BIJECTIONS ON TWO VARIATIONS OF NONCROSSING PARTITIONS

JANG SOO KIM

Abstract

We find bijections on 2-distant noncrossing partitions, 12312-avoiding partitions, 3-Motzkin paths, UH-free Schröder paths and Schröder paths without peaks at even height. We also give a direct bijection between 2-distant noncrossing partitions and 12312-avoiding partitions.

1. Introduction

Noncrossing partitions were first introduced by Kreweras [6] in 1972. Recently, they have received great attention, and have been generalized in many different ways; for instance, see [1, 2, 3, 5, 7, and the references therein. In this paper we consider two variations of noncrossing partitions: k-distant noncrossing partitions and $12 \cdots r 12$-avoiding partitions introduced by Drake and Kim [3, and Mansour and Severini [7] respectively, where they reduce to noncrossing partitions when $k=1$ and $r=2$.

A (set) partition of $[n]=\{1,2, \ldots, n\}$ is a collection of mutually disjoint nonempty subsets, called blocks, of $[n]$ whose union is $[n]$. We will write a partition as a sequence of blocks $\left(B_{1}, B_{2}, \ldots, B_{k}\right)$ such that $\min \left(B_{1}\right)<\min \left(B_{2}\right)<\cdots<\min \left(B_{k}\right)$. An edge of a partition is a pair (i, j) of integers contained in the same block that does not contain any integer t with $i<t<j$. The standard representation of a partition π of $[n]$ is the diagram having n vertices labeled with $1,2, \ldots, n$, where i and j are connected by an arc if (i, j) is an edge of π; see Figure 1 A noncrossing partition is a partition without any two crossing edges, i.e. $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ such that $i_{1}<i_{2}<j_{1}<j_{2}$. It is well known the number of noncrossing partitions of [n] is the Catalan number $\frac{1}{n+1}\binom{2 n}{n}$.

For a positive integer k, a k-distant noncrossing partition is a partition without any two edges $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ satisfying $i_{1}<i_{2}<j_{1}<j_{2}$ and $j_{1}-i_{2} \geq k$. Note that 1 -distant noncrossing partitions are just noncrossing partitions. We denote by $\mathrm{NC}_{k}(n)$ the set of k-distant noncrossing partitions of [n]. Drake and Kim [3] found the following generating function for the number of 2-distant noncrossing

[^0]

Figure 1. The standard representation of $(\{1,4,8\},\{2,5,9\},\{3\},\{6,7\})$.
partitions:

$$
\begin{equation*}
\sum_{n \geq 0} \# \mathrm{NC}_{2}(n) x^{n}=\frac{3-3 x-\sqrt{1-6 x+5 x^{2}}}{2(1-x)} . \tag{1}
\end{equation*}
$$

The canonical word of a partition $\pi=\left(B_{1}, B_{2}, \ldots, B_{k}\right)$ is the word $a_{1} a_{2} \cdots a_{n}$, where $a_{i}=j$ if $i \in B_{j}$. For instance, the canonical word of the partition in Figure 1 is 123124412 . In the literature canonical words are also called restricted growth functions. For a word τ, a partition is called τ-avoiding if its canonical word does not contain a subword which is order-isomorphic to τ. It is easy to see that a partition is noncrossing if and only if it is 1212 -avoiding. We denote by $P_{\tau}(n)$ the set of τ-avoiding partitions of $[n]$.

Using the kernel method, Mansour and Severini [7] found the generating function for the number of $12 \cdots r 12$-avoiding partitions of $[n]$. Interestingly, as a special case of their result, the generating function for the number of 12312-avoiding partitions of $[n]$ is the same as (11), which implies $\# \mathrm{NC}_{2}(n)=\# P_{12312}(n)$. Moreover, this number also counts several kinds of lattice paths. The main purpose of this paper is to find bijections between $\mathrm{NC}_{2}(n)$ and $P_{12312}(n)$ together with some lattices paths described below.

