A new representation of proper interval graphs
with an application to clique-width !
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Abstract

We introduce a new representation of proper interval graphs that can be computed
in linear time and stored in O(n) space. This representation is a 2-dimensional
vertex partition. It is particularly interesting with respect to clique-width. Based
on this representation, we prove new upper bounds on the clique-width of proper
interval graphs.

Keywords: proper interval graphs, representation model, clique-width

1 Introduction

Proper interval graphs are the intersection graphs of intervals of the real line
where no interval properly contains another, and they are equivalent to unit
interval graphs [18]. This graph class has many applications, such as physical
mapping of DNA and genome reconstruction [9,19]. Proper interval graphs
have been subject to extensive theoretical study, and there are several repre-
sentations and many characterisations of them. In this paper we give a new
representation of proper interval graphs that can be seen as a generalisation
of previous representations.

An important characterisation of proper interval graphs is through proper
interval orderings [15]. A proper interval ordering together with the leftmost

1 This work is supported by the Research Council of Norway through grant 166429/V30.
2 Emails: pinar.heggernes@ii.uib.no, daniel .meister@ii.uib.no,
charis.papadopoulos@ii.uib.no



neighbour of each vertex is an O(n)-space representation of proper interval
graphs, that can be computed in linear time [3,7]. Other vertex ordering char-
acterisations of proper interval graphs formulate conditions on neighbourhoods
or maximal cliques [10]. During the last decade, many linear-time recognition
algorithms for proper interval graphs have been developed. More recent ones
generate vertex orderings that are of the above kinds if and only if the input
graph is a proper interval graph [2,16,12,17]. Most of these algorithms are
elegantly based on special breadth-first search (BFS) strategies. Other recog-
nition algorithms also apply BFS strategies but with a different approach:
for every connected component, find a vertex of special kind and run BFS
starting with this vertex. A graph is then proper interval if and only if the
BFS levels are cliques and the neighbourhoods between consecutive levels sat-
isfy the so called chain property [3,14]. On the representation side, these
latter algorithms compute an ordered vertex partition and verify neighbour-
hood properties. Similar to the linear orderings above, these partitions can be
turned into graph representation by adding adjacency information.

For the representation of proper interval graphs that we introduce in this
paper, we define a 2-dimensional structure similar to a matrix. The elements,
called bubbles, are sets of vertices, and they define a partition of the vertex set
of the graph. Two vertices are adjacent only if they belong to bubbles appear-
ing in the same column or in consecutive columns. This new representation is
called a bubble model, and the exact definition is given in Section 2. The two
types of representations mentioned above, orderings and vertex partitions, are
captured by the bubble model, which means that those representations can be
“embedded” into our representation, hence it generalises previous representa-
tions.

We apply the bubble model to give two new upper bounds for the clique-
width of proper interval graphs. Clique-width is a graph parameter that can
measure the complexity of problems. In particular, all problems that can
be expressed in a certain type of monadic second order logic can be solved
in linear time on graph classes whose clique-width is bounded, provided a
corresponding expression is given. Computing the clique-width is NP-hard,
even when restricted to complements of bipartite graphs [8]. The clique-width
of a graph can be bounded by a function of its treewidth or pathwidth [6,4,8].
This implies that the clique-width of a proper interval graph is at most the
size of a maximum clique plus 1. By now, grids are the only known graph
class of unbounded clique-width for which the clique-width can be computed
in polynomial time [11]. Proper interval graphs have unbounded clique-width
[11]. In Section 3, we give two new upper bounds on the clique-width of



proper interval graphs that are not based on pathwidth or maximum clique
size. We show that there are graphs on which our results give a better upper
bound than the size of a maximum clique. In particular, we show that the
clique-width of a proper interval graph is bounded by the size of a maximum
independent set, which also enables us to give a tight bound on the clique-
width of co-chain graphs. Our new representation is of essential importance
for proving this bound.

2 A representation of proper interval graphs — bubble
models

A graph G is called proper interval graph if every vertex of G can be assigned an
interval of the real line such that no interval is properly contained in another,
and two vertices are adjacent if and only if their corresponding intervals have a
non-empty intersection. A wvertex ordering o for G is a permutation of V(G).
We write u <, v if u appears before v in ¢. Ordering o is called a proper
interval ordering if for every triple u, v, w of vertices of G where u <, v <, w
and ww € FE(G), uv,vw € E(G). We call this condition the umbrella property.

Theorem 2.1 ([15]) A graph G is a proper interval graph if and only if G
has a proper interval ordering.

