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Abstract. Motivated by problems of comparative genomics and paleogenomics, we introduce the
Gapped Consecutive-Ones Property Problem (k,δ)-C1P: given a binary matrix M and two integers
k and δ, can the columns of M be permuted such that each row contains at most k sequences of 1’s
and no two consecutive sequences of 1’s are separated by a gap of more than δ 0’s. The classical C1P
problem, which is known to be polynomial, is equivalent to the (1,0)-C1P Problem. We show that
the (2,δ)-C1P Problem is NP-complete for δ ≥ 2. We conjecture that the (k, δ)-C1P Problem is NP-
complete for k ≥ 2, δ ≥ 1, (k, δ) 6= (2, 1). We also show that the (k,δ)-C1P problem can be reduced to
a graph bandwidth problem parameterized by a function of k, δ and of the maximum number s of 1’s
in a row of M , and hence is polytime solvable if all three parameters are constant.
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1 Introduction

Let M be a binary matrix with n rows and m columns. Using the terminology of [2], we refer to a maximal
sequence of consecutive ones in a row of n as a contig. A gap is a sequence of consecutive zeroes that separates
two contigs; the size of a gap is the length of this sequence of zeros. M is said to have the Consecutive-Ones
Property (C1P) if its columns can be permuted such that each row contains one contig (no gaps then). Such
a total order of the columns of M is called a C1P-ordering of M . Deciding if a binary matrix has the C1P
can be done in linear time [6]. The C1P has also been used in molecular biology, in relation with physical
mapping and the reconstruction of ancestral genomes [1], where a major problem is that matrices obtained
from experiments do not have the C1P [2, 1].

Handling a matrix M that does not have the C1P has been approached using different points of view.
A first general approach consists of transforming M into a matrix that has the C1P, while minimizing the
modifications to M ; such modifications can involve either in removing rows, or columns, or both, or in
flipping some entries from 0 to 1 or 1 to 0. In all cases, the corresponding optimization problems have been
proven NP-hard [5, 4]. A second approach consists of relaxing the condition of consecutivity of the ones of
each row, by allowing gaps, with some restriction to these gaps. The question is then to decide if there is
an ordering of the columns of M that satisfies these relaxed C1P conditions. As far as we know, the only
restriction that has been considered is the number of gaps, either per row or in M . It has been shown that
deciding if the columns of M can be ordered in such a way that every row contains at most k contigs is
NP-complete even if k = 2 [2]. Also finding an ordering of the columns that minimizes the number of gaps
in M is NP-complete even if each row of M has at most two ones [3].

Here, we follow the second approach, motivated by the problem of reconstructing ancestral genomes using
max-gap clusters [1]: the restrictions to the allowed gaps are that both the number of gaps per row and the
size of each gap are bounded. To our knowledge, this set of restrictions has never been considered. Formally,
let k and δ be two integers. M is said to have the (k,δ)-Consecutive-Ones Property, denoted by (k,δ)-C1P,
if its columns can be permuted in such a way that each row contains at most k contigs and no gap larger
than δ: we describe both hardness and algorithmic results on this problem.

2 Hardness Results

We show that testing for the (2, δ)-C1P is NP-complete for δ ≥ 2 by reduction from 3SAT, building on
the construction in [2]. This construction divides columns into blocks: for each variable xi, i = 1, . . . , n, we



have block bi with two columns, and for each clause Cj , j = 1, . . . ,m, we have block Bj with 5 columns.
Furthermore, it requires that we can force the columns into order described in Lemma 1 below. Once this
order is satisfied, the remaining part of the construction, modeling each clause, remains the same as in [2],
and hence, we will not repeat it here.

It is enough to show the following lemma.

Lemma 1. There is a matrix M with columns ∪ni=1bi
⋃
∪mi=1Bi for which in any (2, δ)-C1P ordering, the

columns in each block are adjacent and the blocks are ordered b1, . . . , bn, B1, . . . , Bn (or the reverse order),
where n ≥ 6.

Proof. Let bi = {b1i , b2i } and Bj = {B1
j , . . . , B

5
j }, for every i = 1, . . . , n and j = 1, . . . ,m. Let [c1, . . . , c`]

denotes a row of M with ones in columns c1, . . . , c` and zeros in all other columns. If we include a block in this
list, we mean all columns in this block. First, let us fix the variable blocks b1, . . . , bn. For every i = 1, . . . , n
and j = 1, 2, add the row rji = [bi−1, b

j
i , bi+1] to M , where b0 = bn+1 = ∅. Consider i = 3, . . . , n − 2 and

assume to the contrary that columns b1i and b2i are not adjacent in some (2, δ)-C1P ordering O. Wlog, b1i
appears before b2i . Let N = bi−2 ∪ bi−1 ∪ bi+1 ∪ bi+2.

