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Abstract. Thomason and Chung, Graham and Wilson were the first
to investigate systematically properties of quasirandom graphs. They
have stated several quite disparate graph properties—such as having
uniform edge distribution or containing a prescribed number of certain
subgraphs—and proved that these properties are equivalent in a deter-
ministic sense.

Simonovits and Sós introduced a hereditary property (which we call
S) stating the following: for a small fixed graph L, a graph G on n
vertices is said to have the property S if for every set X ⊆ V (G), the
number of labeled copies of L in G[X] (the subgraph of G induced by

the vertices of X) is given by 2−e(L)|X|v(L) +o(nv(L)). They have shown
that S is equivalent to the other quasirandom properties.

In this paper we give a natural extension of the result of Simonovits
and Sós to k-uniform hypergraphs, answering a question of Conlon et
al. Our approach yields an alternative, and perhaps simpler, proof of
their theorem.

1. Introduction

Given two hypergraphs L and H, an embedding of L into H is an injective
map φ : V (L) → V (H) which is also edge preserving, that is, φ(e) ∈ H for
every edge e ∈ L.

Denote by #Emb(L,H) the number of embeddings of L into H. In other
words, #Emb(L,H) counts the number of labeled copies of L in H.
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2 DELLAMONICA AND RÖDL

Definition 1.1 (Uniform edge distribution). A k-uniform hypergraph H is
called (ξ, d)-quasirandom if every vertex set X ⊆ V (H) with |X| ≥ ξ |V (H)|
induces (d± ξ) |X|

k

k! edges.

Before discussing k-uniform hypergraphs (k-graphs for short) we shall
restrict our attention to graphs.

Several seemingly unrelated properties turned out to be equivalent charac-
terizations of quasirandom graphs. These properties are present in a typical
random graph and, moreover, if one of them is present in a deterministic
graph then all the others are also present. This equivalence was estab-
lished in the seminal papers of Thomason [Tho87] and Chung, Graham and
Wilson [CGW89]. Below we will call any of these equivalent properties
quasirandom.

Theorem 1.2. For any graph L, d > 0, γ > 0, there exists ξ > 0 and n0 ∈ N
such that for any (ξ, d)-quasirandom graph G on n ≥ n0 vertices we have
#Emb(L,G) = (1± γ)de(L)nv(L).

A natural question is whether the converse of this result is true. Namely,
if L is some small fixed graph and G is a graph on n vertices with density d
containing (de(L) + o(1))nv(L) labeled copies of L, is it then true that G is
necessarily quasirandom?

While it follows from [CGW89] that when L = C4 the answer is affir-
mative, it turns out that there are non quasirandom graphs G with the
“correct” number of triangles. However, Simonovits and Sós [SS97] showed
that, for any 2-graph L, the following hereditary property is quasirandom.

Definition 1.3. Given a fixed k-graph L and d, γ, α ∈ (0, 1), a k-graph H
on n vertices is said to have the Simonovits-Sós Property S(L, d, γ, α) if
for every subset X ⊆ V (H) with |X| ≥ αn, we have #Emb (L,H[X]) =
(de(L) ± γ)|X|v(L).

Remark 1.4. If we take L to be a k-graph on k vertices consisting of a single
edge, then S(L, d, ξ, ξ) is equivalent to (ξ, d)-quasirandomness. Indeed, for
this choice of L we have #Emb (L,H[X]) = k! e(X) for any X ⊂ V (H).
Therefore, S(L, d, ξ, ξ) implies that e(X) = (d±ξ)|X|k/k! for all X ⊂ V (H)
with |X| ≥ ξn.

It is known that Theorem 1.2 does not generally extend to k-graphs. More
explicitly, let L be the (unique) 3-graph on four vertices with two edges
and H be the 3-graph with edges corresponding to triangles in the random
graph G(n, 1/2). It is simple to check that almost surely H is (ξ, 1/8)-
quasirandom for any ξ > 0. However, H contains (1/32 + o(1))n4 labeled
copies of L, which is two times (de(L) + o(1))nv(L) for the density d = 1/8
(see [KNRS]).

Therefore, property S cannot be quasirandom for k-graphs in general. On
the other hand, Kohayakawa et al. [KNRS] extended Theorem 1.2 to linear
k-graphs L (see Lemma 2.7 and Remark 2.8 below).
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Definition 1.5. A k-graph L is linear if for every two distinct edges e, f ∈ L,
we have |e ∩ f | ≤ 1. (In particular, every 2-graph is linear.)

