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Abstract We present a new GCD algorithm for two integers that combines both the Euclidean
and the binary gcd approaches. We give its worst case time analysis and prove that its bit-time
complexity is still O(n2) for two n-bit integers. However, our preliminar experiments show that
it is very fast for small integers. A parallel version of this algorithm matches the best presently
known time complexity, namely O( n

log n ) time with n1+ε, for any constant ε > 0.
Keywords: Integer greatest common divisor (GCD); Complexity analysis; Number theory.

1 Introduction

Given two integers a and b, the greatest commun divisor (GCD) of a and b, denoted
gcd(a, b), is the largest integer which divides both a and b. Applications for GCD algo-
rithms include computer arithmetic, integer factoring, cryptology and symbolic computa-
tion.

Most of GCD algorithms follow the same idea of reducing efficiently u and v to u′

and v′, so that GCD(u, v) = GCD(u′, v′) [7]. These transformations are applied several
times till GCD(u′, v′) can be computed directly from u′ and v′. Such transformations,
also called reductions, are studied in a general framework in [7]. One can divides these
transformations into two classes depending on whether they deal with the most significant
digits first (the MSF approach) or the last significant digits first ( the LSF approach).
For example the Euclidean algorithm is the first MSF algorithm while the binary algorithm
of Stein [4] is an LSF one. A classification of some GCD algorithms is given in Table 1.

For very large integers, the fastest GCD algorithms [2, 6, 10, 11] are all based on half-
gcd procedure and computes the GCD in O(n log2 n log log n) time. However, all these
fast algorithms fall down to more basic algorithms at some point of their recursion, so,
other algorithms are needed to medium and small size integers. For example, although the
algorithm of T. Jebelean [1] and K. Weber [12] are quadratic in time, they have proven to
be highly effecient for large and medium size integers. In this paper, we are interested in
small size integers. Usually, the euclidean and the binary gcd works very well in practice
for this range of integers. We present a new algorithm that combines both the euclidean
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MSF LSF
Euclid and like binary
ρ− Euclid bmod
Lehmer-Euclid Plus-minus
ILE Jebelean-Weber
Schönhage Chor & Goldreich

Table 1: MSF-LSF Classification

and the binary gcd in a same algorithm, taking the most of them. We give its worst
case time complexity and we suggest a parallel version that matches the best presently
known time complexity, namely O( n

log n) time with n1+ε, ε > 0 (see [3, 9, 8]). In the next
Section 2, we describe a new sequential algorithm and study its worst case. Section 3, we
suggest a parallel version and study its parallel complexity. The paper ends in Section 4
with some concluding remarks.

2 The Sequentiel Algorithm

2.1 Motivation

Let us start with an illustrative example. Let (u, v) = (5437, 2149). After one euclidean
step, we obtain the quotient q = 2 and the remainder r = 1139. On the other hand, we
observe that, in the same time, u − v = 3288 = 23 × 411 and the binary algorithm gives
u−v

8 = 411 which is smaller and easy to compute (right-shift). The reverse is also true,
Euclid algorithm step may perform much more than the binary one. So the idea is to take
the most of both euclidean and binary steps and combine them in a same algorithm. Note
that a similar idea was suggested by Harris with a different reduction step.

Lemma 2.1 Let u and v be two integers such that v odd, u ≥ v ≥ 1 and let r = u
(mod v). Then we have

i) min { v − r, r, r
2 or v−r

2 } ≤ v
3

ii) gcd(r, v−r
2 ) = gcd(u, v), if r is odd

gcd( r
2 , v − r) = gcd(u, v), if r is even.

Proof: Note that either r or v − r is even, so that either r
2 or v−r

2 is an integer. Recall
the basic gcd property:

∀λ ≥ 1, gcd(u, v) = gcd(v, u− λv). Two cases arise:
Case 1: r is even then v − r is odd. If r ≤ 2v

3 then r
2 ≤

v
3 , otherwise r > 2v/3 and

v − r < v
3 .

Moreover, gcd( r
2 , v − r) = gcd(r, v − r) = gcd(v, r) = gcd(u, v).