A lattice path of length n is a sequence of points in $\mathbb{N} \times \mathbb{N}$ starting at $(0,0)$ and ending at $(n, 0)$. For a lattice path $L=\left(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right)$, each $S_{i}=\left(x_{i}-x_{i-1}, y_{i}-y_{i-1}\right)$ is called a step of L. The height of the step S_{i} is defined to be y_{i-1}. Sometimes we will identify a lattice path L with the word $S_{1} S_{2} \ldots S_{k}$ of its steps. Note that the number of steps is not necessarily equal to the length of the lattice path.

Let U, D and H denote an up step, a down step and a horizontal step respectively, i.e., $U=(1,1), D=(1,-1)$ and $H=(1,0)$.

A Schröder path is a lattice path consisting of steps U, D and $H^{2}=H H=(2,0)$. Let $L=S_{1} S_{2} \cdots S_{k}$ be a Schröder path. A UH-pair of L is a pair $\left(S_{i}, S_{i+1}\right)$ of consecutive steps such that $S_{i}=U$ and $S_{i+1}=H^{2}$. We say that L is $U H$-free if it does not have a UH-pair. A peak of L is a pair $\left(S_{i}, S_{i+1}\right)$ of consecutive steps such that $S_{i}=U$ and $S_{i+1}=D$. The height of a peak $\left(S_{i}, S_{i+1}\right)$ is the height of $S_{i+1}=D$. We denote by $\operatorname{SCH}_{\mathrm{UH}}(n)$ the set of UH-free Schröder paths of length $2 n$, and by $\mathrm{SCH}_{\text {even }}(n)\left(\right.$ resp. $\mathrm{SCH}_{\text {odd }}(n)$) the set of Schröder paths of length $2 n$ which have no peaks of even (resp. odd) height.

A labeled step is a step together with an integer label. Let $D_{i}\left(\right.$ resp. $\left.H_{i}\right)$ denote a labeled down step (resp. a labeled horizontal step) with label i. We denote by $\mathrm{CH}_{2}(n)$ the set of lattice paths $L=S_{1} S_{2} \cdots S_{n}$ of length n consisting of U, D_{1}, D_{2}, H_{0}, H_{1} and H_{2} such that

- if $S_{i}=H_{\ell}$ or $S_{i}=D_{\ell}$, then S_{i} is of height at least ℓ,
- if $S_{i}=H_{2}$ or $S_{i}=D_{2}$, then $i \geq 2$ and $S_{i-1} \in\left\{U, H_{1}, H_{2}\right\}$.

A 3-Motzkin path is a lattice path consisting of U, D, H_{0}, H_{1} and H_{2}. We denote by $\operatorname{MOT}_{3}(n)$ the set of 3 -Motzkin paths of length n.

Drake and Kim 3] showed that the well known bijection ψ between partitions and Charlier diagrams, see [4] [5], yields a bijection $\psi: \mathrm{NC}_{2}(n) \rightarrow \mathrm{CH}_{2}(n)$. Yan [10 found a bijection $\phi: \operatorname{SCH}_{\mathrm{UH}}(n-1) \rightarrow P_{12312}(n)$ and a bijection between $\mathrm{SCH}_{\mathrm{UH}}(n)$ and $\mathrm{SCH}_{\text {even }}(n)$. Thus all of $\mathrm{NC}_{2}(n), \mathrm{CH}_{2}(n), \mathrm{SCH}_{\text {even }}(n-1), \mathrm{SCH}_{\mathrm{UH}}(n-1)$ and $P_{12312}(n)$ have the same cardinality, which is counted by sequence A007317 from

Figure 2. Main bijections for $n \geq 2$.

8]. In order to find bijections between these objects, we introduce the following sets:

- $\mathrm{NC}_{2}^{\prime}(n)=\left\{\pi \in \mathrm{NC}_{2}(n): n\right.$ is not a singleton $\}$
- $\mathrm{CH}_{2}^{\prime}(n)=\left\{L \in \mathrm{CH}_{2}(n)\right.$: the last step of L is $\left.D_{1}\right\}$
- $\mathrm{SCH}_{\text {even }}^{\prime}(n)=\left\{L \in \mathrm{SCH}_{\text {even }}(n)\right.$: the first step of L is $\left.U\right\}$
- $\mathrm{SCH}_{\mathrm{UH}}^{\prime}(n)=\left\{L \in \operatorname{SCH}_{\mathrm{UH}}(n)\right.$: the first step of L is $\left.U\right\}$
- $P_{12312}^{\prime}(n)=\left\{\pi \in P_{12312}(n): 1\right.$ and 2 are not in the same block $\}$

