
Discrete Applied Mathematics 164 (2014) 112–120

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On Minimum Reload Cost Cycle Cover
Giulia Galbiati a, Stefano Gualandi b,∗, Francesco Maffioli c
a Dipartimento di Informatica e Sistemistica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
b Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
c Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

a r t i c l e i n f o

Article history:
Received 23 July 2010
Received in revised form 26 October 2011
Accepted 8 December 2011
Available online 13 January 2012

Keywords:
Network optimization
Reload cost model
Computational complexity

a b s t r a c t

We consider the problem of spanning the nodes of a given colored graph G = (N, A) by
a set of node-disjoint cycles at minimum reload cost, where a non-negative reload cost
is paid whenever passing through a node where the two consecutive arcs have different
colors. We call this problem Minimum Reload Cost Cycle Cover (MinRC3 for short). We
prove that it is strongly NP-hard and not approximable within 1

ϵ
for any ϵ > 0 even when

the number of colors is 2, the reload costs are symmetric and satisfy the triangle inequality.
Some IP models for MinRC3 are then presented, one well suited for a Column Generation
approach. The corresponding pricing subproblem is also proved strongly NP-hard. Primal
bounds forMinRC3 are obtained via local search based heuristics exploiting 2-opt and 3-opt
neighborhoods. Computational results are presented comparing lower and upper bounds
obtained by the above mentioned approaches.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We consider an optimization problem defined on a graph G = (N, A), either directed or undirected, where all arcs have
received a color from a set L of cardinality h, and where it is known that all nodes can be spanned by a set of node-disjoint
cycles. A reload cost is paid along a path or cycle in G whenever passing through a node where the two consecutive arcs
have different colors. All possible values of reload costs are given by a reload cost function r : L × L → Z+, where r(l, l′)
denotes the reload cost that arises at a node when passing from color l of one incident arc to color l′ of the other. We define
the reload cost of a cycle in G as the sum of the reload costs that arise at its nodes. We are interested in spanning all nodes
of G by a set S of node-disjoint cycles so as to minimize the sum of the reload costs of the cycles in S. We call this problem
Minimum Reload Cost Cycle Cover (MinRC3).1

The concept of reload costswas introduced in the seminal paper [11]where various applications arementioned. This very
natural concept, which models a kind of cost incurred during a transportation/transmission activity, has been, amazingly,
considered only recently, so that the list of relevant references is comparatively small [1,5,6,9].

We will be interested in asymmetric reload costs and in reload costs that satisfy the triangle inequality, where, for
undirected graphs, we say that the reload costs satisfy the triangle inequality if, for any three edges e, e′, e′′ incident in
a node of the graph, colored, respectively, with colors l, l′, l′′, we have that r(l, l′) ≤ r(l, l′′) + r(l′′, l′). We will denote the
color of an arc e = (i, j) by ce or ci,j.

MinRC3 is solvable in polynomial time when the number h of colors is equal to 1, since in this case we are left with the
well known problems of finding a spanning 2-matching of G if the graph is undirected, or a set of directed cycles spanning
N if the graph is directed.

∗ Corresponding author. Fax: +39 0223993412.
E-mail addresses: giulia.galbiati@unipv.it (G. Galbiati), stefano.gualandi@unipv.it (S. Gualandi), maffioli@elet.polimi.it (F. Maffioli).

1 For standard definitions on graph related concepts, see for instance [3].

0166-218X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2011.12.006

http://dx.doi.org/10.1016/j.dam.2011.12.006
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:giulia.galbiati@unipv.it
mailto:stefano.gualandi@unipv.it
mailto:maffioli@elet.polimi.it
http://dx.doi.org/10.1016/j.dam.2011.12.006

G. Galbiati et al. / Discrete Applied Mathematics 164 (2014) 112–120 113

In this work we analyze the complexity of MinRC3, we present some integer programming formulations, and we report
on preliminary computational results. In Section 2 we prove that, even when h = 2, the reload costs are symmetric and
satisfy the triangle inequality,MinRC3 is strongly NP-hard and it is not approximable within 1

ϵ
, for any ϵ > 0. Moreover we

show that even in this case, if we additionally require that r(l, l) ≥ 1 for any l ∈ L, then the problem is not approximable
within O(2p(n)), for any polynomial p(). In Section 3 we present a bilinear formulation, its standard linearized version, and
a formulation suitable for a Column Generation approach. In Section 4 we describe a local search approach for obtaining
primal bounds. In Section 5 some preliminary computational results are reported. Ongoing work and directions for further
research are also discussed.