In a recent paper, Conlon et al. [CHPS] extended the results of [CGW89]
to k-graphs by finding a number of equivalent hypergraph quasirandom
properties analogous to those of [CGW89]. In particular, they considered
a hereditary k-graph property (see Definition 2.2 below)—which easily im-
plies property S (see Remark 2.3)—and established that this new property is
quasirandom for k-graphs. They also asked if the property S is quasirandom
for any linear k-graph L.

In this paper we positively answer this question by proving the following
theorem.

Theorem 1.6 (Main result). Let L be a linear k-graph with at least one edge,
ξ > 0 and d > 0 be given. There exists constants n0 ∈ N, γ > 0 and α > 0
such that every k-graph H on n ≥ n0 vertices satisfying S(L, d, γ, α) is
(ξ, d)-quasirandom.

The main tools used in the proof of Theorem 1.6 are the weak regularity
lemma for k-graphs (Lemma 2.5) and its associated counting lemma for
linear k-graphs (Lemma 2.7). Using this counting lemma, we show that
any k-graph satisfying S must admit a regular partition for which almost
all regular k-tuples have density close to d (Theorem 3.2). A standard
argument establishes that the existence of a regular partition of this kind
implies quasirandomness (Claim 3.1).

The main idea of the proof given here, which is based on the Ramsey
Theorem, is different from that of [SS97]. In fact, our proof allows for a
natural extension from graphs to k-graphs. We give a full outline of our
proof strategy for the graph case (that is, k = 2) in Section 4. The proof
for general k is along the same lines but needs somewhat heavier notation
and the general form of the Ramsey Theorem.

2. Preliminaries

In this section we include the definitions and notation necessary to the
tools used in our proof.

Definition 2.1. Let L be a linear hypergraph with V (L) = [`] and H be
an arbitrary hypergraph. Given disjoint sets V1, . . . , V` ⊂ V (H), a partite
embedding of L into H[V1, . . . , V`] is an embedding φ : [`] → V (H) such
that φ(i) ∈ Vσ(i), for some σ ∈ S`, where S` is the set of all permutations
of [`].

A partite embedding is called an ordered embedding if it satisfies φ(i) ∈ Vi
for all i ∈ [`] (that is, the corresponding permutation is the identity).

We denote by #Part(L,H[V1, . . . , V`]) the number of partite embeddings
and by #Ord(L,H[V1, . . . , V`]) the number of ordered embeddings of L
into H[V1, . . . , V`].



4 DELLAMONICA AND RÖDL

It is clear from the above definitions that we have

(1) #Part(L,H[V1, . . . , V`]) =
∑
σ∈S`

#Ord(σ(L), H[V1, . . . , V`]),

where σ(L) is a hypergraph with edges {σ(e) : e ∈ L}.
From now on, we fix k ≥ 2 and a linear k-graph L with V (L) = [`] having

at least one edge.
In [CHPS], the following property was proved to be quasirandom.

Definition 2.2. For any d > 0, α > 0 and γ > 0, a k-graph is said to
have the Ordered Partite Property O(L, d, γ, α) if for all choices of pairwise
disjoint sets V1, . . . , V`, with |Vi| ≥ αn for all i, we have

#Ord(L,H[V1, . . . , V`]) = (de(L) ± γ)
∏̀
i=1

|Vi|.

Remark 2.3. The propertyO implies S in the following sense: for any α, γ >
0 there is γ′ > 0 and n0 ∈ N such that if H is a k-graph on n ≥ n0 vertices
satisfying O(L, d, γ′, α) then H also satisfies S(L, d, γ, `α).

Let us give a brief informal argument. Suppose that X ⊂ V (H) is an
arbitrary set of size `m with m = αn. Let X = V1 ∪ · · · ∪ V` be a random
partition of X with each |Vi| = m. Given any embedding φ of L into H[X],
the probability that φ(i) ∈ Vi for all i is given by

p =

(
`(m−1)
m−1

)(
(`−1)(m−1)

m−1

)
· · ·
(
2(m−1)
m−1

)(
`m
m

)
· · ·
(
2m
m

) =
m`

`m(`m− 1) · · · (`m− `+ 1)
.

