
Matching with sizes (or scheduling with

processing set restrictions)

Péter Biró and Eric McDermid

Department of Computing Science Technical Report

University of Glasgow TR-2010-307

Glasgow G12 8QQ January 2010

UK

Matching with sizes (or scheduling with

processing set restrictions)∗

Péter Biró† and Eric McDermid

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK

Email: {pbiro,mcdermid}@dcs.gla.ac.uk.

Abstract

Matching problems on bipartite graphs where the entities on one side may have
different sizes are intimately related to scheduling problems with processing set re-
strictions. We survey the close relationship between these two problems, and give new
approximation algorithms for the (NP-hard) variations of the problems in which the
sizes of the jobs are restricted. Specifically, we give an approximation algorithm with
an additive error of one when the sizes of the jobs are either 1 or 2, and generalise
this to an approximation algorithm with an additive error of 2k −1 for the case where
each job has a size taken from the set {1, 2, 4, . . . , 2k} (for any constant integer k). We
show that the above two problems become polynomial time solvable if the processing
sets are nested.

Keywords: couples, Hospitals/Residents problem, scheduling, pro-
cessing set restrictions, computational complexity, approximation
algorithms

1 Introduction

In this paper we investigate bipartite matching problems where the entities on one side
may have different sizes. This type of problem can arise in at least two interesting problem
domains. The first is the realm of matching markets in which couples are present, where
a couple is an inseparable pair of agents. The second significant application area is the
realm of scheduling problems in which jobs of different lengths need to be allocated to
machines for which they are eligible.

The US Navy assignment process involves hundreds of thousands of sailors to be as-
signed, commands seeking sailors and detailers who advise both sailors and commands.
According to recent studies [24, 19, 25] the three most important requirements to be
satisfied, in order to achieve an optimal assignment of sailors to billets, are the following:

Size of the matching: All the sailors should be matched, and there are certain critical
billets that cannot go unfilled. Stability: Sailors should not be forced into assignments that
they have neither asked for nor desire. Moreover, there should be no sailor who would
prefer to be matched to a particular billet if the commanding officer responsible for that
billet would also request this sailor. Presence of couples: The need to assign married
couples to the same location.

If we relax the stability condition by requiring only that a sailor should not be matched
to a billet which is not acceptable for her/him, then we get a setting that fits our basic

∗This work was supported by EPSRC grant EP/E011993/1
†This work was supported by OTKA grant K69027.

1

problem, Matching with Couples, that is the problem of finding a maximum size matching
in a bipartite graph where each vertex on one side has size 1 or 2 and each vertex on the
other side has an integer capacity. We will define this problem more precisely in Section
2.

The presence of couples is quite natural in other two-sided job markets as well. In
fact, in some matching schemes, such as the National Resident Matching Program [18]
and the Scottish Foundation Allocation Scheme [22] (schemes that allocate junior doctors
to hospitals in the US and in Scotland, respectively), couples are allowed to apply for
pairs of positions. The reason for this possibility is that a couple may be prepared to
accept a pair of positions only if these are in the same hospital or geographically close,
for example. The detailed description of the mechanism underlying the current matching
scheme of NRMP can be found in the paper of Roth [21], and some remaining problems
caused by the presence of couples were studied by Klaus et al. [11].

In the above two-sided markets, where the participants on both sides have preferences
and they may reach a private agreement outside the matching scheme (in contrast with
the military services), the stability of the solution is considered as a first priority in most
existing matching schemes. If couples are not present in the market, we have the clas-
sical Hospitals/Residents (or College Admissions) problem, for which a stable matching
can always be found in linear time by the algorithm of Gale and Shapley [4]. However
Ronn [20] showed that the problem of deciding whether a stable matching exists, given a
Hospitals/Residents problem with couples, is NP-complete. Manlove and McDermid [14]
proved that the hardness result still holds even if each couple accepts an assignment only
if they are both allocated to the same hospital.

