
Repetition-free longest common subsequence

Said S. Adi 1 Maŕılia D.V. Braga 2 Cristina G. Fernandes 3

Carlos E. Ferreira 3 Fábio Viduani Martinez 1 Marie-France Sagot 2

Marco A. Stefanes 1 Christian Tjandraatmadja 3 Yoshiko Wakabayashi 3

Universidade Federal do Mato Grosso do Sul, Brazil

Université Claude Bernard, Lyon I, France

Universidade de São Paulo, Brazil

Abstract

We study the problem of, given two sequences x and y over a finite alphabet, finding a repetition-
free longest common subsequence of x and y. We show several algorithmic results, a complexity
result, and we describe a preliminary experimental study based on the proposed algorithms.

Keywords: Longest common subsequence, APX-hardness, approximation algorithms.

1 Introduction

In the genome rearrangement domain, gene duplication is rarely considered as it usually
makes the problem at hand harder. Sankoff [6] proposed the so called exemplar model,
which consists in searching, for each family of duplicated genes, an exemplar representative
in each genome. In biological terms, the exemplar gene may correspond to the original copy
of the gene, which later originated all other copies. Following the parsimony principle, the
choices of exemplars should be made so as to minimize the reversal distance between the two
simpler versions of both genomes, composed only by the exemplar genes. An alternative to
the exemplar model is the multigene family model, which consists in maximizing the number
of paired genes among a family. Again, the gene pairs should be chosen so as to minimize the
reversal distance between the genomes. Both exemplar and multigene models were proven
to lead to NP-hard problems [2,4].

To compare two sequences, we propose a similarity measure that takes into account
the concept of exemplar genes. The measure we propose is the length of a repetition-free
longest common subsequence (LCS) between the two sequences. The concept behind the
exemplar model is captured by the repetition-free requirement in the sense that at most one
representative of each family of duplicated genes is taken into account. The length of an

1 Email: said|fhvm|marco@dct.ufms.br
2 Email: marilia@biomserv.univ-lyon1.fr|Marie-France.Sagot@inria.fr
3 Email: cris|cef|christj|yw@ime.usp.br

LCS is a measure of similarity between sequences, so the length of a repetition-free LCS can
be seen as the edit distance between two sequences where only deletions are allowed and,
furthermore, for each family with k duplicated genes, at least k−1 of them must be deleted.

An alphabet is a finite set and we refer to each of its elements as a symbol. All sequences
considered in this paper are finite and over some alphabet usually implicit, as it may be
considered to be the set of all symbols appearing in the involved sequences. For a sequence w,
we use |w| to denote the length of w. The problem we are interested, denoted by rflcs,
consists of the following: given two sequences x and y, find a repetition-free LCS of x and y.
We write rflcs(x, y) when we refer to rflcs for a generic instance consisting of a pair (x, y).
We denote by opt(rflcs(x, y)) the length of an optimal solution of rflcs(x, y).

Bonizzoni et al. [3] considered some variants of the rflcs. For instance, they considered
the case where some symbols are required to appear in the sought LCS, and possibly more
than once. They showed that these variants are APX-hard and that, in some cases, it is
NP-complete just to decide whether an instance of the variants is feasible. This second
complexity result makes these variants less tractable.

We present some algorithmic and some hardness results for the rflcs. We also report on
some computational experiments with the algorithms proposed in this paper. We start by
showing, in Section 2, some polynomial cases and three approximation algorithms for rflcs.
We describe c-approximations for the case where each symbol appears at most c times in
at least one of the sequences. In Section 3, we prove that rflcs is APX-hard even when
each symbol appears at most twice in both sequences. Section 4 presents an integer linear
programming formulation (IP) for rflcs. Finally, in Section 5, we show some computational
results we obtained for rflcs, considering the three approximation algorithms and the use of
an IP solver for the formulation presented in Section 4 for finding optimal solutions of the
instances.

2 Algorithmic results

We first mention some polynomially solvable cases of rflcs(x, y). If each symbol appears
at most once either in x or in y then the problem is easy: it is enough to find an LCS of
x and y. In this case, any LCS has no repetition and is therefore a solution of rflcs(x, y).
There are polynomial algorithms for LCS, so this case is polynomially solvable.

