BIJECTIONS ON TWO VARIATIONS OF NONCROSSING PARTITIONS

JANG SOO KIM

ABSTRACT. We find bijections on 2-distant noncrossing partitions, 12312-avoiding partitions, 3-Motzkin paths, UH-free Schröder paths and Schröder paths without peaks at even height. We also give a direct bijection between 2-distant noncrossing partitions and 12312-avoiding partitions.

1. INTRODUCTION

Noncrossing partitions were first introduced by Kreweras [6] in 1972. Recently, they have received great attention, and have been generalized in many different ways; for instance, see [1, 2, 3, 5, 7] and the references therein. In this paper we consider two variations of noncrossing partitions: k-distant noncrossing partitions and $12 \cdots r12$ -avoiding partitions introduced by Drake and Kim [3], and Mansour and Severini [7] respectively, where they reduce to noncrossing partitions when k = 1 and r = 2.

A (set) partition of $[n] = \{1, 2, ..., n\}$ is a collection of mutually disjoint nonempty subsets, called *blocks*, of [n] whose union is [n]. We will write a partition as a sequence of blocks $(B_1, B_2, ..., B_k)$ such that $\min(B_1) < \min(B_2) < \cdots < \min(B_k)$. An *edge* of a partition is a pair (i, j) of integers contained in the same block that does not contain any integer t with i < t < j. The *standard representation* of a partition π of [n] is the diagram having n vertices labeled with 1, 2, ..., n, where iand j are connected by an arc if (i, j) is an edge of π ; see Figure 1. A noncrossing partition is a partition without any two crossing edges, i.e. (i_1, j_1) and (i_2, j_2) such that $i_1 < i_2 < j_1 < j_2$. It is well known the number of noncrossing partitions of [n]is the Catalan number $\frac{1}{n+1} {2n \choose n}$.

For a positive integer k, a k-distant noncrossing partition is a partition without any two edges (i_1, j_1) and (i_2, j_2) satisfying $i_1 < i_2 < j_1 < j_2$ and $j_1 - i_2 \ge k$. Note that 1-distant noncrossing partitions are just noncrossing partitions. We denote by NC_k(n) the set of k-distant noncrossing partitions of [n]. Drake and Kim [3] found the following generating function for the number of 2-distant noncrossing

Key words and phrases. noncrossing partition, Motzkin path, Schröder path.

FIGURE 1. The standard representation of $(\{1, 4, 8\}, \{2, 5, 9\}, \{3\}, \{6, 7\})$.

Date: November 6, 2018.

²⁰⁰⁰ Mathematics Subject Classification. 05A18, 05A15.

partitions:

(1)
$$\sum_{n \ge 0} \# \operatorname{NC}_2(n) x^n = \frac{3 - 3x - \sqrt{1 - 6x + 5x^2}}{2(1 - x)}$$

The canonical word of a partition $\pi = (B_1, B_2, \ldots, B_k)$ is the word $a_1 a_2 \cdots a_n$, where $a_i = j$ if $i \in B_j$. For instance, the canonical word of the partition in Figure 1 is 123124412. In the literature canonical words are also called restricted growth functions. For a word τ , a partition is called τ -avoiding if its canonical word does not contain a subword which is order-isomorphic to τ . It is easy to see that a partition is noncrossing if and only if it is 1212-avoiding. We denote by $P_{\tau}(n)$ the set of τ -avoiding partitions of [n].

Using the kernel method, Mansour and Severini [7] found the generating function for the number of $12 \cdots r 12$ -avoiding partitions of [n]. Interestingly, as a special case of their result, the generating function for the number of 12312-avoiding partitions of [n] is the same as (1), which implies $\#NC_2(n) = \#P_{12312}(n)$. Moreover, this number also counts several kinds of lattice paths. The main purpose of this paper is to find bijections between $NC_2(n)$ and $P_{12312}(n)$ together with some lattices paths described below.

A lattice path of length n is a sequence of points in $\mathbb{N} \times \mathbb{N}$ starting at (0,0)and ending at (n,0). For a lattice path $L = ((x_0, y_0), (x_1, y_1), \dots, (x_k, y_k))$, each $S_i = (x_i - x_{i-1}, y_i - y_{i-1})$ is called a *step* of L. The *height* of the step S_i is defined to be y_{i-1} . Sometimes we will identify a lattice path L with the word $S_1S_2 \dots S_k$ of its steps. Note that the number of steps is not necessarily equal to the length of the lattice path.