Let A be a finite and non-empty set. A 2-dimensional bubbles structure B
for A is a 2-dimensional arrangement of bubbles, (B;;)1<j<k,1<i<r;, and every
bubble B, ; contains a subset of A where every object of A appears in exactly
one bubble. Some bubbles may be empty. To give an intuition, bubbles are put
into a matrix-like setting, and bubble B; ; appears in row ¢ and column j. For
every j € {1,...,k}, bubbles By ,..., B, ; are grouped to the j-th column of
B. Column j starts with bubble B; ; and ends with bubble B, ;.

Definition 2.2 Let A be a finite non-empty set. Let B = (B; ;) 1<j<k1<i<r,
be a 2-dimensional bubbles structure for A. The graph defined by B, denoted
as G(B), is defined as follows:

(1) G(B) has a vertex for every element in A, and

(2) wv is an edge of G(B) if and only if there are indices i, 7,7, j* such that
a, € B;; and a, € By j, where a, and a, are the elements of A corre-
sponding to u and v, respectively, and |j — j/| < 1 and one of the two
conditions holds: either j = j" or (i —7') - (j — j') <O0.

Adjacent vertices of the graph defined by a 2-dimensional bubbles struc-
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Fig. 1. (a) A proper interval graph G, (b) a proper interval model for G and (c) a
bubble model for G.

ture are contained in the same column or in neighbouring columns. It follows
directly that vertices that appear in the same column form a clique. Further-
more, vertices in the same bubble are true twins, since they are adjacent and
they have the same neighbours in the neighbouring columns. An alternative
definition for adjacency of vertices in neighbouring columns is: u € B;; and
v € By j41 are adjacent if and only if ¢ > 7'

Definition 2.3 A bubble model for a graph G is a 2-dimensional bubbles
structure B for V(G) such that G = G(B).

Figure 1 gives an example of a proper interval graph, that is represented
by a proper interval model and a bubble model. The line segments between
bubbles in neighbouring columns emphasise the neighbourhood property. For
example, vertex 10 is adjacent to 7 and 8 but not to 4, 5, 6.

Theorem 2.4 A graph is a proper interval graph if and only if it has a bubble
model.

The somewhat technical proof of Theorem 2.4 is constructive and results
in an O(n)-time algorithm for computing a bubble model, given the graph as
a proper interval ordering with stored leftmost neighbour of each vertex [13].
Note that the algorithm does not output a real bubble model but a space
efficient version, that represents consecutive empty bubbles in a column by a
single bubble and an occurrence number.

3 Upper bounds on the clique-width of proper interval
graphs

In this section we show two different approaches for computing a clique-width
expression for a proper interval graph. Clique-width was introduced by Cour-
celle, Engelfriet, Rozenberg [5]. The clique-width of a graph G, denoted by
cwd(G), is defined as the smallest number of labels needed to construct G,



using the following operations:

— creation of a new vertex v with label i, denoted by i(v)
— disjoint union, denoted by &
— changing all labels 7 to j, denoted by p;_.;

— adding edges between all vertices with label 2 and all vertices with label j,
7 7é j, denoted by g = Nj-

An expression built by using the four operations is called clique-width ez-
pression. If k labels are used in a clique-width expression then it is called a
k-expression.

First, we give an upper bound on the clique-width in the size of a maximum
independent set. By «(G), we denote the size of a maximum independent set
of a graph G.

Theorem 3.1 Let G be a proper interval graph. Then cwd(G) < o(G) + 1.
Given G by a proper interval ordering together with the leftmost neighbour of
each vertez, an (a(G) + 1)-expression for G can be constructed in O(n) time.

Proof. We only prove correctness. Let B = (B;;)i<j<ki1<i<r, be a bubble
model for G. We give an algorithm for constructing a (k + 1)-expression. We
use labels 1,...,k + 1, where the first £ labels are assigned to the columns
of B, and label k + 1 is used to add a new vertex. Our algorithm visits the
bubbles of B row by row in a top-down manner and within a row from left to
right. Vertices in the same bubble are treated sequentially. This defines an
ordering on the vertices of G. Let = be the first vertex. The expression for
G[{z}] is 1(z). Now, let y be a vertex of G, and assume that the expression ¢
for the graph on the vertices preceding y has already been defined. Let y be
in a bubble in column j. The expression for the graph induced by the vertices
not succeeding y then is prr1—;(Mkt1,j41 (M1, ((E 4+ 1)(y) @ t))). Correctness
follows directly from the properties of bubble models, since the neighbours
of y are only in the subgraph in columns j and 7 + 1. Note that, if j = k,
the subexpression involving column j + 1 is obsolete. It can be shown that
there is a bubble model for G with (exactly) «(G) columns. This implies
ewd(G) <a(G)+1. =