2. Complexity

In this section we analyze the complexity and the approximability of problemMinRC3 formulated on undirected graphs.
The results are presented in Theorem 1, Corollaries 1 and 2. It is straightforward to show that these results also hold for
MinRC3 formulated on directed graphs.

The first result of this section derives from a reduction of the well known Vertex Cover problem to the recognition
form ofMinRC3, which we call Reload Cost Cycle Cover(RC3). We begin by giving the definitions of these problems and by
presenting the reduction.

Vertex Cover: An instance I of Vertex-Cover consists of an undirected graph G = (V , E) and a positive integer k. The
question is whether there exists a subset S of V having |S| ≤ k and covering all edges in E, i.e. such that for each edge e ∈ E
one of its end vertices belongs to S.

Reload Cost Cycle Cover: An instance I ′ of RC3 consists of an undirected graph G′
= (N, A), a finite set L of colors, a

function c : A → L that assigns a color to each edge, a reload cost function r : L × L → Z+, and a positive integer k′. The
question is whether there exists a set C of node-disjoint cycles spanning the set N of nodes and having a reload cost at most
equal to k′.

The reduction thatwe nowpropose for building in polynomial time, given an instance I ofVertex Cover, a corresponding
instance I ′ of RC3, is a modification of the reduction described in [7] that reduces Vertex Cover to Hamiltonian Circuit.
We do not describe here the entire reduction, since it is practically identical to the very well known one presented in [7],
to which we refer and to which we invite the reader to refer also for the notations, but we focus our attention only on the
differences in the two reductions that allow us to conclude that Lemma 1 holds. The difference among the reductions lies in
the so called ‘‘cover-testing component’’ for an edge e = {u, v} of G and, of course, in the coloring of the edges of G′.

In Fig. 1, for sake of clarity,we illustrate the cover-testing component used in [7] and in our reduction. In our reduction, for
each e = {u, v} of G there are in G′ five new vertices (u, e, 0), (v, e, 0), uv1, uv2, uv3 connected by new edges as illustrated.
Notice that in Fig. 1(b) the colors of the edges are also depicted, with edges drawn with light lines having color 1 and edges
drawn with heavy lines having color 2. To conclude the presentation of our reduction we specify that all other edges of G′

have color 1 so that L = {1, 2}, the reload cost function r is such that r(l1, l2) = 0 if l1 = l2 and r(l1, l2) = 1 if l1 ≠ l2, and
finally the integer k′ is set equal to 0.

Lemma 1. Let I be an instance of Vertex Cover and I ′ be the corresponding instance of Reload Cost Cycle Cover. There exists
in G = (V , E) a subset S of V having |S| ≤ k and covering all edges in E if and only if there exists in G′

= (N, A) a set of
node-disjoint cycles spanning the set N of nodes and having a reload cost equal to 0.

Proof. Suppose there exists in G a set S of k vertices covering all edges in E. If we disregard for a while all vertices
uvi, i = 1, 2, 3, for each {u, v} = e ∈ E, the same reasoning in [7] allows us to assert that there is a cycle, made with
edges of color 1, that goes thorough the k ‘‘selector’’ vertices a1, . . . , ak, (so called in [7]), and the remaining vertices of G′

(except possibly some (u, e, 0) or (v, e, 0)); this cycle, within the cover testing component for edge e = {u, v}, has one of
the three possible configurations illustrated in Fig. 2, where (a)–(c) correspond to the cases in which u belongs to S but v
does not, both u and v belong to S, v belongs to S but u does not.

