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On the chromatic numbers of small-dimensional Euclidean spaces

Danila Cherkashin∗, Anatoly Kulikov†, Andrei Raigorodskii‡

Abstract

This paper is devoted to the study of the graph sequence Gn = (Vn, En), where Vn is the set of
all vectors v ∈ Rn with coordinates in {−1, 0, 1} such that |v| =

√
3 and En consists of all pairs of

vertices with scalar product 1. We find the exact value of the independence number of Gn. As a
corollary we get new lower bounds on χ(Rn) and χ(Qn) for small values of n.

1. Introduction

Let Rn be the standard Euclidean space, where the distance between any two points x, y is denoted
by |x− y|. Let V be an arbitrary point set in Rn. Let a > 0 be a real number. By a distance graph with
set of vertices V , we mean the graph G = (V,E) whose set of edges E contains all pairs of points from V
that are at the distance a apart:

E = {{x, y} : |x− y| = a}.
Distance graphs are among the most studied objects of combinatorial geometry. First of all, they are

at the ground of the classical Hadwiger–Nelson problem, which was proposed around 1950 (see [9], [22])
and consists in determining the chromatic number of the space:

χ(Rn) = min {χ : Rn = V1 ⊔ . . . ⊔ Vχ, ∀ i ∀ x,y ∈ Vi |x− y| 6= 1} ,

i.e., the minimum number of colors needed to color all the points in Rn so that any two points at the
distance 1 receive different colors. In other words, it is the chromatic number of the unit distance graph
whose vertex set coincides with Rn.

Due to the extreme popularity of the subject, colorings of unit distance graphs are very deeply explored.
Let us just refer the reader to several books and survey articles [1, 2, 5, 11, 18, 19, 21, 23]. In particular,
the best known lower bounds for the chromatic numbers in dimensions 6 12 are given below:

χ(R2) > 4 [18], χ(R3) > 6 [17], χ(R4) > 9 [8], χ(R5) > 9 [4], χ(R6) > 11 [6], χ(R7) > 15 [18],

χ(R8) > 16 [15], χ(R9) > 21 [14], χ(R10) > 23 [14], χ(R11) > 25 [12], χ(R12) > 27 [13].

Recently further improvements were announced:

χ(R8) > 19 [10], χ(R10) > 26 [7], [10], χ(R11) > 32 [10], χ(R12) > 36 [7].
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These improvements are essentially based on computer calculations.
In growing dimensions, the following bounds are the best known:

[20] (1.239 . . .+ o(1))n 6 χ(Rn) 6 (3 + o(1))n [15].

In this paper, we consider a special sequence of graphs defined in the following way.
Let Vn be the set of all vectors v from Rn with coordinates in {−1, 0, 1} and |v| =

√
3. The set Vn can

be considered as the set of vertices of a graph Gn = (Vn, En), where an edge connects two vertices if and
only if the corresponding vectors have scalar product 1. Note that G1 and G2 are empty and G3 is just a
cube.

Recall that an independent set in a graph is any set of its vertices which are pairwise non-adjacent and
the independence number of G denoted by α(G) is the size of a maximum independent set in the graph G.

Theorem 1. For n > 1, let c(n) denote the following constant:

c(n) =











0 if n ≡ 0

1 if n ≡ 1

2 if n ≡ 2 or 3

(mod 4).

Then, the independence number of Gn is given by the formula

α(Gn) = max{6n− 28, 4n− 4c(n)}.

Actually, the result of Theorem 1 is a far-reaching generalization of a much simpler lemma proved by
Zs. Nagy (see [16]) in 1972 and used not only in combinatorial geometry, but also in Ramsey theory. In
this lemma, G′

n = (V ′
n, E

′
n), where V ′

n is the set of all vectors v, |v| =
√
3, with coordinates in {0, 1} and

again an edge connects two vertices if and only if the corresponding vectors have scalar product 1. Lemma
states that in this case α(G′

n) = n− c(n).
The proof of Theorem 1 is given in the following parts: some examples showing the lower bound in

Theorem 1 and some preliminaries are given in Section 2; the upper bound is proved in Section 3 for
n > 13 and in Section 4 for other values of n. Note that, roughly speaking, the quantity 13 is a threshold
where the bound 6n− 28 starts dominating the bound 4n.

As a corollary of Theorem 1 we get the following bounds for the chromatic numbers of Euclidean spaces.