Note that we can identify $\pi \in \mathrm{NC}_{2}(n)$ with $\pi^{\prime} \in \mathrm{NC}_{2}^{\prime}(k)$, where k is the integer such that j is a singleton for all $j \in\{k+1, k+2, \ldots, n\}$ and k is not a singleton in π, and π^{\prime} is the partition obtained from π by deleting integers greater than k. We can also identify $\pi \in P_{12312}(n)$ with $\pi \in P_{12312}^{\prime}(k)$, where k is the integer such that the number of consecutive 1's at the beginning of the canonical word of π is $n-k+1$, and $\bar{\pi}$ is the partition whose canonical word is obtained from that of π by deleting the first $n-k$'s. Thus any bijection between $\mathrm{NC}_{2}^{\prime}(n)$ and $P_{12312}^{\prime}(n)$ naturally induces a bijection between $\mathrm{NC}_{2}(n)$ and $P_{12312}(n)$. Similarly, any bijection between $A^{\prime}(n)$ and $B^{\prime}(n)$ naturally induces a bijection between $A(n)$ and $B(n)$ where A and B are any two of $\mathrm{NC}_{2}, \mathrm{CH}_{2}, \mathrm{SCH}_{\text {even }}, \mathrm{SCH}_{\mathrm{UH}}$, and P_{12312}. Thus in order to find a bijection between $\mathrm{NC}_{2}(n)$ and $P_{12312}(n)$, it is enough to find a bijection between $\mathrm{NC}_{2}^{\prime}(n)$ and $P_{12312}^{\prime}(n)$.

In this paper we find bijections between these objects. For the overview of our bijections see Figure 2, where ψ is the known bijection between partitions and Charlier diagrams [4, 5], and ϕ is Yan's bijection 10. We note that our bijection g in Figure 2 is also discovered by Shapiro and Wang 9. We also provide a direct bijection between $\mathrm{NC}_{2}(n)$ and $P_{12312}(n)$ in Section 3.

2. Bijections

In this section we find the bijections f, g, h, and ι in Figure 2
2.1. The bijection $f: \mathrm{CH}_{2}^{\prime}(n) \rightarrow \operatorname{MOT}_{3}(n-2)$. Recall that $\mathrm{CH}_{2}^{\prime}(n)$ is the set of lattice paths $L=S_{1} S_{2} \cdots S_{n}$ of length n consisting of $U, D_{1}, D_{2}, H_{0}, H_{1}$ and H_{2} such that

- if $S_{i}=H_{\ell}$ or $S_{i}=D_{\ell}$, then S_{i} is of height at least ℓ,
- if $S_{i}=H_{2}$ or $S_{i}=D_{2}$, then $i \geq 2$ and $S_{i-1} \in\left\{U, H_{1}, H_{2}\right\}$,
- $S_{n}=D_{1}$.

The second condition above is equivalent to the condition that the lattice path consists of the following combined steps for any $k \geq 0$:

$$
\begin{equation*}
U H_{2}^{k}, U H_{2}^{k} D_{2}, H_{1} H_{2}^{k}, H_{1} H_{2}^{k} D_{2}, H_{0}, D_{1} \tag{2}
\end{equation*}
$$

Let $A(n)$ denote the set of lattice paths of length n consisting of the combined steps in (2) such that H_{2} does not touch the x-axis. Let $B(n)$ denote the set of

Figure 3. An example of f_{0}.

Figure 4. Definition of f.

3-Motzkin paths of length n such that each H_{2} touching the x-axis must occur after D, H_{0} or H_{2}.

We define $f_{0}: A(n) \rightarrow B(n)$ as follows. Let $L \in A(n)$. Then $f_{0}(L)$ is defined to be the lattice path obtained from L by changing $U H_{2}^{k} D_{2}$ to $H_{0} H_{2}^{k+1}, H_{1} H_{2}^{k} D_{2}$ to $D H_{2}^{k+1}$ and D_{1} to D. It is easy to see that $f_{0}(L) \in B$ and f_{0} is invertible. See Figure 3.