Case 2: r is odd then v − r is even. If v − r ≤ 2v
3 then v−r

2 ≤
v
3 , otherwise, v − r > 2v/3
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and
r < v

3 . On the other hand, gcd(v−r
2 , r) = gcd(r, v − r) = gcd(v, r) = gcd(u, v). 2

We derive, from Lemma 2.1, the following algorithm.
Algorithm MBE: Mixed Binary Euclid

Input: u>=v>=1, with v odd
Output: gcd(u,v)
Begin

while (v>1)
r=u mod v; s=v-r;
while (r>0 and r mod 2 =0 ) r=r/2;
while (s>0 and s mod 2 =0 ) s=s/2;
if (s<r) {u=r; v=s; }
else {u=s; v=r; };

Endwhile
If (v=1) return 1 Else return u.

End

Example: With Fibonacci numbers u = F17 = 1597 and v = F16 = 987, we obtain:

q r reduction

1597 u
987 v

1 610 r
377 v − r
305 r/2

1 72 r
233 v − r
9 r/8

25 8 r
1 v − r
1 r/8 STOP

Note that Euclid algorithm gives the answer after 15 iterations, and its extended version
gives −377 u + 610 v = 1 = gcd(u, v), while MBE algorithm gives a modular relation

(−55 u + 89 v) = 8 = 23 gcd(u, v).

Moreover, we observe that the coefficients −55 and 89 are smaller than −377 and 610. We
know that the cofactors of Bezout relation are as large as the size of the inputs (consider
successive Fibonacci worst case inputs). So an interesting question is : What is the upper
bound for the modular coefficients a and b in the relation

au + bv = 2t gcd(u, v).
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Let denote r = u mod v and s = r/2t if r is even and s = (v − r)/2t otherwise. The
reduction step used by Harris is

(u, v)← (v, s),

while the MBE reduction step is

(u, v)←
{

(r, s) if r ≥ s,
(s, r) if s > r.

This difference leads to a different algorithm. For example, if (u, v) = (4901, 2687),
Harris’s algorithm gives the result 1, after 6 iterations, which are respectively
(2687, 1107), (1107, 317), (317, 39), (39, 17), (17, 3) and (3, 1), while MBE returns 1 af-
ter 4 iterations (1107, 473), (161, 39), (17, 5) and (3, 1). Actually, MBE replaces many
divisions of Harris’s reductions by tests or subtractions.

2.2 Complexity analysis

First of all, thanks to Lemma 2.1, we have a upper bound of the number of iterations of
the main loop. We have (u, v) → (u′, v′), such that v′ ≤ v/3, so after k iterartions, we
obtain 1 ≤ v/3k < 2n/3k or, 3k < 2n, hence a first upper bound

k ≤ b(log3 2) nc.

However, the following lemma proves that the worst case provides a smaller upper bound.

Lemma 2.2 Let k ≥ 1 and let us consider the sequence of vectors

(
rk

sk

)
defined by

∀k ≥ 1,

(
rk+1

sk+1

)
=

(
2rk + 2sk

2rk + sk

)
and

(
r1

s1

)
=

(
2
1

)
.

Then the worst case of algorithm MBE occurs when the inputs (u, v) are equal to(
uk

vk

)
=

(
2rk + sk = sk+1

rk + sk = rk+1/2

)
,

and the gcd is given after k iterations.

Proof: First of all, we can easily prove by induction that
∀k ≥ 1, rk is even, sk and rk

2 are odd
∀k ≥ 2, rk

2 < sk < rk

∀k ≥ 2, buk
vk
c = 1.

We call an iteration, each iteration of the (while v > 1) loop. We prove by induction
that, at each iteration k, we have qk = 1 and the triplets (rk, sk,

rk
2 ), for k ≥ 2.

After the first iteration with the inputs (uk = 2rk + sk, vk = rk + sk), we obtain the
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triplet (rk, sk,
rk
2 ) since rk is even and rk

2 is odd. The relation rk
2 < sk < rk yields and the

next quotient qk−1 will be qk−1 = b sk
rk/2c = 1. We repeat the same process with the new

triplet(rk−1, sk−1,
rk
2 ) until we reach the triplet (r1, s1,

r1
2 ) = (2, 1, 1) which is the smallest

possible. 2

Example: For k = 7 we have u7 = 9805 and v7 = 6279. We obtain 7 iterations. Note
that Euclid algorithm gives the answer after 12 iterations.

Proposition 2.1 Let u ≥ v ≥ 11 be two integers, where u is an n-bit integer. If k is the
number of iterations when algorithm MBE is applied then

k ≤ d n

log2 λ
e, with λ =

3 +
√

17
2

.