Theorem 2. Let c(n) be the constant defined in Theorem 1. Then, for all n > 3, we have

χ(Rn) > χ(Qn) > χ(Gn) >
|Vn|

α(Gn)
=

8C3
n

max{6n− 28, 4n− c(n)} .

Asymptotically, the bound in this theorem is 2
9
n2(1+ o(1)), which is a weak result. On the other hand,

for small values of n, the theorem gives the best known bounds, namely:

χ(R9) > χ(Q9) > 21,

χ(R10) > χ(Q10) > 30,

χ(R11) > χ(Q11) > 35,

χ(R12) > χ(Q12) > 37.

Actually, we will show in Section 5 the following stronger result for n = 9.

Proposition 1. The inequalities hold

χ(R9) > χ(Q9) > 22.
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2. Lower bounds in Theorem 1 and some preliminaries

2.1. Auxiliary definitions

Consider the graph Gn. Any of its vertices has three non-zero coordinates and n− 3 coordinates equal
to 0. We call base the set of non-zero coordinates of a vertex. To make our exposition more concise, we
will use the word “place” instead of the word “coordinate” or instead the expression “coordinate position”.
For example, it will be convenient to say (a bit informally) “vertex v intersects place x”, if the vector v
from Rn corresponding to this vertex has nonzero value of the coordinate vx. For the same reasons, we
introduce the notion of a signplace: it is a coordinate with a fixed sign (plus or minus). In particular, from
now on, we can say (again, a bit informally) “vertex v intersects signplace x+ (x−)”, if it has the value
of the coordinate vx equal to +1 (−1). Finally, we define the degree of a place (signplace) in a set W of
vertices of Gn as the number of vertices from W intersecting this place (signplace).

2.2. Constructions of independent sets in Gn

It suffices to show that α(Gn) > 4n− 4c(n) and that α(Gn) > 6n− 28.
The first construction is as follows. Consider the first 4 places. Take all the 4 bases that can be taken

on these places. For each base, consider 4 variants:

1, 1, 1; 1,−1,−1; − 1, 1,−1; − 1,−1, 1.

Clearly any two vectors with these bases have scalar product different from 1. We call this construction
(and its natural analogs) quad.

Take [n/4] consecutive quads. If the remainder still consists of 3 places, then add 4 more bases.
Eventually, we get exactly 4n− 4c(n) vectors that form an independent set in Gn.

Now, let us make the second construction. Take the following vectors:

1,−1, 0, 1, 0, . . . , 0, 0, 0, 0; 1,−1, 0, 0, 1, 0, . . . , 0, 0, 0, 0; . . . ; 1,−1, 0, 0, 0, . . . , 0, 1, 0, 0, 0;

0, 1,−1, 1, 0, . . . , 0, 0, 0, 0; 0, 1,−1, 0, 1, 0, . . . , 0, 0, 0, 0; . . . ; 0, 1,−1, 0, 0, . . . , 0, 1, 0, 0, 0;

−1, 0, 1, 1, 0, . . . , 0, 0, 0, 0; − 1, 0, 1, 0, 1, 0, . . . , 0, 0, 0, 0; . . . ; − 1, 0, 1, 0, 0, . . . , 0, 1, 0, 0, 0.

In each line, we have a set of vectors, which is a particular case of what we will call snake in Section 3 and
later. In every snake, we have n−6 vertices. Thus, the total amount of vertices here is 3n−18. Obviously,
the union of these snakes is an independent set in Gn. Moreover, we can add to it 4 more vectors, which
have a common base — the three first places: say,

1, 1, 1, 0, . . . , 0; 1,−1,−1, 0, . . . , 0; − 1, 1,−1, 0, . . . , 0; − 1,−1, 1, 0, . . . , 0.

The whole construction is a particular case of a cobra discussed later in more details. Here the cobra
contains 3n− 14 vertices.

Of course, we can take one more cobra, whose “head” is on the three last places and whose “tail”
consists of minus ones instead of ones. Eventually, we get exactly 6n−28 vertices forming an independent
set in Gn.

The lower bound is proven.

It is worth noting that in Section 3 we will make a rather subtle analysis of possible independent sets
in Gn. One would be able to derive from this analysis a complete description of examples giving the lower
bound in Theorem 1. However, we will not present such description explicitly in this paper.