For each symbol a and a sequence w, let n(w, a) be the number of appearances of a in w.
Let ma(x, y) = min{n(x, a), n(y, a)}. The case above is the one in which ma(x, y) ≤ 1 for
all a. Consider the slightly more general case in which there is a constant bound k on the
number of symbols a for which ma(x, y) > 1. This case is also polynomially solvable. Indeed,
let Ax be the set of symbols for which ma(x, y) = n(x, a), and Ay be the remaining symbols.
Try each subsequence x′ of x and each subsequence y′ of y obtained in the following way.
For each symbol a in Ax and each of the ma(x, y) occurrences of a in x, keep that occurrence
and delete all the others from x, obtaining one x′. Do the same for y, obtaining one y′. For
each x′ and y′, find an LCS of x′ and y′. Return a longest one among all obtained LCSs.
This method needs to solve O(nk) different LCS instances and therefore is polynomial.

Now we describe three simple approximation algorithms for the problem: A1, A2, and A3.
Algorithm A1 consists of the following: given x and y, compute an LCS of x and y and remove

all repeated symbols but one, in the obtained LCS. Return the resulting sequence. Let m be
the maximum value of ma(x, y) taken over all a. It is not hard to see that Algorithm A1 is
an m-approximation for rflcs(x, y).

Algorithm A2 is probabilistic. It consists of the following: given x and y, for each
symbol a, if ma(x, y) = n(x, a), pick uniformly at random one of the ma(x, y) occurrences
of a in x, and delete all the others from x; if ma(x, y) 6= n(x, a), pick uniformly at random
one of the ma(x, y) occurrences of a in y, and delete all the others from y. Let x′ and y′ be
the resulting sequences after this clean-up. Compute an LCS w′ of x′ and y′ and return w′.

Algorithm A3 is a variant of Algorithm A2 that uses less random bits. Instead of choosing
independently one of the occurrences of each symbol in the sequences, A3 picks uniformly
at random only one number in the interval [0, 1] and uses it to decide which occurrence of
each symbol will remain. The same number is used to select each of the occurrences of all
repeated symbols. The rest of the algorithm is the same as in Algorithm A2.

Theorem 2.1 Algorithms A2 and A3 are m-approximations for rflcs(x, y), where m is the
maximum of ma(x, y), over all symbols a.

Sketch of the proof. Fix x, y, and a repetition-free LCS w of x and y. Sequence w can
be thought of as a specific subsequence of x and y. Roughly speaking, each symbol in w
has a chance of at least 1/m to be picked in the random process of both algorithms. So the
expected length of the LCS between x′ and y′ is at least 1/m of |w|. 2

3 Hardness result

We show that rflcs is APX-hard. This is done by presenting an L-reduction [5] to rflcs from
a particular version of max 2-sat, known to be APX-complete. Our result implies Theorems 1
and 2 of Bonizzoni et al. [3], as there are no “mandatory” symbols.

Let V be a set of boolean variables. Denote by v the negation of a variable v. A literal
(over V) is an element of V ∪ {v : v ∈ V }. A clause is a set of literals, and it is a k-clause
if it has k literals. An assignment for V is a function a : V → {T,F}. A literal ` is T
according to a if, for some v in V , either ` = v and a(v) = T, or ` = v and a(v) = F. A
clause is satisfied by an assignment a if at least one of its literals is T according to a.

The problem max 2,3-sat(V, C) consists of, given a set C of 2-clauses over V , where each
literal may appear in at most 3 clauses in C, finding an assignment for V that maximizes
the number of satisfied clauses in C. This variant of max 2-sat is APX-complete [1,5]. We
assume that, for any v in V , no clause is of the form {v, v}. For an assignment a, de-
note by val(max 2,3-sat(V, C), a) the number of clauses in C that are satisfied by a. Let
opt(max 2,3-sat(V, C)) = max{val(max 2,3-sat(V, C), a) : a is an assignment for V }.

An L-reduction from max 2,3-sat to rflcs consists of a pair of polynomial-time com-
putable functions (f, g) such that, for two fixed positive constants α and β, the follow-
ing two conditions hold: (C1) for every instance (V, C) of max 2,3-sat, f(V, C) = (x, y)
is an instance of rflcs, and opt(rflcs(x, y)) ≤ α opt(max 2,3-sat(V, C)); (C2) for ev-
ery instance (V, C) of max 2,3-sat, and every repetition-free subsequence w of x and y,
where (x, y) = f(V, C), we have that a = g(V, C, w) is an assignment for V , and
opt(max 2,3-sat(V, C))− val(max 2,3-sat(V, C), a) ≤ β (opt(rflcs(x, y))− |w|).

