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Abstract
Computing the weighted coloring number of graphs is a classical topic in combinatorics
and graph theory. Recently these problems have again attracted a lot of attention for the
class of quasi-line graphs and more specifically fuzzy circular interval graphs.

The problem is NP-complete for quasi-line graphs. For the subclass of fuzzy circular
interval graphs however, one can compute the weighted coloring number in polynomial
time using recent results of Chudnovsky and Ovetsky and of King and Reed. Whether one
could actually compute an optimal weighted coloring of a fuzzy circular interval graph in
polynomial time however was still open.

We provide a combinatorial algorithm that computes weighted colorings and the weighted
coloring number for fuzzy circular interval graphs efficiently. The algorithm reduces the
problem to the case of circular interval graphs, then making use of an algorithm by Gijswijt
to compute integer decompositions.
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1 Introduction

A weighted k coloring of a graph G with weights w : V (G) −→ N0 is a multiset
of stable sets S1, . . . , Sk ⊆ V (G) such that each vertex v ∈ V (G) is contained
in w(v) many of these stable sets. The weighted coloring number χw(G) is the
smallest k such that there exist stable sets as above.

A graph is quasi-line if the neighborhood of each of its vertices is the union
of two cliques. Chudnovsky and Seymour [2] provided a structural result which
states that a connected quasi-line graph is a fuzzy circular interval graph or it is
the composition of fuzzy linear interval strips with a collection of disjoint cliques.
In particular line-graphs are quasi-line, and thus the weighted coloring problem for
quasi-line graphs subsumes the NP-complete edge-coloring problem.

For the subclass of fuzzy circular interval graphs however, one can compute the
weighted coloring number in polynomial time, via the equivalence of separation
and optimization [5] and recent results of Chudnovsky and Ovetsky [1] and King
and Reed [6]. How to compute an optimal weighted coloring for fuzzy circular
interval graphs however was still open.

We provide a combinatorial algorithm that addresses this problem. For given
k ∈ N and a fuzzy circular interval graph of order n with weights w, it decides the
existence of a weighted k coloring in timeO (n3) and computes a weighted k color-
ing in time O (n4 + size(w)), where size(w) denotes the binary encoding length of
w. The weighted coloring number alone can be computed in time O (n2 size(w)).
The algorithm is based on a reduction to circular interval graphs using an algorithm
for maximum b-matching and an algorithm of Gijswijt [4] to solve the weighted
coloring problem on circular interval graphs.

The structure of quasi-line graphs

We will review some definitions concerning the structure of quasi-line graphs due
to Chudnovsky and Seymour [2].

A graph G is called a circular interval graph, if it can be obtained with the
following construction: Let V (G) be a subset of a circle C. Further take a set I of
intervals of the circle C. The set of edges E(G) is defined as follows: Two vertices
are adjacent if and only if they are contained in a common interval of I. The pair
(V, I) is called a representation of G.

A graph G is a fuzzy circular interval graph [2], if the there is a map Φ from
V (G) to a circle C and a set I of intervals of C, none including another, such that
no vertex of C is an endpoint of more than one interval so that:
• If two vertices u and v are adjacent, then Φ(u) and Φ(v) have a common interval.



• If two vertices u and v belong to the same interval, which is not an interval with
endpoints Φ(u) and Φ(v), then they are adjacent.

Fuzzy circular interval graphs provide a generalization of circular interval graphs
since adjacencies between nodes mapped to different endpoints of an interval are
not specified anymore. For an interval [p, q] ∈ I, the pair of (nonempty) sets
(Φ−1(p),Φ−1(q)) stemming from the preimages of p and q are called fuzzy pairs.

The pair (Φ, I) is called a representation of G. Every fuzzy circular interval
graph has a representation whose number of intervals is bounded by O (|V (G)|):
The fact that no interval is allowed to include another limits the number of irredun-
dant intervals. From now on we assume that the number of intervals is limited by
O (|V (G)|).