It is also worth noting that in the above example having 6n − 28 vertices and avoiding the scalar
product 1, the scalar product −3 is also absent. Moreover, one can exclude 6 vertices from that example
so that the scalar product −2 disappears as well.
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2.3. Basic lemma

Let A be an arbitrary independent set of the maximum size in Gn. We already know that |A| >

max{6n − 28, 4n− 4c(n)}. Assume that we exclude some signplaces and all the vertices from the graph
Gn intersecting them. Then we get a new graph G′ with a possibly smaller independent set A′. Denote by
a(A′) the maximum degree of a signplace in the set A′. Denote by m(A′) the number of signplaces in A′.

The following lemma is an important ingredient in the proof of the upper bound.

Lemma 1. Assume that we exclude k signplaces. Assume that the number of vertices excluded from A
does not exceed 2k. Then we have either a(A′) > 5 or m(A′) < 14.

Proof of the lemma. By pigeon-hole principle a(A′) > 3(|A| − 2k)/(2n − k). If |A| > 4n, then
a(A′) > 6 and we are done. The inequality |A| > 4n is true for n = 8, 12 and n > 14. Thus, it
remains to consider only n = 7, 9, 10, 11, 13. If n = 7, then |A| > max{14, 20} = 20. If k = 1, then
3(|A| − 2k)/(2n− k) > 54/13, i.e., a(A′) > 5. If k > 2, then it may happen that 3(|A| − 2k)/(2n− k) 6 4.
But in this case, m(A′) = 2n − k 6 14 − 2 < 14. The same argument works for the 4 other values of n.
The proof is complete.

3. Proof of Theorem 1 in the case n > 14

3.1. Starting the proof

Let A be an arbitrary independent set of the maximum size in Gn. Assume that we have already
excluded several signplaces with the corresponding vertices (see Section 2.3). By Lemma 1 either a(A′) > 5
or m(A′) 6 13. The second case will be considered in Section 3.4. So we assume that a(A′) > 5.

Consider a signplace with the maximum degree. Call it x+
1 (each time when we choose a sign we can

choose plus without loss of generality) and consider the set of vertices intersecting it (denote it by Nx+

1
).

Note that no base can contain more than two vertices from Nx+

1
. Thus, we have at least three different

bases. Also it is clear that any two bases containing vertices from Nx+

1
intersect in exactly two signplaces.

There are two different possibilities.

1) Among the bases, we have {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}. This case will be referred to as
“quad” (cf. Section 2.2).

2) All the bases contain both x1 and x2. This case will be referred to as “snake” (cf. Section 2.2).

The formal definition of a quad will be given in the next section, where we will analize Case 1. The
same is for a snake in Section 3.3. In Section 3.4, we will complete the proof.

3.2. The first case — “quad”

We know that a(A′) > 5. At the same time, a(A′) 6 6, since otherwise the vertices from Nx+

1
use at

least 4 bases and therefore there is a base among {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4} such that it intersects
the fourth base only on x+

1 , which is impossible. Put a = a(A′).
Thus, we have exactly three bases containing the vertices from Nx+

1
. Two of them (without loss of

generality {x1, x2, x3}, {x1, x2, x4}) contain exactly 2 vertices from Nx+

1
each, and the third one contains

at least 1 vertex. Since {x+
1 , x2, x3} contains two vertices, it intersects all the four signplaces in x2, x3; the

same holds for {x+
1 , x2, x4}, which means that all the six signplaces of x2, x3, x4 are necessarily intersected.

Consider the set U of all vertices intersecting {x1, x2, x3, x4}. There could be the following possibilities.
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• Some vertices from U intersect x1. There are at most 2a such vertices.

• Some vertices from U lie on the base {x2, x3, x4}. There are at most 4 such vertices.

• Some vertices from U intersect {x2, x3, x4} in one place and are not counted above. Actually, there
are no such vertices because for every signplace in {x2, x3, x4} a vertex with a base in {x1, x2, x3, x4}
exists (do not forget that {x1, x2, x3}, {x1, x2, x4} contain exactly 2 vertices each, and the third base
contains at least 1 vertex).

• Some vertices from U intersect {x2, x3, x4} in two places and are not counted above. Again, there
are no such vertices. Indeed, assume that some vertex (call it v) intersects {x2, x3, x4} in {xi, xj}.
Then {x1, x2, x3} or {x1, x2, x4} intersects {xi, xj} in exactly one place. This is impossible, since we
know that two vertices from Nx+

1
lie on {x1, x2, x3} and two vertices from Nx+

1
lie on {x1, x2, x4}.