Proof: Let u ≥ v ≥ 11 be two integers, where u is an n-bit integer, so that 2n−1 ≤ u <

2n. Let us denote A =

(
2 2
1 1

)
, so, for each k ≥ 1,

(
rk+1

sk+1

)
= A

(
rk

sk

)
.

Let λ1 = 3+
√

17
2 and λ2 = 3−

√
17

2 be the enginevalues of A. Then the worst case occurs
after k iterations with u ≤ C (λ1)k < 2n, where C is some positive constant. As a matter
of fact we prove easily by induction or by diagonalization of matrix A, that ∀k ≥ 1 rk = 2√

17
(λk

1 − λk
2)

sk = (
√

17−1
2
√

17
) λk

1 + (
√

17+1
2
√

17
) λk

2

Then

2n−1 ≤ uk = 2rk + sk = sk+1 = λk+1
1 (C + εk) < 2n, with lim

k→∞
εk = 0,

where C =
√

17−1
2
√

17
, εk =

√
17+1√
17−1

(λ2
λ1

)k+1 and λ1 = 3+
√

17
2 ∼ 3, 561552813.

We have
n− 1 ≤ (k + 1) log2 λ1 + log2(C + εk) < n

and after a bit of calculation, we find that ∀k ≥ 3, 1
4 < C + ε(k) < 1

2 .
Hence 1 < − log2(C + εk) < 2 and n

log2 λ1
< k + 1 < n+2

log2 λ1
, so

k = b n

log2(λ1)
c or k = b n

log2(λ1)
c+ 1.

2

Remark: We have k ∼ ( log 2
log λ) n ∼ 0, 545700691 n. By contrast, when euclidean algo-

rithm is applied to n-bit integers, the number of iterations is bounded by k′ ≤ ( log 2
log φ) n ∼

1, 440420091 n, where φ = 1+
√

5
2 is the golden ratio. Indeed, a first experiments on 1000

pair of 32-bit integers shows that our algorithm is about 3 time faster than Euclid algo-
rithm.
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3 Multi-precision Algorithm

In order to avoid long divisions, we must consider some leading bits of the inputs (u, v) for
computing the quotients and some other last significant bits to know if either r = u mod v
or s = v − r is even. We propose the following multi-precision algorithm (sketch).

M = Id;
Step 1: Consider u1 and v1 the first 2m leading bits of respectively u and v. Similarly,

consider u2 and v2 the last 2m significand bits of respectively u and v.

Step 2: By ρ-Euclid algorithm, compute q1 . Compute r1 = |u1−q1v1| and s1 = v1−r1.
Similarly, compute r2 = |u2 − q2v1| and s2 = v2 − r2.

Step 3: Compute t1 and p1 such that r2/2t1 and s2/2p1 are both odd.

Step 4: Save the computations: M ←M ×N , where N is defined by:

Case 1: r2 is even

If r1/2t1 ≥ s1 then N =

(
1/2t1 −q/2t1

−1 q + 1

)
, otherwise N =

(
−1 q + 1
1/2t1 −q/2t1

)
.

Case 2: s2 is even

If s1/2p1 ≥ r1 then N =

(
−1/2p1 (q + 1)/2p1

1 −q

)
, otherwise N =(

1 −q
−1/2p1 (q + 1)/2p1

)
Example: Let u and v be two odd integers such that:

u = 1617 . . . 309, and
v = 1045 . . . 817.

We obatin, in turn, N1 =

(
−1 2
1/4 −1/4

)
and N2 =

(
−1 5
1/4 −1

)
. Then the two steps

are saved in the matrix

M = N2 ×N1 =

(
9/4 −13/4
−1/2 3/4

)
.
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4 The Parallel Algorithm

It is based one parallel MBE reduction:
Begin
Step 1 :

For i = 1 to n R[i] = 0, S[i] = 0.
Compute, in parallel, ri = |iu− q′iv| and si = v − ri, for i = 1, 2, . . . , n,

(see JDA’08 or ISSAC’01).
Step 2 :

While (ri > 0 and ri even) Do in parallel ri ← ri/2;
If (ri < 2v/n) then R[i] = ri, in parallel.

Step 3 :
While (si > 0 and si even) Do in parallel si ← si/2;
If (si < 2v/n) then S[i] = si, in parallel.

