiently for complete graphs, disconnected graphs,
complete bipartite graphs, cactus graphs, UIGs, and products of (products of)
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these.

An interesting question for future research is for which other classes the
sparsest cuts can efficiently be found, and for which classes the problem is
NP-hard.

2 Sparsest cuts in unit interval graphs and cactus graphs

For the proofs in this section, we need to express a density d(S, T ) as a
weighted average of densities between subsets of S and T .

Proposition 2.1 If A, B and C are disjoint non-empty subsets of V (G), then

d(A, B ∪ C) = d(A,B)|B|+d(A,C)|C|
|B|+|C| .

Definition 2.2 Let G be a graph with sparsest cut [S, S]. Let A, B ⊆ V (G)
with A ∩ B = ∅. The normalized density between A and B is e(A, B) =
d(A, B) − d(S, S).

Normalized densities can also be expressed as weighted averages:

Proposition 2.3 If A, B and C are disjoint non-empty subsets of V (G), then

e(A, B ∪ C) = e(A,B)|B|+e(A,C)|C|
|B|+|C| .

The following simple lemma is the key to our approach.

Lemma 2.4 If [A ∪ B, C] is a sparsest cut of G, with A and B disjoint and
non-empty, then e(A, B) ≥ 0. If e(A, B) = 0, then [A, B ∪C] or [B, A∪C] is
also a sparsest cut of G.

Proof. [A∪B, C] is a sparsest cut so e(A∪B, C) = 0. Since this is a weighted
average of e(A, C) and e(B, C) (Observation 2.3), we may assume e(A, C) ≤ 0
and e(B, C) ≥ 0. If e(A, B) < 0, then

e(A, B ∪ C) =
e(A, B)|B| + e(A, C)|C|

|B| + |C| < 0,

a contradiction. This shows that e(A, B) ≥ 0. If e(A, B) = 0, then similarly
we find that e(A, B ∪ C) = 0, so [A, B ∪ C] is a sparsest cut. �

Corollary 2.5 If [S, T ] is a sparsest cut in a connected graph G, then G[S]
and G[T ] are connected.

Cactus graphs From this corollary, we obtain a characterization of the spars-
est cuts for cactus graphs.
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Proposition 2.6 If M is a sparsest cut of a cactus G, then |M | = 1, or M
contains exactly two edges, which are part of the same cycle.

Obviously it follows that for cactus graphs, a sparsest cut can be found in
polynomial time. We shortly sketch a linear time algorithm for a graph G
with |V (G)| = n. The blocks of G can be found in linear time [7], so we can
decide in linear time if it is a cactus. For every block B and vertex v ∈ V (B),
let w(B, v) be the number of vertices in the component of G−E(B) that con-
tains v. These values can be calculated in linear time: first assign w′(v) := 1
for every vertex v. Now repeatedly consider a block B that contains at most
one cut vertex u of G. For all v ∈ V (B) with v �= u, w(B, v) = w′(v). w(B, u)
follows from

∑
v∈V (B) w(B, v) = n. Contract B into a single vertex u, and

set w′(u) :=
∑

v∈V (B) w′(v). Repeat this procedure until no blocks remain.
Now for every cycle C, it can be checked that the edge cut with the smallest
density, that cuts C, can be calculated in time O(|V (C)|), using the values
w(C, v). In addition, for every bridge the corresponding density can now be
calculated in constant time. By Proposition 2.6, one of these cuts is a sparsest
cut.

Unit interval graphs In order to give a short expression for the form of
a sparsest cut of UIGs, we use the following definition.

Definition 2.7 Let I : V (G) → R be a UIR for the graph G. If A and B
are disjoint non-empty subsets of V (G), we write A ≺I B if for all u ∈ A and
v ∈ B, I(u) ≤ I(v) holds.

Let G be a UIG with UIR I. We show that G has a sparsest cut [S, S]
such that S ≺I S. This is done by considering an arbitrary cut [S, T ], and
partitioning S and T into S1, . . . , Sk resp. T1, . . . , Tl with k − 1 ≤ l ≤ k such
that S1 ≺I T1 ≺I S2 ≺I . . . ≺I Tk−1 ≺I Sk, and in addition Sk ≺I Tk if l = k.
For a given cut [S, T ] and UIR I of G, a partition of S and T into non-empty
subsets with this property is called an I-partition of S and T . Observe that
w.l.o.g. we can always find an I-partition.

We show that if k > 1, then we can reassign these subsets into disjoint non-
empty subsets S ′ and T ′ with S ′ ∪ T ′ = V (G), such that d(S ′, T ′) ≤ d(S, T ).

Lemma 2.8 Let I : V (G) → R be a UIR for the graph G. If A, B, C ⊆ V (G)
with A ≺I B ≺I C, then d(B, A ∪ C) ≥ d(A, C).