Summarizing, we have at most 2a + 4 6 16 vertices intersecting 8 signplaces. We call any of the
corresponding constructions quad.

Now we may assume that A was transformed into A′ in the following way (more details will be given
in Section 3.4).

• First, all the signplaces of degree less than 3 have been deleted one by one. Note that by Lemma 1
during this process either a > 5 or m 6 13.

• Second, all the quads have been deleted one by one. Note that again by Lemma 1 during this process
either a > 5 or m 6 13 (everytime the number of excluded signplaces is 8 and the number of excluded
vertices is at most 16).

• Third, once again, all the signplaces of degree less than 3 have been deleted one by one. Obviously,
there are no new quads and still by Lemma 1 a > 5 or m 6 13.

As before, we assume that a > 5 (since the case m 6 13 is considered in Section 3.4), and so we are
prepared to the next case, in which we have a(A′) > 5, there are no quads, and every signplace has degree
at least 3.

3.3. The second case — “snake”

We start with a formal definition of a snake.

Definition 1. Snake is a set of vertices intersecting a signplace and a place and containing at least 5
vertices. Head of a snake is a couple of places, which intersect every vertex, and tail of a snake is the set

of the remaining signplaces in each vertex. Size of a snake is the number of its vertices.

Clearly in the current case we have a snake of size a > 5 in A′. Let it be based on {x+
1 , x2} (with the

head being {x1, x2}). Note that the size of its tail is equal to a, since vertices cannot intersect on tail.
Our aim is to prove that we can exclude some t signplaces with at most 3t− 14 vertices. Moreover, we

will show that there is a special construction (“cobra”, cf. Section 2.2), which has exactly 3t− 14 vertices
on t signplaces and which is the only such construction up to the graph symmetries.

We have an alternative.

1) We can exclude 4 + a signplaces ({x1, x2} with all possible signs and a signplaces of the tail) and
3a− 2 vertices.

2) We have at least 3a− 1 vertices intersecting the signplaces mentioned in the previous point.

5



In the first case, our aim is realized, since we can put t = 4+ a and get 3t− 14 = 3a− 2. In the second
case, the analysis will be much longer.

Let us consider the second case of the alternative. Each vertex intersecting the tail of the snake that
we analize should intersect the head as well, and each of the a initial vertices intersects the head on two
signplaces. Hence the sum of the degrees of the head signplaces is at least 4a−1. But there is no signplace
with degree exceeding a, so the degrees of the signplaces in the head are either

a, a, a, a or a, a, a, a− 1.

Anyway we have a place with two signplaces of degree exactly a. Without loss of generality, this place
is x1. Since all quads are already excluded, we have two snakes with signplaces on x1: one signplace is
x+
1 and the second one is x−

1 . Consider their heads. They could both lie on {x1, x2}, or they could lie on
{x1, x2} and {x1, x3} respectively.

In the first case, all the four signplaces of the head have degree a solely due to 2a vertices from the
snakes. In addition, there are vertices intersecting the tail (since the degree of each signplace is at least 3
and two snakes could provide only two vertices on a signplace). Each vertex intersecting the tail should
intersect the head as well, so the degree of some signplace in the head exceeds a, which contradicts the
assumption that a is the maximum value of the degree.

We are left with the second case: there are two snakes of size a with heads on {x1, x2} and {x1, x3}.
Let Q be the set of vertices lying fully on base {x1, x2, x3}. Denote by B the set of signplaces in the

intersection of the tails. Let C1 and C2 be the sets of the remaining signplaces in the corresponding tails.
Let q, b, c1, c2 be the sizes of the corresponding sets. We have already described all the vertices intersecting
x1, since the maximum degree is equal to a. Consider the sum of the degrees of the signplaces on x2 and
x3. Since the degree of each signplace is at least 3, we have a new vertex for each signplace from the
intersection of the tails. Each vertex of this type should intersect both heads, and it cannot contain x1.
Therefore, it contains both x2 and x3 and adds 2 to our sum. We have at least two vertices intersecting
each signplace of the symmetric difference of the tails. Each vertex of this type should intersect the head
of a corresponding snake and could intersect two signplaces of its tail. In total, these vertices add at least

2(c1 + c2)/2 = c1 + c2

to the sum. Each of the 2a initial vertices intersects {x2, x3}. Each vertex from Q adds yet another 1
to the sum, since it intersects {x2, x3} on two places. Again in total, the sum of the degrees of the four
signplaces on {x2, x3} is at least

2b+ c1 + c2 + 2a+ q.