In other applications, such as the allocation of students to dormitories or the assign-
ment of papers to reviewers [5], the preferences may be on one side only. Here also we
can imagine that the entities to be matched have different sizes, since a couple (or an
even larger group) may want to be allocated to the same place, and the organisers of a
conference may call for different kinds of papers (e.g. short and regular). In both of the
applications mentioned it is natural to seek a complete (or maximum size) solution, such
that the loads of the dormitories or the reviewers are balanced, leading again to our main
problem of Matching with Couples. Or we obtain the more general problem Matching
with Sizes in case the sizes are positive numbers (not only from the set {1, 2}). We note
that if the organisers of the matching scheme take the preferences into account then as
a second priority they may try to find a maximum weight or a rank-maximal matching
(among the maximum cardinality load balanced matchings). Further details of the latter
appear in [9].

Finally, in many assignment problems there may be no preferences at all. A major
area of applications is scheduling where we need to allocate, say, jobs of different lengths
to machines. In this paper we only take into account the eligibility requirements, that is
for each job we suppose that there is a set of machines that are capable of processing that
job. In this case we get the parallel machine (or multiprocessor) scheduling problem with
processing set (or machine eligibility, or job assignment) restrictions. The problem that
we focus on is to minimise the makespan (i.e., the time at which the processing of the last
job is finished). We will define the problem more precisely in Section 2. Meanwhile we
refer to a survey [13] on scheduling with processing set restrictions and two papers [6, 7]
that contain results closely related to those presented in this paper (we will specify these
in Section 2).

The contribution of this paper is the following. In Section 2, we survey the corre-
spondence between the problem Matching with Sizes and the parallel machine scheduling
problem with processing set. In Section 3, we show that the problem Matching with

2

Couples is NP-complete even if each capacity is equal to 2. In Section 4, we give an ap-
proximation algorithm for the problem Matching with Couples, which finds a solution in
O(ne) time (n is the number of jobs and e is the number of edges in the graph) with an
additive error 1. Also, we extend our algorithm for the more general problem where the
lengths of the jobs are from the set {1, 2, 4, . . . , 2k} for some constant integer k, and we
show that in this case a solution with an additive error 2k − 1 is guaranteed to be found
in O(2kne) time. Finally in Section 5, we give polynomial time algorithms to solve the
above two problems in the case when the processing sets form a nested set system.

2 Problem statements and related results

In this section we first define the problem Matching with Sizes and the parallel machine
scheduling problem with processing set restrictions. Next, we describe the correspondence
between these problems and we survey the related literature.

Matching with Sizes (ms):
We are given a bipartite graph G(U∪V,E) ,where U = {u1, u2, . . . , un}, V = {v1, v2, . . . , vm}
and e = |E(G)|. Suppose that each ui ∈ U has a size s(ui) ∈ R+ and each vj ∈ V has a
capacity c(vj) ∈ R+. A matching M is a set of edges such that the capacity constraints
are satisfied, i.e.,

∑

ui:{ui,vj}∈M s(ui) ≤ c(vj) for each vj ∈ V . The size of a matching M

is s(M) =
∑

{ui,vj}∈M s(ui). The problem is to find a matching of maximum size. The
decision problem related to an instance of ms, denoted by d-ms, is to decide whether there
exists a feasible matching M , that is a matching which covers U .

Furthermore, given an instance I of ms and a matching M , let lM (vj) =
∑

ui:{ui,vj}∈M s(ui)

be the load of vj. The load vector of M is defined as lM = (lM (v1), lM (v2), . . . , lM (vm)).
The quality of the feasible matching may be measured by the Lp norm of the load vector,
that is

||lM ||p =

∑

vj∈V

|lM (vj)|
p

1/p

Note that ||lM ||1 is equal to the size of M , and ||lM ||∞ is the maximum load in M . Nor-
mally we want to maximise the former and minimise the latter.

Scheduling jobs to machines with processing set restrictions:
We have a set of jobs J = {J1, J2, . . . , Jn} and a set of parallel machines M = {M1,M2, . . . ,Mm}.
Each job Jj has processing time pj and a set of machines Mj ⊆ M to which it can be
assigned, the processing set of Jj . (So we suppose that the machines are identical in the
sense that a job Jj requires the same amount of time on each machine which is eligible
for Jj .) In a schedule with the above processing set restrictions, each job Jj is assigned
to one of the machines in Mj. In this paper we will focus on the problem of finding a
schedule such that the makespan Cmax (i.e., the time when the last job is completed) is
minimised. The standard notation used for this problem in the scheduling literature is
P |Mj |Cmax (P stands for identical machines, Mj indicates that we have processing set
restrictions and Cmax denotes that the task is to minimise the makespan.)