Note the special structure of a fuzzy pair (A,B). Both A and B are cliques and
every node v ∈ V (G)\(A ∪ B) is either adjacent to every node of A (of B) or to
none of them. In the first case the node v is A-complete (B-complete).

The fuzzy pair (A,B) is called nontrivial if A ∪ B contains an induced C4

subgraph and trivial otherwise. If all fuzzy pairs are trivial, then the graph is a
circular interval graph, see e.g. [3].

Lemma 1.1 Given a fuzzy circular interval graph G and a representation, if every
fuzzy pair of G w.r.t. that representation is trivial, then G is a circular interval
graph.

2 The coloring algorithm

An application of a result by Gijswijt [4] shows that so called integer decompo-
sitions, see e.g. [8], in the stable set polytope of circular interval graphs can be
computed efficiently. Since integer decompositions in stable set polytopes essen-
tially are weighted colorings, this immediately gives:

Theorem 2.1 [4] Given a circular interval graph G with weights w, for every
k ∈ N we can decide if a weighted k coloring of (G,w) exists in timeO (|V (G)|2).

A weighted k coloring can be computed in time O (|V (G)|2 + size(w)). The
number of different stable sets in the coloring is bounded by O (|V (G)|).

Our coloring algorithm for fuzzy circular interval graphs will reduce to the
case of circular interval graphs by transforming the input graph G and its weights
w to a circular interval graph G∗ with weights w∗ such that the coloring number
is preserved, i.e. χw(G) = χw∗(G

∗). Then it makes use of the algorithm from
the theorem above to obtain a coloring of G∗, which finally gets transformed to a
coloring of G.



Recent results of Chudnovsky and Ovetsky [1] and of King and Reed [6] give
algorithms to reduce fuzzy circular interval graphs to circular interval graphs pre-
serving the (nonweighted) coloring number. By replacing each node v ∈ V (G) of
G with a clique of size w(v) one could reduce to this simpler case. However this
would result only in a pseudopolynomial algorithm.

The reduction

We show how to replace a single fuzzy pair by a nontrivial one preserving the
coloring number. Applying the construction succesively for every fuzzy pair, with
Lemma 1.1 we get a circular interval graph G∗ with weights w∗ as required above.

Consider a fuzzy circular interval graph G with weights w and a fuzzy pair
(A,B) in G. Let V ◦ := V (G)\(A ∪ B). Then the reduced graph (G′, w′) is
defined as follows:

V (G′) := V ◦ ∪ {a0, a1, b0, b1},
E(G′) := E(G)|V ◦ ∪ {{v, a0}, {v, a1} : v ∈ V ◦A-complete}

∪ {{v, b0}, {v, b1} : v ∈ V ◦B-complete}
∪ {{a0, a1}, {b0, b1}, {a0, b1}, {a1, b1}, {a1, b0}}

w′(v) :=


α if v = a0 or v = b0

w(A)− α if v = a1

w(B)− α if v = b1

w(v) else

A similar construction is used in independent work of Oriolo, Pietropaoli and Stauf-
fer [7] who designed an efficient recognition algorithm for fuzzy circular interval
graphs.

We next specify α. The sets A and B together with the complement of the
edges of G[A ∪ B] define a bipartite graph H . If a stable set S of G has two
vertices in A ∪B, then those two vertices are connected by an edge in H . Observe
that in a weighted coloring of G, the maximum number of stable sets containing
two vertices of A ∪ B is given by the size of a largest b-matching in H , where the
labels on the nodes v ∈ A∪B are given by the coloring demand w(v). The number
α from the reduction above is the size of a largest b-matching in H .

It is straightforward to verify that G′ is still a fuzzy circular interval graph.
Moreover if (A,B) was nontrivial, then the number of nontrivial fuzzy pairs has
been reduced by one since ({a0, a1}, {b0, b1}) is trivial. We show that the construc-
tion preserves the weighted coloring number.



Lemma 2.2 With the reduction above one has χw(G) = χw′(G
′).