Let U, D and H denote an up step, a down step and a horizontal step respectively, i.e., U = (1, 1), D = (1, -1) and H = (1, 0).

A Schröder path is a lattice path consisting of steps U, D and $H^2 = HH = (2, 0)$. Let $L = S_1 S_2 \cdots S_k$ be a Schröder path. A UH-pair of L is a pair (S_i, S_{i+1}) of consecutive steps such that $S_i = U$ and $S_{i+1} = H^2$. We say that L is UH-free if it does not have a UH-pair. A peak of L is a pair (S_i, S_{i+1}) of consecutive steps such that $S_i = U$ and $S_{i+1} = D$. The height of a peak (S_i, S_{i+1}) is the height of $S_{i+1} = D$. We denote by $SCH_{UH}(n)$ the set of UH-free Schröder paths of length 2n, and by $SCH_{even}(n)$ (resp. $SCH_{odd}(n)$) the set of Schröder paths of length 2n which have no peaks of even (resp. odd) height.

A labeled step is a step together with an integer label. Let D_i (resp. H_i) denote a labeled down step (resp. a labeled horizontal step) with label *i*. We denote by $CH_2(n)$ the set of lattice paths $L = S_1 S_2 \cdots S_n$ of length *n* consisting of *U*, D_1 , D_2 , H_0 , H_1 and H_2 such that

- if $S_i = H_\ell$ or $S_i = D_\ell$, then S_i is of height at least ℓ ,
- if $S_i = H_2$ or $S_i = D_2$, then $i \ge 2$ and $S_{i-1} \in \{U, H_1, H_2\}$.

A 3-Motzkin path is a lattice path consisting of U, D, H_0 , H_1 and H_2 . We denote by MOT₃(n) the set of 3-Motzkin paths of length n.

Drake and Kim [3] showed that the well known bijection ψ between partitions and Charlier diagrams, see [4, 5], yields a bijection $\psi : \operatorname{NC}_2(n) \to \operatorname{CH}_2(n)$. Yan [10] found a bijection $\phi : \operatorname{SCH}_{\mathrm{UH}}(n-1) \to P_{12312}(n)$ and a bijection between $\operatorname{SCH}_{\mathrm{UH}}(n)$ and $\operatorname{SCH}_{\mathrm{even}}(n)$. Thus all of $\operatorname{NC}_2(n)$, $\operatorname{CH}_2(n)$, $\operatorname{SCH}_{\mathrm{even}}(n-1)$, $\operatorname{SCH}_{\mathrm{UH}}(n-1)$ and $P_{12312}(n)$ have the same cardinality, which is counted by sequence A007317 from

$$\begin{array}{ccc} \operatorname{NC}_{2}'(n) & \operatorname{SCH}_{\operatorname{even}}'(n-1) & P_{12312}'(n) \\ & \downarrow \psi & & \uparrow \iota & \uparrow \phi \\ \operatorname{CH}_{2}'(n) \xrightarrow{f} \operatorname{MOT}_{3}(n-2) \xrightarrow{g} \operatorname{SCH}_{\operatorname{odd}}(n-1) \xrightarrow{h} \operatorname{SCH}_{\operatorname{UH}}'(n-1) \end{array}$$

FIGURE 2. Main bijections for $n \ge 2$.

[8]. In order to find bijections between these objects, we introduce the following sets:

- $\operatorname{NC}_2'(n) = \{\pi \in \operatorname{NC}_2(n) : n \text{ is not a singleton}\}\$
- $\operatorname{CH}_2'(n) = \{L \in \operatorname{CH}_2(n) : \text{the last step of } L \text{ is } D_1\}$
- $SCH'_{even}(n) = \{L \in SCH_{even}(n) : \text{the first step of } L \text{ is } U\}$
- $\operatorname{SCH}'_{\operatorname{UH}}(n) = \{L \in \operatorname{SCH}_{\operatorname{UH}}(n) : \text{the first step of } L \text{ is } U\}$
- $P'_{12312}(n) = \{\pi \in P_{12312}(n) : 1 \text{ and } 2 \text{ are not in the same block}\}\$