First, assume that there is a column t /∈ N between b1i and b2i . Divide the remaining columns into 4 groups
P1, . . . , P4 such that O = P1, b

1
i , P2, t, P3, b

2
i , P4, i.e., for instance, P1 is the group of columns appearing before

b1i . Consider rows r1i−1, r
2
i−1, r

1
i+1, r

2
i+1. In each of them bi-columns are 1, t is 0, and exactly one of columns

in bi−1 ∪ bi+1 is 1. Hence, if two of the columns in bi−1 ∪ bi+1 appear in the same group, we will have at least
two gaps in one of the four rows. On the other hand, if each these columns appears in a different group, then
we have two gaps in the two r1i . Hence, all the columns between b1i and b2i are from the set N .

Second, assume that column b1i−1 is between b1i and b2i . Consider again 4 groups defined by these 3 ele-
ments: O = P1, b

1
i , P2, b

1
i−1, P3, b

2
i , P4. By a similar argument as above, the columns in A = {b2i−1, b

1
i+1, b

2
i+1}

have to appear in different groups. Furthermore, columns in A cannot appear simultaneously in P2 and P3,
or otherwise the row r1i−1 contains at least two gaps. Hence, there is one column t1 ∈ A in P1 and one column
t2 ∈ A in P4. Now, consider the columns in bi−2. The rows r1i and r2i contain at least one gap between a
and b and placing any column in bi−2 between t1 and t2 would create another gap between t1 and t2. Hence,
each column on bi−2 appears either before t1 or after t2. Consider again the row r1i−1, no matter whether a
column in bi−2 is before t1 or after t2, it contains at least two gaps. Hence, b1i−1 is not between b1i and b2i ,
and by symmetry, neither b2i−1, b

1
i+1, b

2
i+1 are. Using similar arguments, one can show that neither remaining

elements of N can be between columns in bi, i.e., the columns are adjacent for i = 3, . . . , n− 2.
It is easy to see that the blocks b3, . . . , bn−2 appear in O in the correct order, and since they are at least

two, b1, b2 must precede them and bn−1, bn must follow. Finally, for each j = 1, . . . ,m, to force block Bj to
its right position, we add the row [bn−2, b

1
n−1, bn, B1, . . . , Bj ] to M .

Theorem 1. Testing for the (2, δ)-C1P is NP-complete for every δ ≥ 2.

3 Algorithmic Results

A graph G = (V,E) is said to have bandwidth at most b if there exists a total order on its vertices V =
{v1, . . . , vn} such that every edge {vi, vj} satisfies |i − j| ≤ b. Let M be an n × m binary matrix and
GM = (VM , EM ) be the weighted graph defined as follows: VM = {1, . . . ,m} (each vertex of GM represents
a column of M), and there is an edge {i, j} in EM iff there is a row of M with entries 1 in columns i and
j, and edge e = {i, j} is weighted by the maximum of the size (number of entries 1) among all rows of
M that have entries 1 in both columns i and j. The following property then follows immediately from this
definition: If every row of M has at most s entries 1 and M has the (k,δ)-C1P, then GM has bandwidth at
most s+ (k − 1)δ − 1.

In [7], Saxe describes an algorithm that decides if a graph has bandwidth at most b with complexity
O(nb+1), in time and space. We sketch now how it can be modified to test for the (k, δ)-C1P. This algorithm
uses the property that, given a prefix of a total order on the vertices of a graph, if one wants to test that
its bandwidth is at most b, only the b last elements of the prefix are useful; the active region of this prefix
is then composed of its last b vertices, and it defines unambiguously the content of its prefix. The principle
of the algorithm is to consider, in a breadth-first search, only the active regions, each of them defining an



equivalence class of prefixes, and given a current active region, to extend it by a vertex if it does not violate
the bandwidth condition. In our problem, this algorithm needs only to be augmented by testing, each time
an active region is extended, if this extension does not violate the gap conditions in any row, which adds an
O(nm)-time cost factor to the algorithm.

Theorem 2. Let M be an n×m binary matrix such that every row has at most s entries 1. Deciding if M
has the (k,δ)-C1P can be done in time O(nms+(k−1)δ+1) and space O(ms+(k−1)δ).

4 Conclusion

The work we presented here leaves several questions open. The most natural is the complexity of testing
for the general (k, δ)-C1P. From preliminary results that use a reduction from 3SAT but require more
complicated constructions that rely on a deeper understanding of the Gapped C1P Problem, we conjecture
that the general problem is NP-complete, except possibly the (2, 1)-C1P case, a case that remains open and
is particularily interesting. It is also natural to ask if there exists a structure that can represent all orderings
that satisfy some gaps conditions, as the PQ-tree does for the classical C1P. Finally, do there exist efficient
(non-brute-force) algorithms for deciding the (k, δ)-C1P for small values of δ? If so, they would be practical
in genomics applications.
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