Now we define $f: \mathrm{CH}_{2}^{\prime}(n) \rightarrow \operatorname{MOT}_{3}(n-2)$ as follows. Let $L \in \mathrm{CH}_{2}^{\prime}(n)$. Then L is decomposed uniquely as

$$
H_{0}^{k_{1}}\left(U L_{1} D_{1}\right) H_{0}^{k_{2}}\left(U L_{2} D_{1}\right) \cdots H_{0}^{k_{r}}\left(U L_{r} D_{1}\right)
$$

where $L_{i} \in A\left(n_{i}\right)$ for some $k_{i}, n_{i} \geq 0$ and $r \geq 1$. Then define $f(L)$ to be

$$
H_{2}^{k_{1}} f_{0}\left(L_{1}\right)\left(H_{1} H_{2}^{k_{2}+1} f_{0}\left(L_{2}\right)\right)\left(H_{1} H_{2}^{k_{3}+1} f_{0}\left(L_{3}\right)\right) \cdots\left(H_{1} H_{2}^{k_{r}+1} f_{0}\left(L_{r}\right)\right)
$$

See Figure 4
Theorem 2.1. The map $f: \mathrm{CH}_{2}^{\prime}(n) \rightarrow \operatorname{MOT}_{3}(n-2)$ is a bijection.
Proof. Each $L \in \operatorname{MOT}_{3}(n-2)$ is uniquely decomposed as

$$
H_{2}^{k_{1}} L_{1}\left(H_{1} H_{2}^{k_{2}+1} L_{2}\right)\left(H_{1} H_{2}^{k_{3}+1} L_{3}\right) \cdots\left(H_{1} H_{2}^{k_{r}+1} L_{r}\right),
$$

where $L_{i} \in B\left(n_{i}\right)$ for some $k_{i}, n_{i} \geq 0$ and $r \geq 1$. Thus we have the inverse $f^{-1}(L)$ which is decomposed as

$$
H_{0}^{k_{1}}\left(U f_{0}^{-1}\left(L_{1}\right) D_{1}\right) H_{0}^{k_{2}}\left(U f_{0}^{-1}\left(L_{2}\right) D_{1}\right) \cdots H_{0}^{k_{r}}\left(U f_{0}^{-1}\left(L_{r}\right) D_{1}\right)
$$

Figure 5. An example of g. Odd peaks are circled. The horizontal steps of even height are dashed and colored blue.
2.2. The bijection $g: \operatorname{MOT}_{3}(n) \rightarrow \operatorname{SCH}_{\text {odd }}(n+1)$. We define $g: \operatorname{MOT}_{3}(n) \rightarrow$ $\mathrm{SCH}_{\text {odd }}(n+1)$ as follows. Let $L \in \operatorname{MOT}_{3}(n)$. Then $g(L)$ is the lattice path obtained from L by doing the following.
(1) Change U to $U U, D$ to $D D, H_{0}$ to H^{2}, H_{1} to $D U$, and H_{2} to $U D$.
(2) Add U at the beginning and D at the end.
(3) Change all the consecutive steps $U D$ which form a peak of odd height to H^{2}.
See Figure 5 for an example of g.
Theorem 2.2. The map $g: \operatorname{MOT}_{3}(n) \rightarrow \mathrm{SCH}_{\text {odd }}(n+1)$ is a bijection.
Proof. Clearly the first and the second steps in the construction of g are invertible. The third step is also invertible because every step H^{2} of even height always comes from a peak of odd height. Thus g is invertible.
2.3. The bijection $h: \mathrm{SCH}_{\text {odd }}(n) \rightarrow \mathrm{SCH}_{\mathrm{UH}}^{\prime}(n)$. Let $L=S_{1} S_{2} \cdots S_{k}$ be a Schröder path. For any up step $S_{i}=U$ of L, there is a unique down step $S_{j}=D$ such that $i<j$ and $S_{i+1} S_{i+2} \cdots S_{j-1}$ is a (possibly empty) lattice path. We call such S_{j} the down step corresponding to S_{i}. We also call S_{i} the up step corresponding to S_{j}.