Notice that (1 − `/m)`` ≤ (1 − 1/m)``` ≤ 1/p ≤ ``. By the first moment
method there are two partitions X = V1∪· · ·∪V` = W1∪· · ·∪W` satisfying

#Ord(L,H[W1, . . . ,W`]) ≤ p×#Emb (L,H[X])

≤ #Ord(L,H[V1, . . . , V`]).

Because both the left and right hand side of the above inequalities are given
by (de(L) ± γ′)m`, it follows that

#Emb (L,H[X]) = (de(L) ± γ′)m`/p

= (de(L) ± γ′)m`(1± `/m)``

= (de(L) ± γ)|X|`,

if n0 is sufficiently large and γ′ is sufficiently small. Since X was arbitrary,
H satisfies S(L, d, γ, `α).

The following lemma was proved for k = 2 in [Sha]. The same proof works
for k-graphs. For completeness, we include it here.

Lemma 2.4. Suppose that a k-graph H on n vertices satisfies S(L, d, γ, α)
for some d, α ∈ (0, 1). For any disjoint V1, . . . , V` ⊂ V (H) with |Vi| = M ≥
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αn for all i, we have

#Part(L,H[V1, . . . , V`]) =
(
`!de(L) ± (2`)`γ

)
M `.

Proof. The result follows from the inclusion-exclusion principle. Notice that

#Part(L,H[V1, . . . , V`]) =
∑
I⊆[`]

(−1)`−|I|#Emb

(
L,H

[⋃
i∈I

Vi

])

=
∑
I⊆[`]

(−1)`−|I|(de(L) ± γ)(|I|M)`

=
{
de(L)M `

∑
I⊆[`]

(−1)`−|I||I|`
}
± (2`)`γM `.

Since
∑

I⊂[`](−1)`−|I||I|` = `! the lemma is proved. (This identity can be
proved by by enumerating all maps φ : [`] → [`] and including/excluding
those with φ([`]) ⊆ I for I ⊆ [`].) �

One of the main tools used in this paper is the weak hypergraph regularity
lemma (see Lemma 2.5). This result is a straightforward extension of Sze-
merédi’s regularity lemma [Sze78] for graphs. Before stating this lemma, we
must introduce some definitions.

Given a k-graph H and disjoint sets V1, . . . , Vk ⊂ V (H), the density of
the k-tuple {V1, . . . , Vk} is given by

d{V1,...,Vk} = d(V1, . . . , Vk) =
e(V1, . . . , Vk)
|V1| · |V2| · · · |Vk|

,

where e(V1, . . . , Vk) = #{e ∈ H : |e ∩ Vi| = 1 for all i = 1, . . . , k}. We
say that the k-tuple {V1, . . . , Vk} is ε-regular if, for all choices of Wi ⊆ Vi,
with |Wi| ≥ ε |Vi|, for all i ∈ [k],

|d(V1, . . . , Vk)− d(W1, . . . ,Wk)| ≤ ε.
The weak hypergraph regularity lemma can be stated as below. Its proof

is identical to the original proof of Szemerédi [Sze78].

Lemma 2.5 (Weak Hypergraph Regularity Lemma). For all ε > 0 and t0 ∈
N there exists n0 = nL2.5(ε, t0), T = TL2.5(ε, t0) ∈ N such that the following
holds.

Given any k-graph H on n ≥ n0 vertices, there exists a partition V (H) =
V1 ∪ · · · ∪ Vt, t0 ≤ t ≤ T , with the properties

(i) |V1| ≤ |V2| ≤ · · · ≤ |Vt| ≤ |V1|+ 1;

(ii) at least (1− ε)
(
t

k

)
tuples e ∈

(
[t]
k

)
are such that {Vi}i∈e is ε-regular.

Definition 2.6. Given a k-graph H with an ε-regular partition V (H) =
V1∪· · ·∪Vt, we define the reduced k-graph R corresponding to this partition
as the k-graph containing all ε-regular k-tuples. In particular, V (R) =
{V1, . . . , Vt} and |R| ≥ (1− ε)

(
t
k

)
.
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For simplicity, we always assume that the number of vertices in the hy-
pergraph H is a multiple of t and thus every regular class Vi has the same
number of vertices. Indeed, we may simply add r = t− (n mod t) isolated
vertices to H in order to have t | n. As t� n0 ≤ n, these new vertices have
a negligible impact on the property S.