From this observation it is straightforward to see that in the three cases it is possible to span all vertices uvi, i = 1, 2, 3,
{u, v} = e ∈ E (and the unspanned (u, e, 0) or (v, e, 0)) with a node-disjoint cycle of color 2 (also illustrated in Fig. 2),
therefore obtaining a set of node-disjoint cycles spanning the nodes of G′ and having a reload cost equal to 0. Suppose
on the contrary that G′ has a set C of node-disjoint cycles spanning the set N of nodes and having reload cost equal
to 0. In this case each cycle in C cannot have edges of both colors. Therefore, for each edge e = {u, v}, the vertices
uvi, i = 1, 2, 3must be spanned by a cycle of the three types illustrated in Fig. 2 and this implies that the remaining vertices
(u, e, i), (v, e, i), i = 1, . . . , 6 must be spanned by edges of color 1, again in one of the tree types illustrated in Fig. 2. At this
point it is easy to conclude, as done in [7], that any portion of the cycles with edges of color 1 that begins at one selector
vertex and ends at a selector vertex without passing through any other selector vertex, corresponds to those edges from E
that are incident to some particular vertex in V . The cycles passing through the k selector vertices identify k such portions
that identify the k vertices of G that cover all the edges in E. �

Since in the reduction presented in the proof of Lemma 1 the number of colors of the edges of G′ is 2, the reload costs are
symmetric, and satisfy the triangle inequality, we may conclude that the following theorem is true.

114 G. Galbiati et al. / Discrete Applied Mathematics 164 (2014) 112–120

Fig. 1. Cover-testing component for edge e = {u, v} used in transforming Vertex Cover to Hamiltonian Circuit (a) and to RC3 (b).

Fig. 2. The three possible configurations of a cycle within the cover-testing component for edge e = {u, v}, corresponding to (a) u belongs to the cover
but v does not, (b) both u and v belong to the cover, (c) v belongs to the cover but u does not.

Theorem 1. MinRC3 is stronglyNP-hard even if the number of colors is 2, the reload costs are symmetric, and satisfy the triangle
inequality.

Corollary 1. MinRC3 is not approximablewithin 1
ϵ
, for any ϵ > 0, even if the number of colors is 2, the reload costs are symmetric,

and satisfy the triangle inequality.

Proof. We refer to the reduction used in the proof of Lemma 1. If we denote by OPT(G′) the reload cost of an optimum
solution of G′, this reduction shows that OPT(G′) = 0 if and only if I is a satisfiable instance of Vertex Cover and also shows
that it is NP-complete to distinguish between OPT(G′) = 0 and OPT(G′) ≥ 1. Therefore the reduction introduces a gap and
by the gap reduction technique the problemMinRC3 is not approximable within 1

ϵ
, for any ϵ > 0. �

In the more general case, where a reload cost is paid even when there is not a change of color, we have the following
negative result.

Corollary 2. If r(l, l′) ≥ 1 for every l, l′ ∈ L, then MinRC3 is not approximable within O(2p(n)) for every polynomial p(), even if
the number of colors is 2, the reload costs are symmetric, and satisfy the triangle inequality.

Proof. If in the reduction in Lemma 1 we modify the reload cost matrix r so that r(1, 1) = r(2, 2) = 1 and r(1, 2) =

r(2, 1) = Mn′, with M = O(2p(n′)) and n′ denoting the number of vertices in G′, then we deduce that it is NP-complete
to distinguish between OPT(G′) = n′ and OPT(G′) > Mn′. Using again the gap reduction technique the problem is not
approximable within O(2p(n)). �

3. Integer programming models

In this section we deal withMinRC3 formulated on directed graphs. Let G = (N, A) be a directed graph, L a set of h colors,
r : L × L → Z+ a reload cost function, and c : A → L an arc coloring. We denote by δ+(i) and by δ−(i) the set of outgoing
and incoming arcs at node i, respectively.