Theorem 3.1 The problem rflcs is APX-complete even when restricted to instances (x, y)
in which the number of occurrences of every symbol in both x and y is bounded by two.

Proof. First we note that Algorithm A1 presented in Section 2 is a (deterministic) 2-
approximation for rflcs(x, y) when ma(x, y) ≤ 2. So the variant of rflcs(x, y) addressed by
this theorem is in APX. Next we show an L-reduction from max 2,3-sat to rflcs.

For an instance (V, C) of max 2,3-sat, where V = {v1, v2, . . . , vn} and C is a set of 2-
clauses over V , we describe an instance (x, y) = f(V, C) of rflcs. Let {c1, c2, . . . , cm} be a
set of distinct labels, one for each of the clauses in C. For simplicity, we write ci to refer
both to the label ci and to the clause whose label is ci. So in particular we denote also by C
the set of labels {c1, c2, . . . , cm}.

For each literal `, we denote by s(`) a sequence composed by the (labels of the) clauses
in which ` is present, taken in an arbitrary order. Thus, for each v in V and an assignment a
for V , the sequence s(v) contains the clauses of C that would be satisfied if a(v) = T and
the sequence s(v) contains the clauses of C that would be satisfied if a(v) = F. Observe
that, since we do not have a clause of the form {v, v}, then s(v) and s(v) have no common
symbol. In addition, as each literal ` may appear in at most 3 clauses of C, we have that
|s(`)| ≤ 3. We also use a new set of symbols D = {d1, d2, . . . , dk}, such that k = 6(n − 1)
and D ∩ C = ∅, and construct the sequences x and y as follows.

x = s(v1)s(v1)d1 · · · d6s(v2)s(v2)d7 · · · d12s(v3)s(v3) · · · dks(vn)s(vn) and

y = s(v1)s(v1)d1 · · · d6s(v2)s(v2)d7 · · · d12s(v3)s(v3) · · · dks(vn)s(vn).

The alphabet adopted is the set C ∪D. By definition, the sets C and D are disjoint and
each symbol of D occurs once in both x and y. In addition, as each clause c in C has two
literals, and, for each literal `, the corresponding sequence s(`) appears once in either x or y,
it follows that each symbol c occurs twice in x and also twice in y.

For instance, if V = {v1, v2, v3} and C = {c1, . . . , c9}, with c1 = {v1, v2}, c2 = {v1, v2},
c3 = {v1, v2}, c4 = {v1, v3}, c5 = {v1, v3}, c6 = {v1, v3}, c7 = {v2, v3}, c8 = {v2, v3} and
c9 = {v2, v3}, then D = {d1, . . . , d12} and

x =

s(v1)︷ ︸︸ ︷
c1c4c5

s(v1)︷ ︸︸ ︷
c2c3c6 d1d2d3d4d5d6

s(v2)︷ ︸︸ ︷
c1c2c7

s(v2)︷ ︸︸ ︷
c3c8c9 d7d8d9d10d11d12

s(v3)︷ ︸︸ ︷
c4c7c8

s(v3)︷ ︸︸ ︷
c5c6c9

y = c2c3c6︸ ︷︷ ︸
s(v1)

c1c4c5︸ ︷︷ ︸
s(v1)

d1d2d3d4d5d6 c3c8c9︸ ︷︷ ︸
s(v2)

c1c2c7︸ ︷︷ ︸
s(v2)

d7d8d9d10d11d12 c5c6c9︸ ︷︷ ︸
s(v3)

c4c7c8︸ ︷︷ ︸
s(v3)

.

In this case, the subsequence c1c4c5d1d2d3d4d5d6c3c8c9d7d8d9d10d11d12c7 is an optimal so-
lution for rflcs(x, y) and corresponds to an optimal solution for max 2,3-sat(V, C), through
the assignment a(v1) = T, a(v2) = F, and a(v3) = T.

Note that the construction can be done in polynomial time. As all clauses have two
literals, n ≤ 2m, where n = |V | and m = |C|. Also, each symbol of the adopted
alphabet may appear at most once in a repetition-free subsequence of x and y, thus
opt(rflcs(x, y)) ≤ m + 6(n − 1) ≤ 12m. On the other hand, we can easily set an as-
signment a for V such that val(max 2,3-sat(V, C), a) ≥ m/2 (see the appendix for further
details), so opt(max 2,3-sat(V, C)) ≥ m/2. Putting the two together, we conclude that
opt(rflcs(x, y)) ≤ 24 opt(max 2,3-sat(V, C)), and (C1) holds with α = 24.