Lemma 2.7 (Counting lemma for linear k-graphs [KNRS]). For all γ > 0
there is 0 < ε = εL2.7(γ) < γ and m = mL2.7(γ) ∈ N such that the following
holds.

Let H be a k-graph and V1, . . . , V` ⊂ V (H) be disjoint sets having |Vi| =
M ≥ m. Suppose that, for every e ∈ L, the k-tuple {Vi}i∈e is ε-regular.
Then

(2) #Ord(L,H[V1, . . . , V`]) =
(∏
e∈L

d{Vi}i∈e
± γ
)
M `.

Remark 2.8. One may use the above lemma to obtain the number of
labeled copies of any small linear k-graph in any quasirandom k-graph
(namely, an extension of Theorem 1.2 to k-graphs follows as a corollary
of Lemma 2.7). This follows from the fact that in a (ξ, d)-quasirandom k-
graph H on n vertices, every k-tuple of disjoint sets V1, . . . , Vk, with |Vi| ≥
ξn, has density d±ξ ·(2k)k (see Lemma 2.4). As a result, if ξ is small enough,
all the regular tuples in an ε-regular partition of H have density close to d.
Using Lemma 2.7 this is enough to give a tight estimate of #Emb(L,H) for
any small linear k-graph L.

The above counting lemma will be used in conjunction with the property
S to obtain a sufficiently regular partition P in which the densities of regular
k-tuples must satisfy the identity (3) below. We will show that in order to
satisfy (3) most of the densities d(Vi1 , . . . , Vik), with {Vi1 , . . . , Vik} a regular
k-tuple in P, are close to d.

Lemma 2.9. For any γ > 0, d > 0 and t0 ∈ N there exists 0 < ε =
εL2.9(γ) < γ, n0 = nL2.9(γ, t0) ∈ N, and T = TL2.9(γ, t0) = TL2.5(ε, t0) such
that the following holds.

Suppose that H is a k-graph on n ≥ n0 vertices satisfying the property
S
(
L, d, γ

2·(2`)` , α
)

, where α = 1/T .
Then there exists an ε-regular partition V (H) = V1 ∪ · · · ∪Vt, t0 ≤ t ≤ T ,

with reduced k-graph R satisfying the following: for every `-clique in R,
say {V1, . . . , V`}, we have

(3)
∑
σ∈S`

∏
e∈σ(L)

d{Vi}i∈e
= `!de(L) ± γ.

Remark 2.10. Any ε-regular partition with at least t0 classes satisfies the
conclusion of Lemma 2.9. However, in order to simplify the exposition we
chose to encapsulate the regularity lemma inside Lemma 2.9.
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Proof of Lemma 2.9. Let ε = εL2.7

(
γ/(2`!)

)
and m = mL2.7

(
γ/(2`!)

)
. From

Lemma 2.5, obtain T = TL2.5(ε, t0), n0 = max{nL2.5(ε, t0), Tm} and α =
1/T .

Applying Lemma 2.5 to H we obtain an ε-regular partition V (H) =
V1 ∪ · · · ∪ Vt, t0 ≤ t ≤ T . Notice that by our choice of parameters we
have M = |Vi| = n/t ≥ n/T = αn ≥ m for all i.

Suppose that every k-tuple in {V1, . . . , V`} is ε-regular. The choice of ε,
equation (1) and the counting Lemma 2.7 ensure that

#Part(L,H[V1, . . . , V`])
(1)
=

∑
σ∈S`

#Ord(σ(L), H[V1, . . . , V`])

L2.7=
∑
σ∈S`

( ∏
e∈σ(L)

d{Vi}i∈e
± γ

2`!

)
M `

=
{(∑

σ∈S`

∏
e∈σ(L)

d{Vi}i∈e

)
± γ

2

}
M `.

(4)

On the other hand, from Lemma 2.4 and the property S
(
L, d, γ

2·(2`)` , α
)

we
obtain

(5) #Part(L,H[V1, . . . , V`]) = (`!de(L) ± γ/2)M `.

The lemma follows from equations (4) and (5). �

In view of Lemma 2.9 we will deal primarily with cliques in the reduced
k-graph of a sufficiently regular partition. The next lemma establishes the
abundance of large cliques in (reduced) k-graphs which are almost complete;
in particular, most edges are contained in some large clique.

Lemma 2.11. For every s ∈ N and δ > 0 there exists ε = εL2.11(s, δ) < δ
such that the following holds.