For a UH-pair $\left(S_{i}, S_{i+1}\right)$, i.e. $S_{i}=U$ and $S_{i+1}=H^{2}$, we define the function ξ as follows.

$$
\xi\left(S_{i}, S_{i+1}\right)= \begin{cases}i, & \text { if } S_{i+1} \text { is of even height } \\ j, & \text { if } S_{i+1} \text { is of odd height }\end{cases}
$$

where j is the integer such that S_{j} is the down step corresponding to S_{i}. If L is not UH-free, we define the ξ-maximal UH-pair of L to be the UH-pair (S_{i}, S_{i+1}) with the largest ξ value.

Figure 6. The essence of h_{0}. Red (resp. Dashed blue) color is for UH-pairs whose horizontal step is of odd (resp. even) height. Odd peaks are circled. The lattice path L^{\prime} is not empty.

Now let $L=S_{1} S_{2} \cdots S_{k} \in \mathrm{SCH}_{\text {odd }}(n)$. If L is not UH-free, we define $h_{0}(L)$ as follows. Suppose $\left(S_{i}, S_{i+1}\right)$ is the ξ-maximal UH-pair of L, and S_{j} is the down step corresponding to S_{i}.
(1) If S_{i+1} is of even height, then $h_{0}(L)$ is the lattice path obtained from L by replacing $S_{i} S_{i+1}$ with $U U D$.
(2) If S_{i+1} is of odd height, then let $L^{\prime}=S_{i+2} S_{i+3} \cdots S_{j-1}$.
(a) If L^{\prime} is empty, i.e., $j=i+2$, then $h_{0}(L)$ is the lattice path obtained from L by replacing $S_{i} S_{i+1} S_{i+2}$ with $H^{2} U D$.
(b) If L^{\prime} is not empty, then $h_{0}(L)$ is the lattice path obtained from L by replacing $S_{i} S_{i+1} \cdots S_{j}$ with $U L^{\prime} D U D$.
See Figure 6 .
Now we define $h: \mathrm{SCH}_{\text {odd }}(n) \rightarrow \mathrm{SCH}_{\mathrm{UH}}^{\prime}(n)$ as follows. Let $L \in \mathrm{SCH}_{\text {odd }}(n)$ and $L_{0}=L$. Then we define $L_{i}=h_{0}\left(L_{i-1}\right)$ for $i \geq 1$ if L_{i-1} is not UH-free. Since the number of UH-free pairs of L_{i} is one less than that of L_{i-1}, or they are the same and

$$
\xi\left(\text { the maximal UH-pair of } L_{i}\right)<\xi\left(\text { the maximal UH-pair of } L_{i-1}\right),
$$

we always get L_{r} which is UH-free for some r. We define $h(L)$ to be L_{r} if L_{r} does not start with H^{2}; and the lattice path obtained from L_{r} by replacing H^{2} with $U D$ otherwise. For an example, see Figure 7 .

Theorem 2.3. The map $h: \mathrm{SCH}_{\text {odd }}(n) \rightarrow \mathrm{SCH}_{\mathrm{UH}}^{\prime}(n)$ is a bijection.
Proof. In the procedure of h, the odd peaks are constructed from right to left. Since h_{0} is invertible, so is h.
2.4. The bijection $\iota: \mathrm{SCH}_{\text {odd }}(n) \rightarrow \mathrm{SCH}_{\text {even }}^{\prime}(n)$. For $L=S_{1} S_{2} \cdots S_{k} \in \mathrm{SCH}_{\text {odd }}(n)$, we define $\iota(L)$ as follows.
(1) If $S_{k}=H^{2}$, then $\iota(L)=U S_{1} \cdots S_{k-1} D$.
(2) If $S_{k}=D$, then let S_{i} be the up step corresponding to S_{k} and we define $\iota(L)=U S_{1} \cdots S_{i-1} D S_{i+1} \cdots S_{k-1}$.
See Figure 8 .
Then $\iota(L) \in \mathrm{SCH}_{\text {even }}^{\prime}(n)$. Clearly, $\iota: \mathrm{SCH}_{\text {odd }}(n) \rightarrow \mathrm{SCH}_{\text {even }}^{\prime}(n)$ is a bijection.