On the other hand, since the degree of each signplace is at most a, this sum does not exceed 4a. So we
have

2b+ c1 + c2 + q 6 2a.

Each vertex from Q is in one snake. Consequently, q = q1 + q2 (qi is the number of vertices lying in a
corresponging snake),

b+ q1 + c1 = a, b+ q2 + c2 = a,

and the inequality always turns to equality!
Thus, there is a set of

t := 6 + b+ c1 + c2

signplaces intersected by

q + 3b+ 3c1 + 3c2 6 3(b+ c1 + c2) + 4 = 3t− 14

vertices.
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The second case of the alternative is complete, and our aim is attained. However, we will also prove
below an upper bound on t.

Suppose that the number of vertices is exactly 3t− 14. It means that all the intermediate inequalities
turned to equalities. The last inequality turns to equality only when q = 4. One can see that any vertex
intersecting a signplace from C1 or C2 should intersect 2 vertices of the tail, so it intersects {x1, x2, x3}
only on 1 vertex, which contradicts q = 4. Hence C1 = C2 = ∅ and b = a − 2. For every signplace from
x+ ∈ B there is a vertex intersecting x+ and lying on base {x, x2, x3}. It turns out that there is a third
snake on {x2, x3}. We call cobra the union of such 3 snakes. Finally, one can see that there is no place x
such that x+, x− lie in B, otherwise there is an edge between two vertices on the base {x1, x2, x}.

As a result, t does not exceed n+3, and the tail of a corresponding snake can not contain two signplaces
on the same place.

Summing up the above, if we have no quad, then there is a cobra, which consists of three snakes with
a common tail and pairwise intersecting heads. It has 3t− 14 vertices on t signplaces, 8 6 t 6 n + 3.

3.4. Finishing the proof

In the previous sections we have shown that there are the following options.

• To exclude a signplace and at most 2 vertices intersecting it.

• To exclude 8 signplaces and at most 16 vertices intersecting it.

• To exclude t signplaces with at most 3t− 14 vertices (8 6 t 6 n+ 3).

• To get m(A′) 6 13.

Clearly the two first options yield at most 2m vertices on m signplaces. The same is true for the fourth
option: we show it in Appendix using computer simulations.

According to this, only the following cases could occur.

1) There is no cobra. Then the number of vertices does not exceed 4n 6 6n− 28.

2) There is one cobra and t 6 n. Then the number of vertices does not exceed

3t− 14 + 2(2n− t) 6 5n− 14 6 6n− 28.

3) There is one cobra and t = n+1. We are left to prove that n−1 signplaces on n−3 places can contain
at most 2n − 3 vertices. Suppose the contrary, then, by pigeon-hole principle, there is a signplace
of degree at least 3(2n − 2)/(n − 1) = 6. Using the same arguments as in Sections 3.1–3.3 we get
a quad or a cobra, but both constructions contain 3 places with 2 signplaces, which contradicts our
assumptions.

4) There is one cobra and t = n + 2. We are left to prove that n − 2 signplaces on n − 3 places can
contain at most 2n− 6 vertices. Then the number of vertices does not exceed

3(n+ 2)− 14 + 2n− 6 6 5n− 14 6 6n− 28.

Again, suppose the contrary, so there is a singplace of degree at least 3(2n− 5)/(n− 2). For n < 4
the claim is obvious, and for n > 4 we have 3(2n− 5)/(n− 2) > 4. Using the same arguments as in
Sections 3.1–3.3 we get a quad or a cobra, but both constructions contain 3 places with 2 signplaces.
Thus, we get a contradiction.
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5) There is one cobra and t = n+3. All other signplaces lie on distinct places, and we can apply Nagy’s
lemma (see Section 1 and [16]) to get an upper bound n − 3 for the number of vertices. Then the
number of vertices does not exceed

3(n+ 3)− 14 + n− 3 = 4n− 8 < 5n− 14 6 6n− 28.

6) There are two or more cobras. Then the bound 6n−28 for the number of vertices is straightforward.

The proof of Theorem 1 for n > 14 is complete.

4. Proof of Theorem 1 in the case n < 14

We will deal with small values of n one by one. We have already proven the lower bounds in Section
2.2. So we have to prove only the upper bounds. Let us start from simple cases.

• In the case n 6 6 the answer is easily found on a computer.