The relation between the above two problems is the following. Given an instance I
of ms with infinite capacities, the problem of finding a maximum size matching (i.e. a
matching that covers U) with minimum L∞-norm is equivalent to P |Mj |Cmax for an
instance where J = U , M = V and the set of machines Mj ⊆ M suitable for a job

3

Jj ∈ J corresponds to the set of neighbours of uj ∈ U in G. Furthermore, d-ms for an
instance where each capacity is equal to a constant T is equivalent to the decision problem
related to the corresponding instance of P |Mj |Cmax with makespan T .

Given the close correspondence, henceforth we refer to the sets of U and V in an in-
stance of ms as jobs and machines, respectively, and we will use the term length when
referring to the size of a job. By adding restrictions on the lengths of the jobs we get the
following special cases.

Tutorial Allocation (ta):
This is a special case of ms where s(ui) = 1 for every ui ∈ U and c(vj) ∈ Z+. The
terminology of ta was introduced by Abraham [1]. This problem is closely related to
the scheduling problem with unit-length jobs, denoted by P |Mj , pj = 1|Cmax, studied in,
e.g., [2] and [7]. Finally, the problem of ta with infinite capacities is also known as the
semi-matching problem [8].

Alon et al. [2] gave an O(n3e) algorithm to solve P |Mj , pj = 1|Cmax. Moreover, they
showed that the output of their algorithm is a so-called strongly-optimal assignment, which
is a maximum matching that minimises the Lp-norm of the load vector for every p > 1.
Abraham [1] gave a similar algorithm with an improved O(ne) running time that also finds
such a maximum matching with minimum Lp-norm for every p > 1 for ta (even if we have
positive integer capacities). He called this solution a balanced matching. Independently,
Harvey et al. [8] investigated the same problem in the context of semi-matchings (which
is equivalent to P |Mj , pj = 1| or ta with infinite capacities). They also gave an O(ne)
time algorithm to find a so-called optimal semi-matching along the same lines.

Matching with Couples (mc):
This problem is obtained if s(ui) ∈ {1, 2} for every ui ∈ U and c(vj) ∈ Z+. The cor-
responding scheduling problem is denoted by P |Mj , pj = {1, 2}|Cmax. Both decision
problems are NP-complete, even if c(vj) = 2 for all vj ∈ V [3] or when we have to decide
whether Cmax ≤ 2 or Cmax ≥ 3 for the related instance of P |Mj , pj = {1, 2}|Cmax [6].
Note that the latter result implies that we cannot give a polynomial-time approximation
for P |Mj , pj = {1, 2}|Cmax with a factor better than 1.5 (unless P=NP). Both proofs
are based on a reduction similar to the one used by Lenstra et al. [12] for a closely re-
lated scheduling problem. In Section 3, we include the proof from [3] to show that mc is
NP-complete.

As a closely related result, it is worth mentioning that McCormick et al. [16] showed
that the problem of multiprocessor scheduling with two job lengths and no eligibility con-
straints, which includes P |pj = {1, 2}|Cmax as a special case, is polynomial-time solvable.
Finally we remark that Marx and Schlotter [15] studied the parameterised complexity of
mc. They gave a randomised FPT algorithm by considering the number of couples as the
parameter. (This is in contrast with their result on the Hospitals/Residents problem with
couples, where they showed that the problem of finding a stable solution with the same
parameter is W[1]-hard.)

3 MC is NP-complete

Theorem 1. MC is NP-complete, even if every machine has capacity 2.

Proof. We reduce from the 3-dimensional matching problem (3dm). Here, we are given
a set F ⊆ M × W × D of ordered triples (families), where M , W and D (men, women
and dogs) are disjoint sets of cardinality n. The problem is to decide whether there is a

4

perfect matching F (i.e. a set F ⊆ F of disjoint families of cardinality n). 3dm is known
to be NP-complete [10].