Let (V, C) be an instance of max 2,3-sat and (x, y) = f(V, C). To prove (C2), essentially
we show that there is a repetition-free subsequence w of x and y of length at least p = q+ |D|
if and only if there is an assignment a for V that satisfies at least q = p− |D| clauses of C.
From this, one can deduce that (C2) holds with β = 1. The complete proof is in the
appendix. 2

4 An IP based exact algorithm for the problem

We show in this section an IP formulation for rflcs(x, y). For that, we need first to establish
some notation. For each symbol a, let Ea = {(i, j) : xi = yj = a}. Moreover, set E =

⋃
a Ea.

The set Ea represents all possible alignments of the symbol a in x and y. Given (i, j) and
(k, l) in E, we say that (i, j) and (k, l) cross if i < k and j > l. We introduce, for each (i, j)
in E, a binary variable zij and impose linear restrictions on zij so that zij = 1 if and only
if xi and yj are aligned in a repetition-free LCS of x and y. The IP formulation is then as
follows.

maximize
∑

(i,j)∈E zij

subject to
∑

(i,j)∈Ea
zij ≤ 1 for each symbol a,

zij + zkl ≤ 1 for each (i, j) and (k, l) in E that cross,

zij ∈ {0, 1} for each (i, j) in E.

(1)

Indeed, the first constraint assures that the set {i : zij = 1 for some j} defines a repetition-
free subsequence wx of x and the set {j : zij = 1 for some i} defines a repetition-free
subsequence wy of y. The second constraint assures that the order of appearance of the
symbols in wx and wy is the same, that is, wx = wy and therefore we have a common
subsequence. The objective function maximizes the length of such a subsequence.

We used this IP formulation to solve some instances of rflcs, so that we could evaluate
empirically our approximation algorithms. Using a general purpose IP solver, we were not
able to solve instances of size over 250. However, with a specific branch-and-cut algorithm
that we implemented, we could solve most of the instances to optimality.

5 Computational experiments

We tested the three approximation algorithms on two types of randomly generated instances.
In the first type, we considered two parameters: the length of the sequences and the alphabet
size as a function of the length. Each position of a randomly generated sequence is one of
the symbols of the alphabet chosen uniformly at random. In these sequences, most of the
symbols have approximately the same number of occurrences.

In the second type, we considered two parameters: the alphabet size and the maximum
number of repetitions of each symbol. For each symbol, we pick, uniformly at random, the
number of repetitions of this symbol in the sequence, respecting the given maximum. There
is a linear-time (shuffling) procedure that produces, uniformly at random, a sequence with
exactly this number of repetitions of each symbol. Note that the expected length of the
generated sequence is half of the alphabet size times the maximum number of repetitions.

The tables with the experimental results are in the appendix. A first observation is that
Algorithm A3 produces the worst results. Also, Algorithm A2 outperforms A1 for small
length (under 50) sequences. For larger sequences, in both experiments, Algorithm A1 is
the best. We also considered the algorithm that runs A1, A2 and A3 and outputs the best
of their solutions. We refer to it as Max. It is interesting to note that Max finds optimal
solutions more often than A1, which means that A2 and A3 complement sometimes the
behavior of A1. In terms of approximation, the ratio between the (average) optimal length
and the (average) length of the solution produced by Max was always no more than 5/4
(for the instances where we had the optimal value).

We observe that instances with alphabet size between n/4 and 3n/8 seem to become
harder earlier (for shorter instances) in the sense that the approximation algorithms do not
find an optimal solution so often. Indeed, except for these cases, in all other cases, the ratio
above was no more than 11/10. Similar comments hold for the second type instances. For
those, the ratio above is also always at most 5/4.

6 Final remarks

Despite of the not so good theoretical worst case ratio, the experimental results indicate
that the performance of the approximation algorithms is quite satisfactory for the instance
sizes tested. However, it would be nice to test their performance on larger instances. For
them, especially when the sequences have many repetitions (small alphabet) we can obtain
the solution of the approximation algorithms very fast, but we are not always able to find
the optimal value. We are working on the branch and cut algorithm to solve larger instances
and hope to confirm the good performance of the approximation algorithms. In any case,
it would be interesting to find out whether there is a constant approximation algorithm for
rflcs.