As an interesting consequence, we mention that Theorem 3.1 gives a bound
on the clique-width of co-chain graphs, which form a subclass of proper interval
graphs®. Combining the already known results on the clique-width of chain
graphs [11] and complements of graphs [6], co-chain graphs are graphs of

3 We refer to [1,10] for the definitions of graph classes mentioned in this paragraph.



clique-width at most 6. Hence, by the following corollary, we are able to give
a better bound. Furthermore, the bound given below is tight, since there are
co-chain graphs that are not cographs. Observe that every co-chain graph G
has a(G) < 2, since G is the complement of a bipartite graph.

Corollary 3.2 For every co-chain graph G, cwd(G) < 3, and a 3-expression
can be constructed in O(n + m) time.

Our second bound in the clique-width uses the notion of groups. Let G be
a connected proper interval graph with bubble model B. A set of non-empty
bubbles of a given column j is called group if the vertices of the bubbles have
the same neighbourhood in G with respect to the vertices in column j+ 1. By
the definition of the bubble models, we know that every vertex of GG belongs to
exactly one group. Moreover observe that only consecutive non-empty bubbles
may belong to the same group. That is, if B;; and By ; belong to the same
group such that ¢ < ¢’ then every non-empty bubble B;» ; for which i < " <7’
also belongs to the group. For instance, in Figure 1 every non-empty bubble
of the first column defines a group by itself, whereas in the second column
there are three groups defined as {{4}, {5,6},{7,8}}, and all vertices in the
third column define a single group. Let v be a vertex of G and let L(B,v) be
the set of vertices that are in a column to the left of v, in a bubble above v
or in the same bubble as v (excluding v) in B. Let ng(v) be the number of
groups consisting of vertices from L(B,v) containing at least one neighbour of
v. The group number of G with respect to B, denoted by (G, B), is defined
as (G, B) =qet max,cy n(v). By w(G), we denote the size of a maximum
clique of a graph G.

Theorem 3.3 Let G be a proper interval graph with bubble model B. Then
ewd(G) < o(G,B) +2 <w(G) + 1. A (¢(G, B) + 2)-expression for G can be
computed in O(n+m) time.

Proof. We only prove correctness here. We prove (G, B) +1 < w(G). Let
B be a bubble model for G. Consider ng(v) for a vertex v. We call active
groups of v those groups consisting of vertices from L(B,v) and that contain
at least a neighbour of v. We show that the vertices of the active groups of
v together with v form a clique in G for each vertex v. Observe that every
vertex of an active group is adjacent to v and form a clique in GG. Consider
the active group F of v that is furthest away from v in B. Then, for any other
group F’ which is between F' and v we know that every vertex of F' is adjacent
to every vertex of I’ and every vertex of F” is adjacent to v. This means that
every group between F' and v is active, and by induction, it follows that the



vertices of the active groups of v together with v form a clique in G. This
implies (G, B) + 1 < w(G).

Now, we show that there exists a (¢(G,B) + 2)-expression for G. We
iteratively construct an expression by adding vertices in their order in B: from
left to right column by column, and within a column from top row to bottom
row. Let v be a vertex and assume an expression t for the graph induced by
L(B,v) has been defined. Let ¢ = ng(v). Assume that a label is assigned to
every group and all the vertices of the same group have the same label. We
change the labels of all the vertices in non-active groups to label 1 and then
assign a distinct label from {2, ..., g+ 1} for every active group of v. This can
be done by using the appropriate p operation at most ¢ + 1 times. Next we
use label ¢ + 2 to add v and join the vertices of label i € {2,...,¢+ 1} with
the vertex v; (¢+2)v and 7, 4o define the appropriate operations. Finally, we
put v into the group that v belongs to by relabelling (if v an existing group).
This shows cwd(G) < o(G,B) +2. =

By Theorems 3.1 and 3.3 we obtain the following result.

Corollary 3.4 For a proper interval graph G,
ewd(G) < min{a(G) + 1, 0(G) + 2} < w(G) + 1.

We point out that there are proper interval graphs G for which ¢(G) or
a(@) is significantly smaller than w(G). An easy example can be derived
from the graph G shown in Figure 1 by extending the three columns of the
bubble model so that 2 ¢(G) = w(G). Hence our bounds are better than the
previously known bound on clique-width of proper interval graphs.
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