• The case n = 7 was considered by Cibulka in [6].

• In the case n = 9 we have to show that α(G9) 6 32, and this will follow from the case n = 10 below,
since α(Gn) is non-decreasing.

In the remaining cases the main lines of the proofs will be the same as in Sections 3.1–3.3, but we will
make appropriate changes in the ends of the proofs.

4.1. The cases n = 8 and n = 12

We state that α(G8) 6 32 and α(G12) 6 48. Suppose the contrary. It means that α(Gn) > 4n for some
n ∈ {8, 12}. Hence, by Section 3.4 there is a cobra on t signplaces with t > 15, since otherwise 3t−14 6 2t
and thus in all the possibilities from Section 3.4 we have at most 2m vertices on m signplaces. But a cobra
has at most n+3 signplaces, so the only option is n = 12, t = 15. Let us exclude the cobra and note that
all the 9 remaining signplaces lie on different places. Now we can apply Nagy’s lemma (see Section 1 and
[16]) to get in this case an upper bound 3t − 14 + 8 = 39 < 48. We get a contradiction and the claim is
proven.

4.2. The case n = 10

We are going to prove that α(G10) 6 32. Suppose we have an independent set A whose size is at least
32. Let us follow the proof of the case n > 14. If there is a quad, we exclude it and refer to the Appendix,
where the results of some computer calculations are given, in particular, for m = 12, l = 6 (m is the
number of signplaces, and l is the number of places). Thus, we get the needed bound by 16 + 16 = 32.

Then, we exclude some k signplaces whose degrees are at most 2. Suppose that the maximum degree
in the remaining graph is at most 4. By Lemma 1 we get the bound k > 8. Then |A| 6 2k+ 4(2n− k)/3.
Hence k > 10. If among the excluded signplaces there were 6 signplaces on 3 places, then we can apply
the bound for G7: |A| 6 α(G7) + 2 · 6 = 32. Otherwise there are at least n− 2 = 8 different places (and
thus k is at most 12) in the remaining graph, and so one can apply computer calculations (see Appendix)
for m = 2n− k 6 10, l > 8 and get the bounds by 2 · 10 + 12 = 32 or 2 · 11 + 10 = 32 when k = 10 or 11,
respectively. For the case k = 12 Nagy’s lemma gives us the inequality |A| 6 2 · 12 + 8 = 32.

If a cobra exists, it cannot be intersected by any vertex (including the already deleted ones). The cobra
uses at least 8 signplaces and leaves at least n− 3 = 7 places, which are not fully used (i.e., at least one of
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the signplaces on a place is free). Let t be the number of signplaces occupied by the cobra and m be equal
to 2n− t. Then a graph G′

10, which is obtained by excluding the signplaces intersected by the cobra, has
m signplaces lying on l > 7 different places.

Now we only have to sum up the number of vertices from the cobra and the number of vertices on
the remaining signplaces (the last number is given in Appendix). So let us consider all the cases with t
varying from 8 to n+ 3 = 13:

• t = 8, m = 12, 3t− 14 + 22 = 32;

• t = 9, m = 11, 3t− 14 + 19 = 32;

• t = 10, m = 10, 3t− 14 + 16 = 32;

• t = 11, m = 9, 3t− 14 + 13 = 32, since we have at least 7 different places;

• t = 12, m = 8, 3t− 14 + 10 = 32, since we have at least 7 different places;

• t = 13, m = 7, 3t− 14 + 5 = 30, since all the places are distinct.

4.3. The case n = 11

We are going to prove that α(G11) 6 38. Assume the contrary. If we have a quad, then after its
exclusion we get exactly G7, but α(G7) = 20 and 20 + 16 < 38.

Now exclude one by one all the vertices with degree at most 2. Denote the number of excluded vertices
by k. Following the proof of Lemma 1 we see that if k < 13, then a > 4, which means that a cobra exists.
First, let k > 13. If among the excluded signplaces there where 8 signplaces on 4 places, then we can once
again apply the bound for G7. Otherwise there are at least n − 3 = 8 different places in the remaining
graph, so we can refer to Appendix with m = 2n− k 6 9, l > 8 and get at most 38 vertices in A.

If a cobra exists, it cannot be intersected by any vertex (including the already deleted ones). The
cobra uses at least 8 signplaces and leaves at least n − 3 = 8 places, which are not fully used. Let t be
the number of signplaces occupied by the cobra and m be equal to 2n − t. Then a graph G′

11, which is
obtained by excluding the signplaces intersected by the cobra, has m signplaces lying on l > 8 different
places.