Proof If is sufficient to show that every weighted k coloring of (G′, w′) gives rise
to a weighted k coloring of (G,w) and vice versa. We only sketch the proof here.
Let A′ = {a0, a1} and B′ = {b0, b1}.

Observe that by construction, for each weighted coloring S ′1, . . . , S
′
k of (G′, w′),

the number µ of stable sets containing two points of A′ ∪ B′ is bounded by α.
Therefore we can assign an edge e of a maximum matching in H to each of these
sets. Replacing {a0, b0} by e gives a stable set in G. For the remaining w(A) − µ
sets containing a node of A′ but not of B′ we assign nodes a ∈ A such that each
node is covered w(a) times in total. The same we do for the remaining w(B) − µ
sets containing a node of B′ but not of A′. All sets not considered so far are left
unchanged. The resulting sets form a k-coloring of (G,w).

The vice versa transformation works analogous and we skip the details. 2

To compute the reduced graph (G′, w′), we need time O (|V (G)|2) to compute
the auxiliary graph H and encode the output, and O (|A ∪B|3) to compute the
maximum b-matching in H using a max s− t-flow algorihm, see e.g. [8]. Thus the
running time for a single reduction step is bounded by O (|V (G)|2 + |A ∪B|3).

From a representation of the graph we can easily compute the fuzzy pairs. Their
number l is bounded by the number of intervals in the representation, which is
O (|V (G)|). Let (Ai, Bi), i = 1, . . . , l denote the fuzzy pairs of G. Invocation
of the reduction for each fuzzy pair (Ai, Bi) accumulates a total running time of
O
(
l · |V (G)|2 +

∑l
i=1 |Ai ∪Bi|3

)
= O (|V (G)|3). With Theorem 2.1 we get:

Theorem 2.3 Given a fuzzy circular interval graph G with weights w and a rep-
resentation, in time O (|V (G)|3) for each k ∈ N one can decide if a weighted k
coloring of (G,w) exists.

One can also find χw(G) in time O (|V (G)|2 · size(w)) by reducing to circular
interal graphs and then doing binary search on [1, w(V )] using Gijswijts algorithm.

To actually compute a weighted k coloring of (G,w), we have to transform the k
coloring of (G∗, w∗) generated by Gijswijts algorithm to a k coloring of (G,w). We
use the transformation given in Lemma 2.2 repeatedly. Let n = |V (G)|. Straight-
forward analysis of the running time needed for each transformation gives a pseu-
dopolynomial bound of O (k · n+ n2 + |A ∪B|3) .

We sketch how to get the polynomial bound. In fact the k coloring computed by
Gijswijt’s algorithm is given in a compact formulation (λ1, S

′
1), . . . , (λβ, S

′
β) with

λi ∈ N and
∑β

i=1 λi = k, meaning that the stable set S ′i should appear λi times. The
number β of different stable is sets O (n). Also the b-matching computed for H is



given in a similar compact formulation. Trivially the number of different edges in
the matching is bounded by |A ∪ B|2. Now if S ′i is a set containing both a0 and b0
and we have an edge e appearing γ many times, we can transform min{λi, γ} sets
simultaneously. We can speedup the transformation of the other sets similarly.

If the matching edges are assigned arbitrarily, the resulting running time is
O ((β + |A ∪B|2) · n+ n2 + |A ∪B|3). Moreover, the number of different inde-
pendent sets in the transformed coloring is bounded by β + |A ∪ B|2. Applying
this transformation for each fuzzy pair, the number of different stable sets never
exceeds O (|V (G)|2) and there are at most n transformations needed. Thus the to-
tal running time can be bounded with O (|V (G)|4). With Theorem 2.1 we get the
following.

Theorem 2.4 Given a weighted fuzzy circular interval graph (G,w) and a repre-
sentation. For every k ∈ N, in time O (|V (G)|4 + size(w)) one can compute a
weighted k coloring of (G,w).
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