Theorem 2.9 Let I : V (G) → R be a UIR for the graph G. G has a sparsest
cut [S, T ] such that S ≺I T .
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Proof. Consider a sparsest cut [S, T ] and I-partition {S1, . . . , Sk} and
{T1, . . . , Tl} of S and T , that has k + l minimum, among all such sparsest cuts
and I-partitions. We use the following shorthand notation: Si...j = Si∪. . .∪Sj ,
and Ti...j = Ti ∪ . . . ∪ Tj .

If k = 1, then S = S1 ≺I T1 = T , and we have found the desired sparsest
cut. Otherwise, we distinguish two cases: l = k − 1, and l = k ≥ 2.

Case 1: l = k − 1.
For all 1 ≤ t ≤ k − 1, e(S1...t, St+1...k) ≥ 0 (Lemma 2.4). If this is an equality,
then [S1...t, St+1...k ∪ T1...k−1] or [St+1...k, S1...t ∪ T1...k−1] is also a sparsest cut
(Lemma 2.4). The first cut has an I-partition with 2t < 2k−1 = k+ l classes,
and the second cut has an I-partition with 2(k−t) < 2k−1 = k+l classes, both
contradictions with our choice of [S, T ]. We conclude that e(S1...t, St+1...k) > 0
for every 1 ≤ t ≤ k − 1.

Since S1...t ≺I Tt ≺I St+1...k and S1...t ∪ St+1...k = S, it follows from
Lemma 2.8 that e(Tt, S) ≥ e(S1...t, St+1...k) > 0, for all 1 ≤ t ≤ k − 1. Since

e(S, T ) =
e(T1, S)|T1| + . . . + e(Tk−1, S)|Tk−1|

|T1| + . . . + |Tk−1| ,

we have e(S, T ) > 0, a contradiction with the fact that [S, T ] is a sparsest cut.
This concludes the case l = k − 1.

Case 2: l = k ≥ 2.
We again have e(Tt, S) > 0 for all 1 ≤ t ≤ k−1 (see the previous case), but it
is possible that e(Tk, S) < 0, so we cannot immediately obtain a contradiction
this way.

First we show that for every 2 ≤ t ≤ k,

e(St, T ) > e(T1...t−1, S)
|S|
|T | ,(1)

and for every 1 ≤ t ≤ k − 1,

e(Tt, S) > e(St+1...k, T )
|T |
|S| .(2)

For a fixed t with 2 ≤ t ≤ k, we denote TL = T1...t−1 and TH = Tt...k.
We showed that e(Ti, S) > 0 for all i < k, so we have e(TL, S) = α > 0
(e(TL, S) is a weighted average of e(Ti, S) for i = 1, . . . , t − 1). Since 0 =

e(TL∪TH , S) = α|TL|+e(TH ,S)|TH |
|TL|+|TH | , we have e(TH , S) = −α |TL|

|TH | . Now we consider

the cut [TH , V (G)\TH ]. Since 0 ≤ e(TH , V (G)\TH) = e(TH ,S)|S|+e(TH ,TL)|TL|
|S|+|TL| ,

we have e(TH , TL) ≥ −e(TH , S) |S|
|TL| = α |S|

|TH | . Finally, using Lemma 2.8 and

TL ≺I St ≺I TH we obtain e(St, T ) ≥ e(TL, TH) ≥ α |S|
|TH | > e(TL, S) |S|

|T | . By

symmetry (since l = k), (2) can be proved the same way.
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Using (1) and (2), we now prove by induction on i that for all 1 ≤ i ≤ k−1,

e(T1...i, S) > e(Si+1...k, T )
|T |
|S| .(3)

If i = 1, then (3) is equal to (2) for t = 1. If i > 1 then our induction

hypothesis is that e(T1...i−1, S) > e(Si...k, T ) |T |
|S| . When we combine this with (1)

we get e(Si, T ) > e(T1...i−1, S) |S|
|T | > e(Si...k, T ). Since e(Si...k, T ) is a weighted

average of e(Si, T ) and e(Si+1...k, T ), it follows that e(Si...k, T ) > e(Si+1...k, T ).

We combine this with the induction hypothesis: e(T1...i−1, S) > e(Si...k, T ) |T |
|S| >

e(Si+1...k, T ) |T |
|S| . From (2) we see that e(Si+1...k, T ) |T |

|S| is also a lower bound for

e(Ti, S). Since e(T1...i, S) is a weighted average of e(T1...i−1, S) and e(Ti, S),

it follows that e(T1...i, S) > e(Si+1...k, T ) |T |
|S| , which concludes the induction

proof. Using (3) resp. (1), we obtain a contradiction for the case l = k:

e(T1...k−1, S) > e(Sk, T ) |T |
|S| > e(T1...k−1, S).

We showed that both cases with k > 1 lead to a contradiction, so with our
choice of S and T , k = 1, and thus S ≺I T . �

UIGs can be recognized in linear time, and a UIR can be found in linear
time [3]. It follows that for UIGs, sparsest cuts can be found in linear time:
Number the vertices v1, . . . , vn, according to the linear order given by the UIR
(w.l.o.g. I(u) �= I(v) for all u, v). Now we only have to evaluate the densities
of [{v1, . . . , vi}, {vi+1, . . . , vn}], for i = 1, . . . , n − 1 (Theorem 2.9). Note that
the number of edges in the i-th cut can be deduced in time O(d(vi)) from the
number of edges in the (i−1)-th cut. Therefore the algorithm has complexity
O(|V | + |E|).