Note that we can identify $\pi \in \mathrm{NC}_2(n)$ with $\pi' \in \mathrm{NC}_2'(k)$, where k is the integer such that j is a singleton for all $j \in \{k + 1, k + 2, \ldots, n\}$ and k is not a singleton in π , and π' is the partition obtained from π by deleting integers greater than k. We can also identify $\pi \in P_{12312}(n)$ with $\overline{\pi} \in P'_{12312}(k)$, where k is the integer such that the number of consecutive 1's at the beginning of the canonical word of π is n - k + 1, and $\overline{\pi}$ is the partition whose canonical word is obtained from that of π by deleting the first n - k 1's. Thus any bijection between $\mathrm{NC}'_2(n)$ and $P'_{12312}(n)$ naturally induces a bijection between $\mathrm{NC}_2(n)$ and $P_{12312}(n)$. Similarly, any bijection between A'(n) and B'(n) naturally induces a bijection between A(n)and B(n) where A and B are any two of NC_2 , CH_2 , $\mathrm{SCH}_{\mathrm{even}}$, $\mathrm{SCH}_{\mathrm{UH}}$, and P_{12312} . Thus in order to find a bijection between $\mathrm{NC}_2(n)$ and $P_{12312}(n)$, it is enough to find a bijection between $\mathrm{NC}'_2(n)$ and $P'_{12312}(n)$.

In this paper we find bijections between these objects. For the overview of our bijections see Figure 2, where ψ is the known bijection between partitions and Charlier diagrams [4, 5], and ϕ is Yan's bijection [10]. We note that our bijection g in Figure 2 is also discovered by Shapiro and Wang [9]. We also provide a direct bijection between NC₂(n) and $P_{12312}(n)$ in Section 3.

2. Bijections

In this section we find the bijections f, g, h, and ι in Figure 2.

2.1. The bijection $f : CH'_2(n) \to MOT_3(n-2)$. Recall that $CH'_2(n)$ is the set of lattice paths $L = S_1 S_2 \cdots S_n$ of length n consisting of U, D_1, D_2, H_0, H_1 and H_2 such that

- if $S_i = H_\ell$ or $S_i = D_\ell$, then S_i is of height at least ℓ ,
- if $S_i = H_2$ or $S_i = D_2$, then $i \ge 2$ and $S_{i-1} \in \{U, H_1, H_2\}$,
- $S_n = D_1$.

The second condition above is equivalent to the condition that the lattice path consists of the following combined steps for any $k \ge 0$:

(2)
$$UH_2^k, UH_2^k D_2, H_1 H_2^k, H_1 H_2^k D_2, H_0, D_1.$$

Let A(n) denote the set of lattice paths of length n consisting of the combined steps in (2) such that H_2 does not touch the x-axis. Let B(n) denote the set of

FIGURE 3. An example of f_0 .

FIGURE 4. Definition of f.

3-Motzkin paths of length n such that each H_2 touching the x-axis must occur after D, H_0 or H_2 .

We define $f_0 : A(n) \to B(n)$ as follows. Let $L \in A(n)$. Then $f_0(L)$ is defined to be the lattice path obtained from L by changing $UH_2^kD_2$ to $H_0H_2^{k+1}$, $H_1H_2^kD_2$ to DH_2^{k+1} and D_1 to D. It is easy to see that $f_0(L) \in B$ and f_0 is invertible. See Figure 3.

Now we define $f : CH'_2(n) \to MOT_3(n-2)$ as follows. Let $L \in CH'_2(n)$. Then L is decomposed uniquely as

 $H_0^{k_1}(UL_1D_1)H_0^{k_2}(UL_2D_1)\cdots H_0^{k_r}(UL_rD_1),$

where $L_i \in A(n_i)$ for some $k_i, n_i \ge 0$ and $r \ge 1$. Then define f(L) to be

$$H_2^{k_1} f_0(L_1)(H_1 H_2^{k_2+1} f_0(L_2))(H_1 H_2^{k_3+1} f_0(L_3)) \cdots (H_1 H_2^{k_r+1} f_0(L_r)).$$

See Figure 4.

Theorem 2.1. The map $f : CH'_2(n) \to MOT_3(n-2)$ is a bijection.