G. Galbiati et al. / Discrete Applied Mathematics 164 (2014) 112–120 115

MinRC3 has the following Integer Bilinear formulation:

min

i∈N


e∈δ−(i),
f∈δ+(i)

r(ce, cf)xexf (1)

s.t.


e∈δ+(i)

xe =


e∈δ−(i)

xe = 1, ∀i ∈ N, (2)

xe ∈ {0, 1}, ∀e ∈ A. (3)

The binary variable xe is equal to 1 if arc e belongs to the cycle cover, and 0 otherwise. Constraints (2) force to select a single
outgoing arc and a single incoming arc for each node, respectively. Note that the bilinear term xexf in (1) can be linearized
with standard techniques, as shown in the formulation below, where we let zef be a 0–1 variable equal to 1, if both xe and
xf are equal to 1, and 0 otherwise.

min

i∈N


e∈δ−(i),
f∈δ+(i)

r(ce, cf)zef (4)

s.t. (2), (3), (5)

zef ≥ xe + xf − 1, ∀i ∈ N, ∀e ∈ δ−(i), ∀f ∈ δ+(i), (6)

zef ≥ 0, ∀i ∈ N, ∀e ∈ δ−(i), ∀f ∈ δ+(i). (7)

Asmany covering problems,MinRC3 can be formulatedwith an exponential number of columnswith respect to the number
of vertices, and be solved via the Column Generation approach [10]. The idea is to have a set partitioning formulation, where
each column j represents a cycle of reload cost wj. Let C be the collection of every possible directed cycle in G. MinRC3 can
then be formulated as follows:

min

c∈C

wcλc (8)

s.t.


c∈C:i∈c

λc = 1, ∀i ∈ N, (9)

λc ∈ {0, 1}, ∀c ∈ C. (10)

3.1. Column Generation approach

Since the number of directed cycles in C is exponential with respect to the number of vertices, we start with a subset
C̄ ⊆ C such that the constraints in (9) are satisfied, and we relax the integrality constraints. We get the following restricted
master problem:

min

c∈C̄

wcλc (11)

s.t.


c∈C̄:i∈c

λc = 1, ∀i ∈ N, (12)

λc ≥ 0, ∀c ∈ C̄. (13)

Let π̄ be the vector of dual multipliers of constraints (12). Then, the pricing subproblem, that is the problem of generating a
negative reduced-cost column for the restricted master problem, is as follows:

min

i∈N


e∈δ−(i),
f∈δ+(i)

r(ce, cf)xexf −


i∈N

π̄iyi (14)

s.t.


e∈δ+(i)

xe =


e∈δ−(i)

xe = yi, ∀i ∈ N, (15)


e∈A

xe ≥ 2, (16)

xe ∈ {0, 1}, ∀e ∈ A, (17)
yi ∈ {0, 1}, ∀i ∈ N. (18)

116 G. Galbiati et al. / Discrete Applied Mathematics 164 (2014) 112–120

Note that the bilinear term in (14) can be linearized as before. The constraints (15)–(16) define a set of vertex disjoint cycles
in G, and we look for a cycle having a negative minimum cost with respect to the objective (14), since it would correspond
to a negative reduced-cost column to be added in (11)–(13). As long as the objective function has a negative value, at least
a cycle of negative cost exists.

Looking for a cycle having minimum negative cost with respect to the quadratic objective (14) is itself an interesting
combinatorial optimization problem, which we call Minimum Quadratic Cycle (MinQCycle). Unfortunately only in some
restricted cases it turns out to be solvable in polynomial time, but in general it is an NP-hard problem. The negative and
positive results for the complexity of this problem are given in Theorem 2 and in Theorem 3 of the next subsection.

3.1.1. Complexity of the pricing
The negative result is based on a reduction described in [9] from the 2-balanced 3-SAT problem ((3, B2)-SAT for short).

An instance I of (3, B2)-SAT is a set C of CNF clauses defined over a set X of Boolean variables, where each clause has exactly
3 literals, each of them appearing exactly 4 times in the clauses, twice negated and twice unnegated. Deciding whether an
instance of 2-balanced 3-SAT is satisfiable is NP-complete [2]. An instance I ′ of MinQCycle is like an instance of RC3, with
the addition that to each node i of G′

= (N, A) is assigned an integer weight w(i) ∈ Z.