Suppose that R is a k-graph on t ≥ s vertices and |R| ≥ (1− ε)
(
t
k

)
.

Then there are at least (1 − δ)
(
t
k

)
edges e ∈ R for which there exists a

set S ⊂ V (R), with |S| = s, such that e ∈ S and R[S] is a complete k-graph.

Proof. Let ε = εL2.11(s, δ) = δ ·
(
s
k

)−1 and suppose that R is a k-graph
on t ≥ s vertices with |R| ≥ (1− ε)

(
t
k

)
. If we sample an s-subset S of V (R)

randomly and uniformly, we have

p = P[S is not a clique in R] ≤ E
[∣∣∣(S

k

)
\ R
∣∣∣] = E

[∑
f

1[f ⊂ S]
]
,

where the sum is over all f ∈
(V (R)

k

)
\ R. By linearity of expectation, the

right-hand side is upper bounded by ε
(
s
k

)
= δ.

Now consider the incidence graph of edges in R versus s-cliques of R.
Namely, we set C to be the collection of all s-cliques in R and define a
bipartite graph B with classes R and C for which (e, S) ∈ B ⊆ R×C if and
only if e ∈ S.
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Notice that |C| = (1− p)
(
t
s

)
and that the degree of S ∈ C in the graph B

is
(
s
k

)
. On the other hand, for any e ∈ R its degree in B is upper bounded

by
(
t−k
s−k
)
. Therefore, there must be at least

(1− p)
(
t
s

)(
s
k

)(
t−k
s−k
) = (1− p)

(
t

k

)
≥ (1− δ)

(
t

k

)
edges e ∈ R contained in some s-clique. �

3. Proof of Theorem 1.6

Before we give a proof of Theorem 1.6 we will state two auxiliary results—
Claim 3.1 and Theorem 3.2—from which our main result follows. Claim 3.1
establishes a connection between regular partitions and quasirandomness.

Claim 3.1. For any ξ, d > 0 there exists δ > 0 and t0 ∈ N such that the
following holds.

Suppose that H is a k-graph with a δ-regular partition P having t ≥ t0
classes. Moreover, assume that at least (1 − δ)

(
t
k

)
δ-regular k-tuples in P

have density d± δ.
Then H is (ξ, d)-quasirandom.

The above claim was observed in [SS91] for graphs. We omit the proof of
Claim 3.1 since it is essentially the same as that of [SS91].

Theorem 3.2. For any δ > 0, d > 0, t0 ∈ N there exists α = αT3.2(δ, d), γ =
γT3.2(δ, d) ∈ (0, 1), 0 < ε = εT3.2(δ, d) < δ and n0 = nT3.2(δ, d, t0) ∈ N such
that the following holds.

Suppose that H is a k-graph on n ≥ n0 vertices satisfying S(L, d, γ, α).
Then there exists an ε-regular partition P of H with t ≥ t0 classes such

that at least (1− δ)
(
t
k

)
k-tuples in P are ε-regular and have density d± δ.

Now we will conclude the proof of Theorem 1.6. For a given linear k-
graph L and values of ξ, d > 0, we obtain by Claim 3.1, δ > 0 and t0 ∈ N.
From Theorem 3.2 we then obtain α, γ, n0 and ε.

Consider a k-graph H on n ≥ n0 satisfying S(L, d, γ, α). Applying Theo-
rem 3.2 to H we obtain an ε-regular partition P such that at least (1−δ)

(
t
k

)
k-tuples in P are ε-regular and have density d ± δ. Since ε < δ, the parti-
tion P is also δ-regular. Claim 3.1 thus ensures that H is (ξ, d)-quasirandom.
Therefore Theorem 1.6 follows.

4. A Ramsey-type argument (proof of Theorem 3.2)

First we will outline our strategy for proving Theorem 3.2. To further
simplify the presentation, we will focus only on graphs (that is, the k = 2
case). More specifically, we will show that a graph H satisfying property S
for suitable parameters admits a sufficiently regular partition for which most
of the regular pairs have density close to d.
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Given δ, d and t0, we will choose parameters δ1, δ0, γ, ε and α satisfying

(6) δ � δ1 � δ0 � γ � ε� α.