Proof. Each $L \in MOT_3(n-2)$ is uniquely decomposed as

$$H_2^{k_1}L_1(H_1H_2^{k_2+1}L_2)(H_1H_2^{k_3+1}L_3)\cdots(H_1H_2^{k_r+1}L_r),$$

where $L_i \in B(n_i)$ for some $k_i, n_i \ge 0$ and $r \ge 1$. Thus we have the inverse $f^{-1}(L)$ which is decomposed as

$$H_0^{k_1}(Uf_0^{-1}(L_1)D_1)H_0^{k_2}(Uf_0^{-1}(L_2)D_1)\cdots H_0^{k_r}(Uf_0^{-1}(L_r)D_1).$$

FIGURE 5. An example of g. Odd peaks are circled. The horizontal steps of even height are dashed and colored blue.

2.2. The bijection $g : MOT_3(n) \to SCH_{odd}(n+1)$. We define $g : MOT_3(n) \to SCH_{odd}(n+1)$ as follows. Let $L \in MOT_3(n)$. Then g(L) is the lattice path obtained from L by doing the following.

- (1) Change U to UU, D to DD, H_0 to H^2 , H_1 to DU, and H_2 to UD.
- (2) Add U at the beginning and D at the end.
- (3) Change all the consecutive steps UD which form a peak of odd height to H^2 .

See Figure 5 for an example of g.

Theorem 2.2. The map $g : MOT_3(n) \to SCH_{odd}(n+1)$ is a bijection.

Proof. Clearly the first and the second steps in the construction of g are invertible. The third step is also invertible because every step H^2 of even height always comes from a peak of odd height. Thus g is invertible.

2.3. The bijection $h : \text{SCH}_{\text{odd}}(n) \to \text{SCH}'_{\text{UH}}(n)$. Let $L = S_1 S_2 \cdots S_k$ be a Schröder path. For any up step $S_i = U$ of L, there is a unique down step $S_j = D$ such that i < j and $S_{i+1}S_{i+2}\cdots S_{j-1}$ is a (possibly empty) lattice path. We call such S_j the down step corresponding to S_i . We also call S_i the up step corresponding to S_j .

For a UH-pair (S_i, S_{i+1}) , i.e. $S_i = U$ and $S_{i+1} = H^2$, we define the function ξ as follows.

$$\xi(S_i, S_{i+1}) = \begin{cases} i, & \text{if } S_{i+1} \text{ is of even height;} \\ j, & \text{if } S_{i+1} \text{ is of odd height,} \end{cases}$$

where j is the integer such that S_j is the down step corresponding to S_i . If L is not UH-free, we define the ξ -maximal UH-pair of L to be the UH-pair (S_i, S_{i+1}) with the largest ξ value.

FIGURE 6. The essence of h_0 . Red (resp. Dashed blue) color is for UH-pairs whose horizontal step is of odd (resp. even) height. Odd peaks are circled. The lattice path L' is not empty.

Now let $L = S_1 S_2 \cdots S_k \in \text{SCH}_{\text{odd}}(n)$. If L is not UH-free, we define $h_0(L)$ as follows. Suppose (S_i, S_{i+1}) is the ξ -maximal UH-pair of L, and S_j is the down step corresponding to S_i .

- (1) If S_{i+1} is of even height, then $h_0(L)$ is the lattice path obtained from L by replacing $S_i S_{i+1}$ with UUD.
- (2) If S_{i+1} is of odd height, then let $L' = S_{i+2}S_{i+3}\cdots S_{j-1}$.
 - (a) If L' is empty, i.e., j = i + 2, then $h_0(L)$ is the lattice path obtained from L by replacing $S_i S_{i+1} S_{i+2}$ with $H^2 UD$.
 - (b) If L' is not empty, then $h_0(L)$ is the lattice path obtained from L by replacing $S_i S_{i+1} \cdots S_j$ with UL'DUD.

See Figure 6.

Now we define $h : \text{SCH}_{\text{odd}}(n) \to \text{SCH}'_{\text{UH}}(n)$ as follows. Let $L \in \text{SCH}_{\text{odd}}(n)$ and $L_0 = L$. Then we define $L_i = h_0(L_{i-1})$ for $i \ge 1$ if L_{i-1} is not UH-free. Since the number of UH-free pairs of L_i is one less than that of L_{i-1} , or they are the same and

 ξ (the maximal UH-pair of L_i) < ξ (the maximal UH-pair of L_{i-1}),

we always get L_r which is UH-free for some r. We define h(L) to be L_r if L_r does not start with H^2 ; and the lattice path obtained from L_r by replacing H^2 with UDotherwise. For an example, see Figure 7.