Acknowledgements. The authors would like to thank the financial support of FAPESP (Proc. 2003/09925-5, 2004/14335-5),

CNPq (Proc. 490333/2004-4, 478329/2004-0), Fundect (Proc. 41/100.149/2006), and Alßan (Proc. E05D053131BR).

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability Properties. Springer, 1999.

[2] G. Blin, G. Fertin, and C. Chauve. The breakpoint distance for signed sequences. In Proceedings
of CompBioNets - Text in Algorithms, volume 3, pages 3–16, 2004.

[3] P. Bonizzoni, G. Della Vedova, R. Dondi, G. Fertin, and S. Vialette. Exemplar longest common
subsequence. In Proceedings of ICCS, volume 3992 of Lecture Notes in Computer Science, pages
622–629. Springer, 2006.

[4] D. Bryant. The complexity of calculating exemplar distances. In D. Sankoff and J.H. Nadeau,
editors, Comparative Genomics, pages 207–212. Kluwer, 2001.

[5] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes.
Journal of Computer and System Sciences, 43:425–440, 1991.

[6] D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15(11):909–917, 1999.

Appendix

A Complexity proof

Let (V, C) be an instance of max 2,3-sat. We can easily set an assignment a for V , such
that val(max 2,3-sat(V, C), a) ≥ m/2. Indeed, sequentially, for i = 1, 2, . . . , n, define Ci ⊆ C
as Ci = {c ∈ C : c contains either vi or vi} and C = C \ Ci; then make a(vi) = T if vi

is more common than vi in the clauses of Ci, otherwise a(v) = F. Note that the final C
is empty and a satisfies at least |Ci|/2 clauses from Ci, for each i. Therefore, as ∪Ci is
equal to the initial C, the assignment a satisfies at least m/2 clauses from the initial C. So
opt(max 2,3-sat(V, C)) ≥ m/2.

Claim A.1 Let (V, C) be an instance of max 2,3-sat and (x, y) = f(V, C). There is a
repetition-free subsequence w of x and y of length at least p = q + |D| if and only if there is
an assignment a for V that satisfies at least q = p− |D| clauses of C.

Proof. Let w be a repetition-free subsequence of x and y of length p. First we describe
another repetition-free subsequence z of x and y of length at least p that contains all symbols
in D. From z, we describe an assignment a that satisfies at least |z| − |D| ≥ p− |D| clauses
of C.

The following procedure constructs z from w, so that z is a supersequence of d1d2 · · · dk

and is at least as long as w. Sequentially, for i = 1, 2, . . . , n − 1, remove any symbol of w
that comes from the alignment of a symbol of s(vi)s(vi) in x (of s(vi)s(vi) in y) and a symbol
of s(vi+1)s(vi+1)d6(i+1)−5 · · · dks(vn)s(vn) in y (of s(vi+1)s(vi+1)d6(i+1)−5 · · · dks(vn)s(vn) in x,
respectively), and then add d6i−5d6i−4d6i−3d6i−2d6i−1d6i (which are the symbols from D that
are between s(vi) and s(vi+1) in x or y). Call z the resulting subsequence after all these
substitutions. At the end, add to z the symbols from D that are not already present in it.
Observe that |s(vi)s(vi)| ≤ 6, thus at each step we replace at most six symbols by exactly six
new symbols from D (that do not occur in w). Hence z is also a repetition-free subsequence
of x and y, with |z| ≥ |w|.

Now, we proceed to describe the assignment a. Since z contains all symbols from D,
the other portions of z are subsequences of s(vi)s(vi) in x and s(vi)s(vi) in y, for each i =
1, 2, . . . , n. Moreover, because all symbols in s(vi) differ from those in s(vi), the subsequence z
does not align simultaneously symbols from both s(vi) and s(vi). So we define an assignment
a as a(vi) = T if z aligns a symbol from s(vi), otherwise a(vi) = F. Set g(V, C, w) = a.
Observe that assignment a satisfies at least q = |z| − |D| ≥ p− |D| clauses.