Theorem 2. MinQCycle is strongly NP-hard even if the number of colors is 3, the reload costs are symmetric, satisfy the triangle
inequality and the maximum degree of G′ is 4.

Proof (Sketch).Weprove this result by slightlymodifying the reduction described in Theorem 8 of [9] for proving, under the
same hypothesis, that the Minimum Symmetric Reload s-t path problem is NP-hard. We do not present here such reduction,
which is long and very technical, but we invite the reader to refer to it for a comprehension of the rest of this proof. Here we
simply describe the modification that we perform to the reduction in [9], in order to build the bi-connected graph G′ (which
plays the role of graph Gc in [9]) of instance I ′ of MinQCycle. The modification consists in the addition of an edge of color 3
between nodes s and t , and in the assignment of the weights to the nodes of G′, which are all set equal to 1 except for node
s which receives weight 2. We prove that an instance I of (3, B2)-SAT is satisfiable if and only if graph G′ of instance I ′ has
a cycle C with reload cost r(C) less than the sum w(C) of the weights of its nodes. It is not too difficult to see, similarly as
in [9], that if a truth assignment τ satisfies instance I then graph G′ admits a cycle C where there is no change from color 1 to
color 2; this cycle has reload cost r(C) = 11|X | + 3|C | + 2 and weight w(C) = r(C) + 1, so that r(C) < w(C). On the other
hand any cycle of G′ that does not include s has a weight equal to the number n of its nodes, and a reload cost at least equal
to this number; hence if a cycle C of G′ has r(C) < w(C) it must go through s and t: since in this case its weight is equal to
n + 1, it must be that r(C) ≤ n and the s − t path that does not include the edge (s, t) must have a reload cost less then
n − 1. This is enough to conclude that this path does not allow any change from color 1 to color 2 and therefore must touch
11|X | + 3|C | + 2 nodes and have reload cost equal to 11|X | + 3|C |; the conclusion that this path induces a truth assignment
that satisfies I follows therefore as in [9]. �

Theorem 3. MinQCycle is solvable in polynomial time if the reload costs are symmetric, G′ is bi-connected and has maximum
degree 3.

Proof (Sketch).We use the construction used to prove Theorem 4 of [9], slightly modified to reach our purposes, and again
we invite the reader to refer to it for a comprehension of the rest of this proof.2 Let us remark the reader that this construction
starts from a colored graph Gc with reload costs assigned, where two distinct vertices s and t are chosen, and builds an edge
weighted non-colored graph G in such a way that an s− t path of Gc joining vertices s and t there corresponds in G a perfect
matching and vice versa; moreover the reload cost of the s − t path is equal to the weight of the perfect matching. The
modification to the construction, that we perform here on the bi-connected graph G′ of instance I ′ (that plays the role of
graph Gc in [9]), consists in a different assignment of weights to the edges of non-colored G, that takes in consideration not
only the reload costs but also the weights that are assigned of the vertices of G′. Precisely, using the notations in [9], we set:

w({v′

i,j, p
i
j.k}) = w({v′

i,k, q
i
j.k}) =

1
2
(rc({vi,vj}), c({vi,vk}) − w(i))

w({s′, vi,j} : vj = s) = rc({s,t}),c({s,vi}) − w(s)
w({t ′, vi,j} : vj = t) = rc({s,t}),c({t,vi}) − w(t)

and all other edges have weight 0.
Consider now any edge of G′, called {s, t} without loss of generality, a cycle C of G′ that uses this edge, and the s− t path

that does not include this edge. It is not to difficult to see that, using the weights defined above, the weight of the perfect
matching of G corresponding to the s − t path of G′ is equal to the reload cost r(C) of the cycle minus the sum w(C) of the
weights of its vertices. Hence a minimum weight perfect matching of G identifies a cycle Cs,t of G′ that uses edge {s, t} and
minimizes r(Cs,t) − w(Cs,t). If this construction is repeated for each edge {s, t} of G′ it is possible, in polynomial time, to
decide if there exists in G′ a cycle C having r(C) < w(C). �

2 Note that a trail in a graph with maximum degree 3 is always a path.

G. Galbiati et al. / Discrete Applied Mathematics 164 (2014) 112–120 117

Fig. 3. Example of exchanging the two arcs (i, j) and (h, l) with the two arcs (i, l) and (h, j).