If t 6 8, then we use the fact that all the signplaces, which are not in a cobra, have degrees at most
two and get the declared bound: 3t− 14 + 2(22− t) = t+ 30 6 38.

Now it remains to consider the cases with t from 9 to n+ 3 = 14 and use the results from Appendix:

• t = 9, m = 13, 3t− 14 + 25 = 38;

• t = 10, m = 12, 3t− 14 + 22 = 38;

• t = 11, m = 11, 3t− 14 + 19 = 38;

• t = 12, m = 10, 3t− 14 + 16 = 38;

• t = 13, m = 9, 3t− 14 + 13 = 38, since we have at least 8 different places;

• t = 14, m = 8, 3t− 14 + 10 = 38, since all the places are distinct.
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4.4. The case n = 13

We are going to prove that α(G13) 6 50. Assume the contrary. If we have a quad, then after its
exclusion we get exactly G9, but α(G9) = 32 and 32 + 16 < 50.

Now exclude one by one all the vertices with degree at most 2. Denote the number of excluded vertices
by k. Following the proof of Lemma 1 we see that if k < 23, then a > 4, which means that a cobra exists.
The case k > 23 is obvious.

Thus, a cobra exists, and it cannot be intersected by any vertex (including the already deleted ones).
Define t as in the pevious cases. If t < 13, then we use the fact that all the signplaces, which are not in a
cobra, have degrees at most two and get the declared bound: 3t− 14 + 2(26− t) = t+ 38 < 50.

Now it remains to consider the cases with t from 13 to n+ 3 = 16 and use the results from Appendix:

• t = 13, m = 13, 3t− 14 + 25 = 50;

• t = 14, m = 12, 3t− 14 + 22 = 50;

• t = 15, m = 11, 3t− 14 + 19 = 50;

• t = 16, m = 10, 3t− 14 + 16 = 50.

The proof is complete.

5. Proof of Proposition 1

Suppose that χ(G9) = 21. Clearly |V (G9)|
α(G9)

= 21, and therefore every independent set has size 32.
Revising the proof of Theorem 1 we see that the only way to reach 32 vertices in an independent set is by
taking a couple of full quads. Thus, we have a collection of 21 pairs of full quads (denote it by A); this
collection covers each base exactly two times, since every full quad has exactly 4 vertices on every covered
base. Note that every pair of quads does not cover exactly one place, so one can split A into nine disjoint
parts:

A = A1 ⊔ . . . ⊔ A9.

Let S1 be the set of all bases such that each of them does not contain the first place. Obviously |S1| =
C3

8 = 56. Consider a pair of quads p ∈ A. Note that p covers 8 bases from S1, if p ∈ A1, and 5 bases
from S1 otherwise. Denote the cardinalities of A1 and A \ A1 by a and b respectively. Every set in S1 is
covered twice, and therefore we have 2|S1| = 112 = 8a + 5b. Hence there are the following possibilities:
(a = 14, b = 0), (a = 9, b = 8) and (a = 4, b = 16). But a + b = |A| = 21, so we get a contradiction.

Proposition 1 is proved.

Appendix. Computer calculations

Let F be a subgraph of Gn. Denote the number of signplaces and places intersecting the vertices of F
by m and l respectively.

We use the standard Bron–Kerbosch algorithm (see [3]) and get the following results:

• if m = 13, then α(F ) 6 25;

• if m = 13 and l = 7, then α(F ) 6 18;

• if m = 12, then α(F ) 6 22;
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• if m = 12 and l = 6, then α(F ) 6 16;

• if m = 11, then α(F ) 6 19;

• if m = 10, then α(F ) 6 16;

• if m = 10 and l > 8, then α(F ) 6 12;

• if m = 9, then α(F ) 6 16;

• if m = 9 and l > 7, then α(F ) 6 13;

• if m = 9 and l > 8, then α(F ) 6 10;

• if m = 8, then α(F ) 6 16;

• if m = 8 and l > 7, then α(F ) 6 10;

• if m = 7, then α(F ) 6 10;

• if m = l = 7, then α(F ) 6 5;

• if m = 6, then α(F ) 6 7;

• if m = 5, then α(F ) 6 5;

• if m = 4, then α(F ) 6 4;

• if m = 3, then α(F ) 6 1.
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