\Downarrow Changing the first H^{2}

Figure 7. An example of h. Red (resp. Dashed blue) color is for UH-pairs whose horizontal step is of odd (resp. even) height. Odd peaks are circled. Dashed arrows indicate the down steps corresponding to the up steps.

3. A direct bijection between $\mathrm{NC}_{2}(n)$ and $P_{12312}(n)$

Now we have a bijection $\phi \circ h \circ g \circ f \circ \psi: \mathrm{NC}_{2}^{\prime}(n) \rightarrow P_{12312}^{\prime}(n)$, see Figure 2, As noted in the introduction, this induces a bijection between $\mathrm{NC}_{2}(n)$ and $P_{12312}(n)$. Since both $\mathrm{NC}_{2}(n)$ and $P_{12312}(n)$ are partitions with some conditions, it is natural to ask a direct bijection between them. In this section we find such a direct bijection.

Figure 8. The map ι.
From now on, we will identify a partition in $P_{12312}(n)$ with its canonical word.
A marked partition is a partition in which each part may be marked. Similarly a marked word is a word in which each letter may be marked.

Let $\pi \in \mathrm{NC}_{2}(n)$. For $i \in[n]$, let T_{i} be the marked partition of $[i]$ obtained from π by removing all the integers greater than i and by marking integers which are connected to an integer greater than i. Using the sequence $\emptyset=T_{0}, T_{1}, T_{2}, \ldots, T_{n}=$ π of marked partitions, we define a sequence of marked words $\mathbf{w}_{0}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$ as follows. Here, if (i, j) is an edge we say that j is connected to i.

Let \mathbf{w}_{0} be the empty word. For $1 \leq i \leq n, \mathbf{w}_{i}$ is defined as follows.
(1) If i is not connected to any integer in T_{i}, then $\mathbf{w}_{i}=\mathbf{w}_{i-1} m$, where $m=$ $\max \left(\mathbf{w}_{i-1}\right)+1$. Otherwise, i is connected to either the largest marked integer or the second largest marked integer of T_{i-1}.

- If i is connected to the largest marked integer of T_{i-1}, then let $\mathbf{w}_{i}=$ $\mathbf{w}_{i-1} a_{1}$, where a_{1} is the rightmost marked letter of \mathbf{w}_{i-1}. And then we make the marked letter a_{1} unmarked.
- If i is connected to the second largest marked integer of T_{i-1}, then let $\mathbf{w}_{i}=\mathbf{w}_{i-1} a_{2}$, where a_{2} is the second rightmost marked letter of \mathbf{w}_{i-1}. The second rightmost marked letter of \mathbf{w}_{i-1} remains marked, however, we make the rightmost marked letter of \mathbf{w}_{i-1} unmarked in \mathbf{w}_{i}.
(2) If i is marked in T_{i}, then we find the largest letters in \mathbf{w}_{i} and make the leftmost letter among them marked.
For an example, see Figure 9
Lemma 3.1. The word \mathbf{w}_{n} obtained above is 12312-avoiding.
Proof. Suppose \mathbf{w}_{n} has a subsequence $a b c a b$ where $a<b<c$. When the second b is added the first b must have been marked. Moreover, the first b must have been marked before adding the second a because an unmarked integer becomes marked only if it is the largest integer (in this case at least c) in the sequence. Thus when the second a is added, the first a and b have been marked. Since the first a is the second rightmost marked integer at this moment, we must unmark the rightmost marked integer, the first b, and mark the largest integer which is at least c. Thus after this process, b cannot be marked and we cannot have the second b, which is a contradiction.

If we know \mathbf{w}_{n}, we can reverse this procedure. For $1 \leq i \leq n, \mathbf{w}_{i-1}$ is obtained from \mathbf{w}_{i} as follows. Suppose $m=\max \left(\mathbf{w}_{i}\right)$ and t is the last letter of \mathbf{w}_{i}.
(1) If the leftmost m is marked in \mathbf{w}_{i}, then make it unmarked.