For the other direction, consider an assignment a for V that satisfies q clauses of C. Let w
be a repetition-free subsequence of x and y obtained as follows. For i = 1, 2, . . . , n, add to w
the symbols that correspond to the clauses in s(vi) if a(vi) = T, otherwise add the symbols
that correspond to the clauses in s(vi). After all the additions, eliminate repetitions and
add to w, at the corresponding positions, all symbols from D. Then w is a repetition-free
subsequence of x and y such that |w| = q + |D|. 2

B Experimental results

Below we describe the tables with the experimental results. In Figure B.1, each row corre-
sponds to the average results for ten instances. The two first columns show the alphabet
size and the sequences length. The next three columns show the average solution length of
the approximations A1, A2, and A3. In parenthesis, it is shown for how many of the ten
instances this algorithm is the best of the three and how many times it found an optimal
solution. The next column shows the average solution length for the algorithm, denoted as
Max, that runs A1, A2, and A3 and outputs the best solution found. In parenthesis, we show
the number of times Max found an optimal solution. The last column shows the average
length of the optimal value over the ten instances, obtained by our branch and cut code.
When the time required for the algorithm to find the optimal solution exceeded two hours
we interrupted the execution (therefore we do not have the optimal value).

|Σ| n A1 A2 A3 Max Opt
32 4.0 (10/10) 4.0 (10/10) 4.0 (10/10) 4.0 (10) 4.0
64 7.8 (8/8) 8.0 (10/10) 7.9 (9/9) 8.0 (10) 8.0

n/8 128 15.3 (7/6) 15.7 (9/7) 14.2 (1/0) 15.8 (8) 16.0
256 25.8 (9/-) 23.1 (1/-) 21.3 (0/-) 25.9 (-) —
512 52.1 (10/-) 40.5 (0/-) 36.5 (0/-) 52.1 (-) —
32 6.5 (4/4) 7.2 (10/10) 6.9 (7/7) 7.2 (10) 7.2
64 12.7 (3/0) 13.9 (10/1) 12.9 (5/0) 13.9 (1) 15.3

n/4 128 21.7 (8/0) 20.5 (3/0) 19.2 (0/0) 22.0 (0) 26.2
256 36.2 (10/0) 31.0 (0/0) 28.9 (0/0) 36.2 (0) 43.7
512 58.2 (10/-) 46.2 (0/-) 43.2 (0/-) 58.2 (-) —
32 7.8 (3/3) 8.7 (9/7) 7.8 (2/2) 8.8 (8) 9.0
64 13.9 (4/0) 14.7 (7/3) 13.3 (1/0) 15.0 (3) 16.1

3n/8 128 22.5 (8/0) 21.9 (5/0) 20.6 (1/0) 22.8 (0) 25.1
256 35.7 (10/0) 31.6 (1/0) 30.3 (0/0) 35.7 (0) 39.6
512 53.7 (10/0) 44.9 (0/0) 43.3 (0/0) 53.7 (0) 59.0
32 8.2 (6/4) 8.6 (10/8) 7.9 (3/1) 8.6 (8) 8.8
64 13.0 (2/1) 13.9 (9/3) 12.7 (1/0) 14.0 (3) 14.7

n/2 128 21.3 (7/0) 21.0 (5/1) 19.6 (1/0) 21.8 (1) 23.2
256 33.5 (10/0) 30.7 (1/0) 29.3 (0/0) 33.5 (0) 35.8
512 50.3 (10/0) 44.7 (0/0) 42.3 (0/0) 50.3 (0) 54.2
32 7.6 (6/4) 7.8 (8/6) 7.5 (5/4) 8.1 (8) 8.3
64 12.8 (6/4) 12.9 (7/3) 12.5 (4/4) 13.2 (6) 13.7

5n/8 128 20.4 (8/1) 19.8 (5/1) 19.3 (1/0) 20.6 (2) 21.6
256 31.5 (9/2) 29.6 (2/0) 27.9 (0/0) 31.6 (2) 32.8
512 46.2 (9/2) 42.4 (1/0) 41.3 (0/0) 46.4 (2) 48.3
32 6.7 (1/1) 7.6 (10/9) 7.1 (5/4) 7.6 (9) 7.7
64 11.9 (4/3) 12.5 (9/7) 11.9 (3/3) 12.6 (8) 12.8