Fig. 4. Example of exchanging the three arcs (i, j), (h, l), and (v, w) with the three arcs (i, l), (h, w), and (v, j).

4. Primal bounds via local search

In this section we propose local search algorithms based on simple 2-exchange and 3-exchange neighborhoods. These
algorithms start with a spanning set of node disjoint cycles, which can be found in polynomial time, as noted in the
introduction. The solution space of MinRC3 is represented as a subset of the permutations of the vertices. Let π be a
permutation of the set N , with the additional constraint that πi = j is a valid assignment if and only if (i, j) ∈ A. Note
that this implies also πi ≠ i. Then π represents the cycle vertex cover where each vertex i of N has the successor j = πi. Let
µ be a vector representing the predecessor of each node, in the solution given by the permutation π , that is, µi = j if and
only if πj = i.

Since the vector π gives the successor of each node, and the corresponding vector µ gives the predecessor of each node,
the reload cost of the spanning cycle cover given by π (and the corresponding vector µ) can be written as:

i∈N

r(cµi,i, ci,πi). (19)

Using this notation is easy to describe a 2-exchange operator: first, select two arcs (i, j) and (h, l) of the current cycle cover,
such that the two arcs (i, l) and (h, j) belong to A; then, swap the successors of the vertices i and h, that is, replace (i, j) and
(h, l) with (i, l) and (h, j) (see Fig. 3). In the permutation vector π , this move is equivalent to swap πi and πh. The size of
this neighborhood is quadratic, but evaluating the change ∆(ij, hl) in the objective function (19) due to this operator takes
constant time:

∆(ij, hl) = −r(cµi,i, ci,j) − r(ci,j, cj,πj) + r(cµi,i, ci,l) + r(ci,l, cl,πl)

− r(cµh,h, ch,l) − r(ch,l, cl,πl) + r(cµh,h, ch,j) + r(ch,j, cj,πj). (20)

Similarly, it is possible to define a 3-exchange operator: first, select three arcs (i, j), (h, l), and (v, w) of the current cycle
cover; second, exchange their successors, that is replace those arcs with arcs (i, l), (h, w), and (v, j) (see Fig. 4). In this case,
the neighborhood size is cubic, but evaluating a single move still takes constant time:

∆(ij, hl, vw) = −r(cµi,i, ci,j) − r(ci,j, cj,πj) + r(cµi,i, ci,l) + r(ci,l, cl,πl)

− r(cµh,h, ch,l) − r(ch,l, cl,πl) + r(cµh,h, ch,w) + r(ch,w, cw,πw)

− r(cµv ,v, cv,w) − r(cv,w, cw,πw) + r(cµv ,v, cv,j) + r(cv,j, cj,πj). (21)

The two neighborhoods are used in the following way: first we perform a best improvement local search [8] using only
2-exchange moves. Then, once we reach a 2-exchange local optimum solution, we perform a few iterations using the more
expensive 3-exchange operator, as explained in the next section.

5. Computational results

In order to evaluate the approaches presented in the previous sections, we have generated a set of graphs according to the
standard G(n, p) Erdös–Rényi model [4], with randomly generated arc colorings. In all instances we generated asymmetric

118 G. Galbiati et al. / Discrete Applied Mathematics 164 (2014) 112–120

Table 1
Asymmetric reload costs.

d h n m Opt. LB(LP) LB(Cuts) LB(CG)

0.3 2 10 28 11 1.0 1.0 11.0∗

15 56 11 10.3 10.3 11.0∗

20 113 0 0.0 0.0 0.0
3 10 26 30 17.0 22.0 30.0∗

15 61 18 0.0 18.0∗ 17.0
20 116 12 0.0 0.0 3.5

5 10 27 32 23.5 27.0 32.0∗

15 48 56 33.5 56.0∗ 56.0∗

20 113 18 0.0 5.0 17.3∗

0.5 2 10 51 9 0.0 0.0 1.3
15 94 0 0.0 0.0 0.0
20 189 0 0.0 0.0 0.0

3 10 46 6 0.0 0.0 6.0∗

15 101 6 0.0 0.0 0.0
20 170 0 0.0 0.0 0.0

5 10 46 18 2.3 16.7 18.0∗

15 101 13 0.0 0.0 10.4
20 194 0 0.0 0.0 0.0

Table 2
Symmetric reload costs.