We we will also choose t1 � s� `, t1 ≥ t0, and n0 and consider a k-graph H
on n ≥ n0 vertices satisfying S

(
L, d, γ

2·(2`)` , α
)

.
From Lemma 2.9 we obtain an ε-regular partition V (H) = V1∪V2∪· · ·∪Vt,

t ≥ t1 such that for any `-clique in its reduced graph R, say {V1, . . . , V`},∑
σ∈S`

∏
e∈σ(L)

d{Vi}i∈e
= `!de(L) ± γ [3]

is satisfied.
Moreover, since we choose t1 ≥ s and ε ≤ εL2.11(s, δ) it follows by

Lemma 2.11 that at least (1−δ)
(
t
2

)
edges of R are contained in some s-clique

of R.
Suppose that S = {V1, V2, . . . , Vs} is a clique in R (by possibly reordering

the elements in {Vi}ti=1). We will show that d(V1, V2) = d ± δ. Since at
least (1−δ)

(
t
2

)
edges of R are contained in an s-clique, Theorem 3.2 follows.

A pair in S with density ρ is classified as δ0-dense if ρ > d+ δ0, δ0-sparse
if ρ < d − δ0 and δ0-balanced if ρ = d ± δ0. Clearly, this classification is a
three-coloring of the pairs in S.

If there is an `-clique {V1, . . . , V`} in S for which every pair is δ0-dense
then (3) fails. Indeed, the left-hand side of (3) would be at least `!(d+δ0)e(L)

which, due to our choice of parameters (see (6)), is larger than `!de(L) + γ,
implying a contradiction with (3). Similarly, an `-clique in which every
pair is δ0-sparse would also fail to satisfy (3). By the Ramsey Theorem
for graphs and three colors, there exists a large clique S0 in {V3, . . . , Vs},
say S0 = {V3, . . . , Vr}, such that every pair in S0 is δ0-balanced.

Next we claim that if |S0| = r−2 ≥ 5(`−2) then there exists `−2 classes
in S0, say {V3, . . . , V`}, such that both d(V1, Vj) = d ± δ1 and d(V2, Vj) =
d±δ1 for all j = 3, . . . , `. Otherwise, there exists 4(`−2)+1 classes Vj ∈ S0

that do not form a δ1-balanced pair with either V1 or V2. Therefore, one
of V1 or V2, say V1, does not form a δ1-balanced pair with at least 2(`−2)+1
classes Vj ∈ S0. Consequently, there are either `−1 = (`−2)+1 classes Vj ∈
S0 forming δ1-dense pairs with V1 or `− 1 classes Vj ∈ S0 forming δ1-sparse
pairs with V1.

We will demonstrate that the existence of any collection with `−1 classes
forming δ1-dense pairs with V1 contradicts (3). Indeed, consider any such
collection of classes together with V1 in (3). Every term in the sum (3) would
at least (d− δ0)e(L) and there is at least one term of this sum which would
be larger than (d + δ1)(d − δ0)e(L)−1 (since L contains at least one edge e,
there must be some σ ∈ S` such that 1 is a vertex of σ(e)). Given our choice
of δ1 � δ0 � γ, the sum must be larger than `!de(L) + γ. Similarly, any
collection with `− 1 classes forming δ1-sparse pairs with V1 contradicts (3).

Summarizing, we have argued that all pairs in {V1, . . . , V`}, except pos-
sibly, {V1, V2} have density close to d (in fact, they are δ1-balanced). Then
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the only way to satisfy (3) is by having d(V1, V2) close to d as well. Indeed,
if, say d(V1, V2) > d + δ, then every term in the sum on the left-hand side
of (3) would be at least (d− δ1)e(L) and there is at least one term which is
larger than (d+ δ)(d− δ1)e(L)−1. Given our choice of δ � δ1 � γ, the sum
must be larger than `!de(L) + γ, contradicting (3).

We have just proved that any pair in the reduced R which is contained in
an s-clique must have density d±δ. Recalling that we choose our parameters
so that at least (1− δ)

(
t
2

)
pairs have this property, this concludes the proof

of Theorem 3.2 (for graphs).
In the argument for the general case we require a more general form of

the Ramsey theorem.

Definition 4.1 (Ramsey numbers for k-graphs). Let Rk(a1, . . . , aj) denote
the smallest number R such that any j-coloring of the edges of the complete
k-graph on R vertices induces, for some i ∈ [j], a complete i-colored k-graph
of size ai.