3n/4 128 19.4 (8/6) 19.2 (6/3) 18.1 (2/1) 19.7 (7) 20.0
256 28.4 (9/2) 28.0 (5/2) 26.9 (3/1) 28.7 (3) 29.9
512 42.5 (10/2) 39.8 (0/0) 39.4 (1/0) 42.5 (2) 43.8
32 7.2 (8/8) 7.4 (9/9) 7.1 (6/6) 7.5 (10) 7.5
64 11.6 (6/5) 11.8 (8/7) 11.3 (4/4) 12.0 (9) 12.1

7n/8 128 18.4 (8/7) 18.4 (8/7) 17.9 (3/3) 18.6 (9) 18.8
256 26.8 (9/6) 26.0 (4/1) 25.2 (1/0) 26.9 (6) 27.4
512 39.2 (10/0) 37.4 (1/0) 36.6 (0/0) 39.2 (0) 40.7

Fig. B.1. First experiment.

In Figure B.2, each row corresponds to the average results for ten instances. The two
first columns show the alphabet size and the maximum number of repetitions. The next
columns are just like in the previous table.

|Σ| # Repts A1 A2 A3 Max Opt
3 3.3 (7/7) 3.6 (10/10) 3.6 (10/10) 3.6 (10) 3.6
4 3.2 (5/5) 3.7 (10/10) 3.7 (10/10) 3.7 (10) 3.7
5 3.5 (7/7) 3.9 (10/10) 3.8 (9/9) 3.9 (10) 3.9

4 6 3.5 (6/6) 3.9 (10/10) 3.9 (10/10) 3.9 (10) 3.9
7 3.5 (6/6) 3.9 (10/10) 3.8 (9/9) 3.9 (10) 3.9
8 3.7 (8/8) 3.9 (10/10) 3.9 (10/10) 3.9 (10) 3.9
3 5.7 (6/6) 6.1 (10/10) 5.9 (8/8) 6.1 (10) 6.1
4 6.5 (8/6) 6.6 (9/7) 6.5 (8/6) 6.7 (8) 6.9
5 6.4 (6/6) 7.0 (10/10) 6.6 (6/6) 7.0 (10) 7.0

8 6 6.6 (4/3) 7.3 (9/7) 6.8 (5/3) 7.4 (8) 7.6
7 6.8 (3/3) 7.5 (9/8) 7.3 (7/6) 7.6 (9) 7.7
8 7.3 (6/5) 7.8 (10/9) 7.6 (8/7) 7.8 (9) 7.9
3 9.6 (5/4) 10.2 (10/7) 9.2 (3/2) 10.2 (7) 10.5
4 9.8 (5/1) 10.7 (9/2) 10.3 (5/1) 10.8 (2) 11.8
5 10.8 (5/0) 11.6 (9/1) 11.1 (6/1) 11.7 (2) 12.7

16 6 11.9 (4/1) 12.7 (8/1) 12.0 (3/0) 12.9 (2) 14.2
7 12.1 (5/1) 12.4 (7/1) 12.2 (6/2) 12.8 (2) 13.9
8 12.2 (3/0) 13.4 (9/1) 12.3 (2/0) 13.5 (1) 14.9
3 14.8 (8/3) 15.2 (10/5) 13.9 (1/0) 15.2 (5) 15.8
4 18.1 (6/1) 17.7 (3/0) 16.7 (2/0) 18.7 (1) 20.3
5 18.3 (6/0) 18.2 (6/0) 17.1 (2/0) 19.0 (0) 22.0

32 6 19.6 (6/0) 19.3 (5/0) 18.7 (2/0) 20.4 (0) 23.9
7 22.1 (8/0) 20.8 (4/0) 19.6 (1/0) 22.3 (0) 26.8
8 20.2 (5/0) 21.6 (7/0) 20.3 (1/0) 21.9 (0) 26.2
3 23.1 (9/2) 22.1 (4/1) 21.5 (0/0) 23.4 (3) 24.4
4 27.2 (9/1) 25.5 (4/0) 24.2 (2/0) 27.3 (1) 30.5
5 31.8 (10/0) 27.8 (0/0) 25.9 (0/0) 31.8 (0) 35.0

64 6 31.9 (9/0) 29.4 (2/0) 28.0 (0/0) 32.0 (0) 38.8
7 34.2 (10/0) 30.7 (1/0) 28.8 (0/0) 34.2 (0) 42.4
8 39.6 (10/0) 32.7 (0/0) 30.6 (0/0) 39.6 (0) 47.8

Fig. B.2. Second experiment.