d h n m Opt. LB(LP) LB(Cuts) LB(CG)

0.3 2 10 31 8 8∗ 8∗ 8∗

15 59 20 10 20∗ 20∗

20 95 0 0 0 0

3 10 30 20 9.5 20∗ 20∗

15 59 42 34 42∗ 42∗

20 95 20 3 16.2 20∗

5 10 30 43 31 43∗ 41
15 61 29 0 29∗ 29∗

20 95 28 11.7 24 28∗

0.5 2 10 51 0 0 0 0
15 105 0 0 0 0
20 175 0 0 0 0

3 10 51 8 0 0 8∗

15 104 0 0 0 0
20 174 0 0 0 0

5 10 50 7 0 4 7∗

15 103 4 0 0 3.7∗

20 176 2 0 0 1.2∗

reload costs that do not necessarily satisfy the triangle inequality, with r(l, l) = 0 for all l ∈ L. Note that the focus of the
computational results is on the quality of the lower bounds and not on the computational times.

In the following, let n = |N(G)|,m = |A(G)|, and d =
m

n(n−1) denote the density of the graph. All tests are run on a
standard desktop with 2Gb of ram, a i686 CPU at 1.8 GHz, using CPLEX12.2 as Integer Linear Programming solver.

5.1. Computing lower bounds

Preliminary experiments showed that only very small instances of MinRC3 can be solved to optimality. Although the
bilinear formulation (1)–(3) could be solved using CPLEX, only digraphs up to 15 nodes and 3 colors are solved within a
time limit of an hour. On the other hand, the linearized version (4)–(7) is more efficient, since CPLEX is able to automatically
generate a number of cuts that improve the formulation, and digraphs up to 20 nodes and 5 colors are solved to optimality.
Nevertheless, the lower bounds at the root node, after the automatic generation of CPLEX, are still quite loose. Therefore, in
order to obtain tighter lower bounds, we have experimented with the Column Generation formulation (11)–(13).

Tables 1 and 2 show the comparison of three different lower bounds on two small set of instances, with asymmetric
and symmetric costs, respectively. The first lower bound LB(LP) is the lower bound obtained with the linear relaxation of
problem (4)–(7); the second lower bound LB(Cuts) is the lower bound obtained after the automatic generation of cuts by
CPLEX; the third lower bound LB(CG) is obtained via the ColumnGeneration approach. A bold entry indicates the best bound,
while a ’∗’ denotes that the bound equals the optimum value. This notation is not used when the optimum value is zero.

The results show that the Column Generation approach provides, in general, tighter lower bounds. The lower bounds
are stronger for sparse digraphs and for high number of colors. In Table 1 the lower bounds are loose in two of the cases

G. Galbiati et al. / Discrete Applied Mathematics 164 (2014) 112–120 119

Fig. 5. Comparison of the results of the local search with the tabu mechanism (TabuLS) and the local search (LS) in terms of the objective function values
on graphs with different densities and h = 5 colors. Reload costs are asymmetric.

considered, i.e. for the instance with density 0.3%, h = 3, and n = 20, where the optimum reload cost is 12, but the lower
bound is 3.5, and for the instance with density 0.5%, h = 2, and n = 10, where the optimum reload cost is 9, but the lower
bound is 1.3. However inmost of the other cases the LB(CG) gives the optimum. There are not significant differences between
the results with asymmetric and symmetric costs.

5.2. Computing upper bounds

Using the local search algorithms presented in Section 4we are able to solve instanceswith a higher number of nodes.We
have considered twovariants of the local search algorithm. The first variant is a basic local search algorithm that executes 200
iterations using only the 2-exchange neighborhood, and then 20 iterations with the 3-exchange neighborhood, where each
iteration selects the best improvement in the neighborhood. The second variant adds a tabu mechanism to the algorithm:
once a move is selected, it becomes tabu, and it is not repeated in the subsequent t iterations (we set t = 7) [8].