The following estimate

(7) (d± z)a = da ± 2az, a ∈ N, |z| < d ≤ 1

will be useful in the computations below. To prove it, observe that for |z| <
d ≤ 1 and a ∈ N we have

|(d± z)a − da| ≤
a∑
i=1

(
a

i

)
da−i|z|i ≤ 2a|z|.

Proof of Theorem 3.2. First we introduce a large auxiliary constant s (de-
pending on k and ` only) that we define later. Given δ, d and t0 we will
choose the following parameters. Set

(8) γ = γ(δ, d) = min
{
εL2.11(s, δ), δ ·

( de(L)−1

`! 2e(L)+1

)k+1}
,

define γT3.2(δ, d) = γ
2·(2`)` and ε = ε3.2(δ, d) = εL2.9(γ) < min{γ, δ}. We also

set t1 = max{t0, s} and let α = αL2.9(γ, t1), n0 = nL2.9(γ, t1).
Let H be a k-graph on n ≥ n0 vertices satisfying S(L, d, γT3.2(δ, d), α).

Applying Lemma 2.9 to H we obtain an ε-regular partition P with t ≥ t1
classes. Let R denote the reduced k-graph corresponding to the ε-regular
partition P. By construction, we have |R| ≥ (1− ε)

(
t
k

)
.

By ensuring that γ ≤ εL2.11(s, δ), we have ε ≤ γ ≤ εL2.11(s, δ). Hence,
from Lemma 2.11, we conclude that at least (1 − δ)

(
t
k

)
k-tuples e ∈ R are

such that there exists e ⊂ S ⊂ V (R), |S| = s, for which R[S] is a complete
k-graph. Let

Rs = {e ∈ R : there exists an s-clique S ⊂ V (R) with e ⊂ S}.

Claim 4.2. For any e ∈ Rs we have de = d± δ.
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Since |Rs| ≥ (1−δ)
(
t
k

)
, Theorem 3.2 immediately follows from Claim 4.2.

From now on, fix any edge e ∈ Rs and a clique S ⊃ e with s elements. We
now proceed to show that de = d± δ.

Consider the sequence δ = δk � δk−1 � · · · � δ0 (terms of a geometric
progression) defined by

(9) δi = δ ·
( de(L)−1

`! 2e(L)+1

)k−i
.

Also define the sequence {si}k−1
i=0 by setting sk−1 = ` and

(10) si = Rk−i−1

(
`, `, . . . , `︸ ︷︷ ︸
2( k

i+1) times

, si+1

)

for all i = 0, 1, . . . , k − 2. Set s = Rk(`, `, s0) + k. (Notice that s = s(k, `)
as required.)

We will construct sets S ⊃ S \ e ⊃ S0 ⊃ S1 ⊃ · · · ⊃ Sk−1 ⊃ Sk = ∅ such
that |Si| = si and
(‡) any tuple f ∈

(
Si∪e
k

)
, with |f ∩ e| = i, has density df = d± δi

for all i = 0, . . . , k. In particular, we have de = d± δk = d± δ.
Let V (R) = {V1, . . . , Vt} be the collection of regular classes in P. Since P

was obtained from Lemma 2.9, we have, for any `-clique, say {V1, . . . , V`}
in R, ∑

σ∈S`

∏
f∈σ(L)

d{Vi}i∈f
= `!de(L) ± γ. [3]

Denote by 2e = {A1, A2, . . . , A2k} the collection of all subsets of e. Let Σ =
{+,−}. For i = 0, 1, . . . , k−1, define the coloring χi :

(S\e
k−i
)
→ {∼}∪

((
e
i

)
×Σ
)

as follows. Given a (k − i)-tuple B in S \ e, if dA∪B = d± δi for all A ∈
(
e
i

)
then we set χi(B) = ∼. Otherwise we let j be the minimum number such
that Aj ∈

(
e
i

)
satisfies |dAj∪B − d| > δj and set

χi(B) =

{
(Aj ,+) if dAj∪B > d+ δj ,

(Aj ,−) if dAj∪B < d− δj .