Theorem 2.3. The map $h : SCH_{odd}(n) \to SCH'_{UH}(n)$ is a bijection.

Proof. In the procedure of h, the odd peaks are constructed from right to left. Since h_0 is invertible, so is h.

2.4. The bijection ι : SCH_{odd} $(n) \to$ SCH'_{even}(n). For $L = S_1 S_2 \cdots S_k \in$ SCH_{odd}(n), we define $\iota(L)$ as follows.

- (1) If $S_k = H^2$, then $\iota(L) = US_1 \cdots S_{k-1}D$.
- (2) If $S_k = D$, then let S_i be the up step corresponding to S_k and we define $\iota(L) = US_1 \cdots S_{i-1}DS_{i+1} \cdots S_{k-1}$.

See Figure 8.

Then $\iota(L) \in \operatorname{SCH}'_{\operatorname{even}}(n)$. Clearly, $\iota : \operatorname{SCH}_{\operatorname{odd}}(n) \to \operatorname{SCH}'_{\operatorname{even}}(n)$ is a bijection.

FIGURE 7. An example of h. Red (resp. Dashed blue) color is for UH-pairs whose horizontal step is of odd (resp. even) height. Odd peaks are circled. Dashed arrows indicate the down steps corresponding to the up steps.

3. A direct bijection between $NC_2(n)$ and $P_{12312}(n)$

Now we have a bijection $\phi \circ h \circ g \circ f \circ \psi : \operatorname{NC}_2'(n) \to P'_{12312}(n)$, see Figure 2. As noted in the introduction, this induces a bijection between $\operatorname{NC}_2(n)$ and $P_{12312}(n)$. Since both $\operatorname{NC}_2(n)$ and $P_{12312}(n)$ are partitions with some conditions, it is natural to ask a direct bijection between them. In this section we find such a direct bijection.

FIGURE 8. The map ι .

From now on, we will identify a partition in $P_{12312}(n)$ with its canonical word. A marked partition is a partition in which each part may be marked. Similarly a marked word is a word in which each letter may be marked.

Let $\pi \in \mathrm{NC}_2(n)$. For $i \in [n]$, let T_i be the marked partition of [i] obtained from π by removing all the integers greater than i and by marking integers which are connected to an integer greater than i. Using the sequence $\emptyset = T_0, T_1, T_2, \ldots, T_n = \pi$ of marked partitions, we define a sequence of marked words $\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$ as follows. Here, if (i, j) is an edge we say that j is connected to i.

Let \mathbf{w}_0 be the empty word. For $1 \leq i \leq n$, \mathbf{w}_i is defined as follows.

- (1) If *i* is not connected to any integer in T_i , then $\mathbf{w}_i = \mathbf{w}_{i-1}m$, where $m = \max(\mathbf{w}_{i-1}) + 1$. Otherwise, *i* is connected to either the largest marked integer or the second largest marked integer of T_{i-1} .
 - If *i* is connected to the largest marked integer of T_{i-1} , then let $\mathbf{w}_i = \mathbf{w}_{i-1}a_1$, where a_1 is the rightmost marked letter of \mathbf{w}_{i-1} . And then we make the marked letter a_1 unmarked.
 - If *i* is connected to the second largest marked integer of T_{i-1} , then let $\mathbf{w}_i = \mathbf{w}_{i-1}a_2$, where a_2 is the second rightmost marked letter of \mathbf{w}_{i-1} . The second rightmost marked letter of \mathbf{w}_{i-1} remains marked, however, we make the rightmost marked letter of \mathbf{w}_{i-1} unmarked in \mathbf{w}_i .
- (2) If *i* is marked in T_i , then we find the largest letters in \mathbf{w}_i and make the leftmost letter among them marked.

For an example, see Figure 9.

Lemma 3.1. The word \mathbf{w}_n obtained above is 12312-avoiding.

Proof. Suppose \mathbf{w}_n has a subsequence *abcab* where a < b < c. When the second *b* is added the first *b* must have been marked. Moreover, the first *b* must have been marked before adding the second *a* because an unmarked integer becomes marked only if it is the largest integer (in this case at least *c*) in the sequence. Thus when the second *a* is added, the first *a* and *b* have been marked. Since the first *a* is the second rightmost marked integer at this moment, we must unmark the rightmost marked integer, the first *b*, and mark the largest integer which is at least *c*. Thus after this process, *b* cannot be marked and we cannot have the second *b*, which is a contradiction.