Step 4 :
r = min {R[i]}; s = min {S[i]}; in O(1) parallel time;

If r ≥ s Return (r, s) Else Return (s, r).
End.

5 Complexity Analysis

We give below the complexity analysis of the parallel MBE-GCD Algorithm.
First note that the computation of `2(u) and `2(v) can be computed in O(1) time in par-
allel with O(n) processors in CRCW (Priority). Observe that u1 and v1 can be found by
extraction; 2p−λ is not needed, nor is the multiprecision division.

We compute ri = iu1 − qiv1 and test if ri < v1/k or v1 − ri < v1/k to select the index i.
Then iu2 − qiv2 can be computed in parallel as well as RILE = |2p−λr + iu2 − qiv2|. All
these computations can be done in O(1) time with O(n22m) + O(n log log n) processors.
Indeed, precomputed table lookup can be used for multiplying two m-bit numbers in con-
stant time with O(n22m) processors in CRCW PRAM model, providing that m = O(log n)
(see [9]).

Precomputed table lookup of size O(m22m) can be carried out in O(log m) time with
O(M(m)22m) processors, where M(m) = m log m log log m (see [9] or [3] for more details).
The computation of RMBE = |iu− qiv| requires (see Figure 2) only two products iu and
qiv with the selected index i. Thus RMBE can be computed in parallel in O(1) time with:
(ρ < m)

O(n22m) + O(n log log n) = O(n22m) processors.

RMBE reduces the size of the smallest input v by at least m− 1 bits. Hence the MBE −
GCD algorithm runs in O(n/m) iterations. For m = 1/2 ε log n, (ε > 0) the parallel
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MBE −GCD algorithm matches the best previous GCD algorithms in Oε(n/ log n) time
using only n1+ε processors on a CRCW PRAM.

6 Conclusion

Instead of simplifying by 2 at each step, we may consider to simplify by several consecutive
primes p1 = 2, p2 = 3, . . . pk (Filter process).

A big Example (given by program).

u = 21441679871021215487845145411121017
v = 12125999210313477414021337054676451
q = 1 k = 4657840330353869036911904178222283 d =2810318549605739340197528698231885
q = 1 k = 962796768857609643483153218241487 d =923760890374064848357187739995199
q = 1 k = 884725011890520053231222261748911 d =2439742405221549695372842390393
q = 362 k = 1538261200319063506253316426645 d =225370301225621547279881490937
q = 6 k = 186039392965334222574027481023 d =19665454130143662352927004957
q = 9 k = 10615148336102400955242568547 d =4525152897020630698842218205
q = 2 k = 1564842542061139557558132137 d =740077588739872785321021517
q = 2 k = 327695112079239399202466207 d =84687364581393986916089103
q = 3 k = 36816509167528719227099449 d =11054346246336548461890205
q = 3 k = 7400875817817474620461371 d =1826735214259536920714417
q = 4 k = 866400126740104991555357 d =93934960779326937603703
q = 9 k = 72949481053164384481673 d =10492739863081276561015
q = 6 k = 9993041874676725115583 d =62462248550568930679
q = 159 k = 30772177568132568811 d =917893414303793057
q = 33 k = 436198518196395127 d =240847448053698965
q = 1 k = 97675535071348081 d =45496377911002803
q = 2 k = 6682779249342475 d =4851699832707541
q = 1 k = 3020620416072607 d =915539708317467
q = 3 k = 641538417197261 d =137000645560103
q = 4 k = 93535834956849 d =21732405301627
q = 4 k = 7563095775643 d =6606213750341
q = 1 k = 5649331725039 d =478441012651
q = 11 k = 193240292939 d =91960426773
q = 2 k = 20660246845 d =9319439393
q = 2 k = 3649035667 d =2021368059
q = 1 k = 393700451 d =203458451
q = 1 k = 13216451 d =11890125
q = 1 k = 10563799 d =663163
q = 15 k = 308177 d =46809
q = 6 k = 27323 d =9743
q = 2 k = 7837 d =953
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q = 8 k = 213 d =185
q = 1 k = 157 d =7
q = 22 k = 3 d =1
Nb. of iterations: 34

And for u = 125545454541212197979612012145663217
68754132115212487879421021215415451521454854854811471
and v =
10021547965121216797595629749159592190992197219
519216219754197106291297921907199009029957
We find
Nb. of iterations: 81
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