Let us consider the 3-coloring χ0 :
(S\e
k

)
→ {∼, (∅,+), (∅,−)}. Since |S \

e| = s − k = Rk(`, `, s0), if we show that there are neither `-cliques col-
ored (∅,+) nor `-cliques colored (∅,−) in S then we infer by the Ramsey
Theorem that there must exist a set S0 ⊂ S, with |S0| = s0, such that
every k-tuple in S0 is colored ∼. In particular, every k-tuple in

(
S0

k

)
has

density d± δ0 and thus S0 satisfies (‡).
Suppose, for the sake of contradiction, that we may find an `-clique

in
(S\e
k

)
, say {V1, . . . , V`}, that is colored (∅,+) under χ0. Because of the
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coloring, every k-tuple in {Vi}`i=1 has density > d+ δ0. Therefore,

∑
σ∈S`

∏
f∈σ(L)

d{Vi}i∈f
> `!(d+ δ0)e(L) ≥ `!de(L) + `!δ0de(L)−1

(8)
> `!de(L) + γ,

since γ ≤ δ0d
e(L)−1/2. However, this is a contradiction with (3) and hence

no such `-clique exists. Similarly, we may show that there are no `-cliques
colored (∅,−) under χ0. Hence, we may obtain a set S0 ⊂ S\e satisfying (‡).

Suppose that the sets Si ⊂ · · · ⊂ S0 ⊂ S \ e ⊂ S were already constructed
and satisfy (‡). Let us construct the set Si+1 ⊂ Si. Consider the color-
ing χi+1 induced on

(
Si

k−i−1

)
. Suppose that A ∈

(
e
i+1

)
is such that there

exists an (`− i− 1)-set K, say K = {Vi+2, . . . , V`} and A = {V1, . . . , Vi+1},
such that every (k − i− 1)-tuple in K is colored (A,+) under χi+1.

The tuples f ∈
(
K∪A
k

)
that do not contain A must intersect e in at most i

elements since K ⊂ Si ⊂ S \ e. Therefore, since K ⊂ Si and Si satisfies (‡),
we must have df = d± δi. On the other hand, if A ⊂ f then the coloring of
the tuples of K under χi+1 indicates that df > d+ δi+1.

Set x = #
{
σ ∈ S` : {1, . . . , i+ 1} ⊂ f for some f ∈ σ(L)

}
≥ 1. We have

`!de(L) + γ
(3)

≥
∑
σ∈S`

∏
f∈σ(L)

d{Vi}i∈f

> (`!− x)(d− δi)e(L) + x(d+ δi+1)(d− δi)e(L)−1

(7)

≥ (`!− x)(de(L) − 2e(L)δi) + x(d+ δi+1)de(L)−1 − x(d+ δi+1)2e(L)−1δi

≥ `!de(L) + xδi+1d
e(L)−1 − `!2e(L)δi

(9)

≥ `!de(L) + δi+1d
e(L)−1/2,

which is a contradiction since γ ≤ δ0d
e(L)−1/2 < δi+1d

e(L)−1/2 (see equa-
tions (8) and (9)).

Similarly, we may show that there cannot be an (` − i − 1)-set in which
every tuple is colored (A,−) under χi+1. By the definition of si and si+1,
there exists a set Si+1 ⊂ Si, with |Si+1| = si+1, in which every tuple is
colored ∼ under χi+1. This means that for any f ∈

(Si+1∪e
k

)
, with |f ∩ e| =

i+1, we have df = d±δi+1. Therefore the set Si+1 satisfies the requirements
in (‡).

It follows by induction that we can construct Sk−1 ⊂ · · · ⊂ S0 ⊂ S \ e
satisfying (‡). We are now going to show that de = d ± δ. Consider the
classes belonging to e together with ` − k classes from the set Sk−1. By
possibly re-labeling the elements of V (R) we may assume that the obtained
set is {V1, . . . , V`} ⊂ Sk−1 ∪ e and that e = {V1, . . . , Vk}.
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Set x = #{σ ∈ S` : {1, . . . , k} ∈ σ(L)} ≥ 1. Similarly as before, we have∑
σ∈S`

∏
f∈σ(L)

d{Vi}i∈f
= (`!− x)(d± δk−1)e(L) + xde(d± δk−1)e(L)−1

(7)
= (`!− x)(de(L) ± 2e(L)δk−1) + xde(de(L)−1 ± 2e(L)−1δk−1)

= `!de(L) + x(de − d)de(L)−1 ± `! 2e(L)δk−1

(9)
= `!de(L) + x

(
de − d±

δ

2

)
de(L)−1

From (3) and γ ≤ δ0d
e(L)−1/2 < δde(L)−1/2 (see equations (8) and (9)) we

conclude that de = d ± δ. Therefore, Claim 4.2 is proved and Theorem 3.2
follows. �
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