Figure 9. T_{i} 's and corresponding w_{i} 's. Marked integers and marked letters are circled.
(2) If t appears only once in \mathbf{w}_{i} (equivalently t is greater than any other letters in \mathbf{w}_{i}), then we simply remove t. Otherwise, find the leftmost t in \mathbf{w}_{i}.

- If the leftmost t is unmarked, then we remove the last letter t and make the leftmost t marked.
- If the leftmost t is marked, then we must have $t<m$ since we have made the leftmost m unmarked. In this case we remove the last t, and make the leftmost t still marked and the leftmost m marked.

Now we construct $T_{0}, T_{1}, \ldots, T_{n}$ as follows. Let $T_{0}=\emptyset$. For $1 \leq i \leq n, T_{i}$ is obtained as follows.
(1) First, let T_{i} be the marked partition obtained from T_{i-1} by adding i.
(2) If the last letter of \mathbf{w}_{i} is equal to the rightmost (resp. the second rightmost) marked letter of \mathbf{w}_{i-1}, then connect i to the largest (resp. the second largest) marked integer, say j, of T_{i-1}, and make j unmarked.
(3) Let $m=\max \left(\mathbf{w}_{i}\right)$. If the leftmost m is marked in \mathbf{w}_{i}, then make i marked in T_{i}.
It is easy to check that this is the inverse map. Thus we get the following theorem.

Theorem 3.2. For $\pi \in \mathrm{NC}_{2}(n)$, the map $\pi \mapsto \mathbf{w}_{n}$ is a bijection from $\mathrm{NC}_{2}(n)$ to $P_{12312}(n)$.

The bijection $\pi \mapsto \mathbf{w}_{n}$ is different from the composition $\phi \circ h \circ g \circ f \circ \psi$. For instance, if $\pi=(\{1,3\},\{2\})$, then $\mathbf{w}_{3}=121$ but $(\phi \circ h \circ g \circ f \circ \psi)(\pi)=112$.

Note that both $\mathrm{NC}_{2}(n)$ and $P_{12312}(n)$ contain noncrossing partitions. It would be interesting to find a bijection between $\mathrm{NC}_{2}(n)$ and $P_{12312}(n)$ which sends noncrossings partitions to noncrossings partitions.

References

[1] D. Armstrong. Generalized noncrossing partitions and combinatorics of Coxeter groups. Mem. Amer. Math. Soc., 2002:no. 949, 2009.
[2] W. Y. C. Chen, E. Y. P. Deng, R. R. X. Du, R. P. Stanley, and C. H. Yan. Crossings and nestings of matchings and partitions. Trans. Amer. Math. Soc., 359(4):1555-1575 (electronic), 2007.
[3] D. Drake and J. S. Kim. k-distant crossings and nestings of matchings and partitions. DMTCS Proceedings, AK:349-360, 2009.
[4] P. Flajolet. Combinatorial aspects of continued fractions. Discrete Math., 32(2):125-161, 1980.
[5] A. Kasraoui and J. Zeng. Distribution of crossings, nestings and alignments of two edges in matchings and partitions. Electron. J. Combin., 13(1):Research Paper 33, 12 pp. (electronic), 2006.
[6] G. Kreweras. Sur les partitions non croisées d'un cycle. Discrete Math., 1:333-350, 1972.
[7] T. Mansour and S. Severini. Enumeration of ($k, 2$)-noncrossing partitions. Discrete Math., 300(20):4570-4577, 2008.
[8] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. http://oeis.org
[9] L. W. Shapiro and C. J. Wang. A bijection between 3-Motzkin paths and Schröder paths with no peak at odd height. Journal of Integer Sequences, 12:Article 09.3.2, 2009.
[10] S. H. F. Yan. Schröder paths and pattern avoiding partitions. Int. J. Contemp. Math. Sci., 4(17-20):979-986, 2009.
E-mail address: jskim@kaist.ac.kr

[^0]: Date: November 6, 2018.
 2000 Mathematics Subject Classification. 05A18, 05A15.
 Key words and phrases. noncrossing partition, Motzkin path, Schröder path.