3 Sparsest cuts in complete bipartite graphs

In this section we give an explicit expression for the density of a sparsest cut
of Km,n, and in the proof of Theorem 3.1 construct all corresponding cuts. A
completely different proof of this theorem (by induction over n − m) appears
in [8].

Theorem 3.1 If [S, S] is a sparsest cut of Km,n with m ≤ n and n ≥ 2, then
d(S, S) = min{1

2
, m

n+m−1
}.

Proof. First we give an expression for the density of an arbitrary edge cut
[S, S] of Km,n. Let {A, B} be a bipartition of the vertices, with |A| = m,
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|B| = n. If |S ∩ A| = x and |S ∩ B| = y, then

d(S, S) =
|[S ∩ A, S ∩ B]| + |[S ∩ B, S ∩ A]|

|S||S| =
x(n − y) + y(m− x)

(x + y)(n + m − x − y)
.

We denote this function by d(x, y). So we want to find the minimum of
d(x, y) over all integer values of x and y with 0 ≤ x ≤ m, 0 ≤ y ≤ n, and
1 ≤ x + y ≤ n + m − 1. Because of the symmetry, we only have to consider
values of x and y with 1 ≤ x+y ≤ (n+m)/2. First we analyze d(x, y) without
considering the integrality constraints for x and y.

Consider combinations of x and y with x + y = c for a constant c. For fixed
values of n, m and c we will denote this function as dc(x) = d(x, c − x). The
denominator of dc(x) is a constant, so dc(x) is minimum when the numerator
is minimum. Substituting y = c − x gives

x(n − c + x) + (c − x)(m − x) = 2x2 + (n − m − 2c)x + mc.

This is minimum when x = c
2
− n−m

4
, and thus y = c

2
+ n−m

4
. If n−m

4
≥ c

2
, then

this value for x is negative, so within our range the minimum of dc(x) occurs
at x = 0 and y = c.

We substitute these values of x and y into d(x, y), to find the value of c
with 1 ≤ c ≤ (n + m)/2 for which the minimum is attained. First suppose
(n−m) ≤ 2, and write e = n−m

4
. so for all values of c with 1 ≤ c ≤ (n+m)/2,

we can substitute x = c
2
− e and y = c

2
+ e.

d(x, y) =
( c

2
− e)(n − c

2
− e) + ( c

2
+ e)(m − c

2
+ e)

c(n + m − c)
=

c
2
(n + m − c) − e(n − m) + 2e2

c(n + m − c)
=

z − 2e2

2z
,

with z = c(n + m − c)/2. Note that z is strictly positive for our choices of c.
If (n − m)/4 = e = 0, then the minimum of d(x, y) is 1

2
, which occurs for all

x = c
2

and y = c
2
, with 1 ≤ c ≤ (n + m)/2.

If e �= 0, then we conclude from the expression above that d(x, y) attains
its minimum when z = c(n + m − c)/2 is as small as possible, so c = 1. We
conclude that if 0 < n − m ≤ 2, d(x, y) is minimum for x = 1

2
− n−m

4
and

y = 1
2

+ n−m
4

.

Now suppose (n−m) ≥ 2. The same reasoning as above shows that when
c ≥ (n−m)/2, d(x, y) is minimum when c is minimum, so c = (n−m)/2, and
x = 0 and y = c. When 1 ≤ c ≤ (n−m)/2, we showed that dc(x) is minimum
when x = 0 and y = c. For all such pairs, d(x, y) = cm

c(n+m−c)
= m

n+m−c
. This

function is minimum when c is minimum, so c = 1. We conclude that when
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(n − m) ≥ 2, d(x, y) is minimum for x = 0, y = 1. Now we will consider the
integrality constraints for x and y.

If n − m ≥ 2, the minimum occurs at integer values of x and y (x = 0,
y = 1), so the best density is m/(n + m − 1).

If n−m = 0, then the minimum occurs whenever x = y, so the best density
is 1

2
.

Now consider the case n−m = 1. For fixed c = x + y, we know that dc(x)
is a degree two polynomial, with minimum at x = c

2
− 1

4
. Rounding to the

closest values of x and y with x+ y = c gives x = c
2

and y = c
2

when c is even,
and x = c

2
− 1

2
and y = c

2
+ 1

2
when c is odd. Since dc(x) is a polynomial of

degree two, this way of rounding gives the best integer values of dc(x). Now
we calculate the densities for these integer values. If x = y, then d(x, y) =
x(n−x)+x(n−1−x)

2x(2n−1−2x)
= 1

2
. If y = x + 1, then d(x, y) = x(n−x−1)+(x+1)(n−1−x)

(2x+1)(2n−1−2x−1)
= 1

2
.

We conclude that 1
2

is the minimum density, and that it is attained by many
combinations of x and y, one for every value of x + y. �
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