If we know \mathbf{w}_n , we can reverse this procedure. For $1 \le i \le n$, \mathbf{w}_{i-1} is obtained from \mathbf{w}_i as follows. Suppose $m = \max(\mathbf{w}_i)$ and t is the last letter of \mathbf{w}_i .

(1) If the leftmost m is marked in \mathbf{w}_i , then make it unmarked.

FIGURE 9. T_i 's and corresponding \mathbf{w}_i 's. Marked integers and marked letters are circled.

- (2) If t appears only once in \mathbf{w}_i (equivalently t is greater than any other letters in \mathbf{w}_i), then we simply remove t. Otherwise, find the leftmost t in \mathbf{w}_i .
 - If the leftmost t is unmarked, then we remove the last letter t and make the leftmost t marked.
 - If the leftmost t is marked, then we must have t < m since we have made the leftmost m unmarked. In this case we remove the last t, and make the leftmost t still marked and the leftmost m marked.

Now we construct T_0, T_1, \ldots, T_n as follows. Let $T_0 = \emptyset$. For $1 \le i \le n$, T_i is obtained as follows.

- (1) First, let T_i be the marked partition obtained from T_{i-1} by adding *i*.
- (2) If the last letter of \mathbf{w}_i is equal to the rightmost (resp. the second rightmost) marked letter of \mathbf{w}_{i-1} , then connect *i* to the largest (resp. the second largest) marked integer, say *j*, of T_{i-1} , and make *j* unmarked.
- (3) Let $m = \max(\mathbf{w}_i)$. If the leftmost m is marked in \mathbf{w}_i , then make i marked in T_i .

It is easy to check that this is the inverse map. Thus we get the following theorem.

JANG SOO KIM

Theorem 3.2. For $\pi \in NC_2(n)$, the map $\pi \mapsto \mathbf{w}_n$ is a bijection from $NC_2(n)$ to $P_{12312}(n)$.

The bijection $\pi \mapsto \mathbf{w}_n$ is different from the composition $\phi \circ h \circ g \circ f \circ \psi$. For instance, if $\pi = (\{1,3\}, \{2\})$, then $\mathbf{w}_3 = 121$ but $(\phi \circ h \circ g \circ f \circ \psi)(\pi) = 112$.

Note that both $NC_2(n)$ and $P_{12312}(n)$ contain noncrossing partitions. It would be interesting to find a bijection between $NC_2(n)$ and $P_{12312}(n)$ which sends noncrossings partitions to noncrossings partitions.

References

- D. Armstrong. Generalized noncrossing partitions and combinatorics of Coxeter groups. Mem. Amer. Math. Soc., 2002:no. 949, 2009.
- [2] W. Y. C. Chen, E. Y. P. Deng, R. R. X. Du, R. P. Stanley, and C. H. Yan. Crossings and nestings of matchings and partitions. *Trans. Amer. Math. Soc.*, 359(4):1555–1575 (electronic), 2007.
- [3] D. Drake and J. S. Kim. k-distant crossings and nestings of matchings and partitions. DMTCS Proceedings, AK:349–360, 2009.
- [4] P. Flajolet. Combinatorial aspects of continued fractions. Discrete Math., 32(2):125–161, 1980.
- [5] A. Kasraoui and J. Zeng. Distribution of crossings, nestings and alignments of two edges in matchings and partitions. *Electron. J. Combin.*, 13(1):Research Paper 33, 12 pp. (electronic), 2006.
- [6] G. Kreweras. Sur les partitions non croisées d'un cycle. Discrete Math., 1:333-350, 1972.
- [7] T. Mansour and S. Severini. Enumeration of (k, 2)-noncrossing partitions. Discrete Math., 300(20):4570-4577, 2008.
- [8] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. http://oeis.org.
- [9] L. W. Shapiro and C. J. Wang. A bijection between 3-Motzkin paths and Schröder paths with no peak at odd height. *Journal of Integer Sequences*, 12:Article 09.3.2, 2009.
- [10] S. H. F. Yan. Schröder paths and pattern avoiding partitions. Int. J. Contemp. Math. Sci., 4(17-20):979–986, 2009.

E-mail address: jskim@kaist.ac.kr