In order to assess the two variants of local search algorithm we have performed two set of experiments. In the first
set of experiments we have n = 50, h = 5, and a density ranging from d = 0.1 up to d = 0.9. Fig. 5 shows the box-
plots of the run-time distributions. For each instance we have executed 50 runs. In the box we report the results of the
objective function between the 1st and the 3rd quartile, and the point in the box gives the medians. The basic local search
algorithm takes in average 0.6 s, while adding the tabu mechanism the algorithm takes in average 1.1 s. Note that with this
addition the algorithm gives clearly better results for graph with density d = {0.1, 0.2, 0.6, 0.7, 0.8, 0.9}, while for density
d = {0.3, 0.4, 0.5} the two methods give similar results.

The second set of experiments shows the impact of the number of colors on graphs with n = 50 and density d = 0.3.
Fig. 6(a) and (b) show that when h = 2 there always exists a spanning cycle cover of zero cost, and the basic version of the
local search algorithm is much faster (we can stop the algorithm as soon as we find a zero cost solution). For h = 3, the
median of the tabu search algorithm is better, but the results are still similar; for h = 5 the tabu search gives better results,
taking however roughly double computational time.

6. Conclusions

We have introduced the new Combinatorial Optimization problem MinRC3, and analyzed its complexity and
approximability properties.Wehave proposed some IP formulations, a ColumnGeneration approach, and Local Search based

120 G. Galbiati et al. / Discrete Applied Mathematics 164 (2014) 112–120

Fig. 6. Comparison of the results of the local search with the tabu mechanism (TabuLS) and the local search (LS) in terms of the objective function values
(a) and the computation time (b) on graphs with different numbers of colors, i.e., h = {2, 3, 5}, and density d = 0.3. Reload costs are asymmetric.

heuristics. The results of some preliminary computational experiments have been reported. Future research could focus
on improving algorithmic performance, extending computational experiments, identifying other approaches for obtaining
tighter dual bounds (e.g. via Semidefinite Programming), and evaluating the suitability of a branch-and-price approach.

References

[1] E. Amaldi, G. Galbiati, F. Maffioli, On minimum reload cost paths, tours and flows, Networks 57 (2011) 254–260.
[2] P. Berman, M. Karpimsky, A.D. Scott, Computational complexity of some restricted instances of 3-SAT, Discrete Appl. Math. 155 (2007) 649–653.
[3] B. Bollobás, Modern Graph Theory, Springer Verlag, 1998.
[4] P. Erdős, A. Rényi, On random graphs, Publ. Math. 6 (2) (1959) 290–297.
[5] G. Galbiati, The complexity of a minimum reload cost diameter problem, Discrete Appl. Math. 156 (2008) 3494–3497.
[6] I. Gamvros, L. Gouveia, S. Raghavan, Reload cost trees and network design, Networks (2011) doi:10.1002/net.20443.
[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, 1979.
[8] F. Glover, M. Laguna, Tabu Search Textquotedblright, Kluwer Academic Pub, 1998.
[9] L. Gourvè, A. Lyra, C. Martinhon, J. Monnot, The minimum reload s-t path, trail and walk problems, Discrete Appl. Math. 158 (13) (2010) 1404–1417,

Elsevier.
[10] M.E. Lübbecke, J. Desrosiers, Selected topics in column generation, Oper. Res. 53 (6) (2005) 1007–1023. INFORMS.
[11] H. Wirth, J. Steffan, Reload cost problems: minimum diameter spanning tree, Discrete Appl. Math. 113 (2001) 73–85.

http://dx.doi.org/doi:10.1002/net.20443

	On Minimum Reload Cost Cycle Cover
	Introduction
	Complexity
	Integer programming models
	Column Generation approach
	Complexity of the pricing

	Primal bounds via local search
	Computational results
	Computing lower bounds
	Computing upper bounds

	Conclusions
	References