Given an instance I of 3dm as described above, we create an instance I ′ of mc on a
graph G(U, V) as follows. Suppose that U = U0 ∪ U1, where U0 is the set of unit-length
jobs and U1 is the set of jobs of length two, and we assume that each machine has capacity
two. Let u1

k ∈ U1 correspond to a dog dk for every dk ∈ D. For every (man, woman)
pair (mi, wj) ∈ M × W , we create a machine vi,j and we add the edge {u1

k, vi,j} to G
whenever (mi, wj , dk) ∈ F . Furthermore, we create two unit-length jobs um

i,j and uw
i,j for

each machine vi,j and we add both the edges {um
i,j , vi,j} and {uw

i,j, vi,j} to G. Finally, we
create some other machines vm

i and vw
j together with some corresponding unit-length jobs

um
i and uw

j . First, we add the edges {vm
i , um

i } to G for every i and {vw
j , uw

j } for every j,
and then we also add the edges {vm

i , um
i,j} to G for every j and {vw

j , uw
i,j} for every i.

Suppose first that we have a matching F in I of cardinality n. We create a matching
M in G that covers U as follows. As every um

i and uw
j has degree one, every edge {um

i , vm
i }

and {uw
j , vw

j } should obviously belong to M . Let {u1
k, vi,j}, {v

m
i , um

i,j} and {vw
j , uw

i,j} be in
M if (mi, wj , dk) ∈ F , and {vi,j, u

m
i,j}, {vi,j , u

w
i,j} ∈ M if (mi, wj , dk) /∈ F for any dk ∈ D.

Here, M is matching in G that covers U .
Suppose now, that we have a matching M in G that covers U . We note again, that

every edge {um
i , vm

i } and {uw
j , vw

j } should obviously belong to M . Let (mi, wj , dk) be in

the matching F of I if {u1
k, vi,j} ∈ M . Here, |F | = n, since u1

k is covered by M , thus each
dk is in a family of F . To see that F is a disjoint set of families it is enough to observe
that {u1

k, vi,j} ∈ M implies {vm
i , um

i,j}, {v
w
j , uw

i,j} ∈ M , so vm
i (and vw

j) cannot have another
unit-length job um

i,j′ (or uw
i′,j) in M , thus mi (and wj) can belong to at most one family in

F .

4 Approximation algorithms

In this section we give approximation algorithms for mc and ms.

Matching with couples

Theorem 2. Let I be an instance of d-mc on graph G(U∪V,E) with capacities c. If there
is a feasible matching M of I then we can find a feasible matching M ′ for the instance I ′,
where c′(vj) = c(vj) + 1 for each vj ∈ V , in O(ne) time.

Proof. Suppose that U = U0 ∪ U1 where s(u0
i) = 1 for each u0

i ∈ U0 and s(u1
i) = 2 for

each u1
i ∈ U1. We start with a relaxed problem. Let Ir be an instance of ta such that

for each u1
i ∈ U1 in G we create two copies ûi and ǔi in the graph Gr of Ir both of length

1 having the same processing set as u1
i had. If there is a feasible matching M for I then

there must be a feasible matching M r for Ir too. We can find such a matching in O(ne)
time with the algorithm of Abraham [1].

Let GB(V,EB) be an undirected graph such that if M r(ûi) = vj 6= vk = M r(ǔi) then
we create an edge {vj , vk} in EB . Nash-Williams [17] showed that there exists a so-called
balanced orientation of any undirected graph, that is a directed graph DB(V,EB) where
the in-degree of any vertex v ∈ V is at most the out-degree of v plus 1. We can find such
a balanced orientation in O(e) time.

Now we construct a feasible matching M ′ for I ′ in the following way. Let M ′(u1
i) = vk

if M r(ûi) = vj 6= vk = M r(ǔi) and (vj , vk) ∈ D. Further, M ′(u1
i) = M(u1

i) if M r(ûi) =
M r(ǔi), and M ′(u0

i) = M(u0
i) for each u0

i ∈ U0. It is immediate that M ′ is a feasible
matching for capacities c′.

5

Corollary 1. We can approximate P |Mj , pj = {1, 2}|Cmax with an additive error 1,
(giving a polynomial-time approximation with ratio 3

2 .)

Proof. If the optimal schedule corresponding to the matching M has makespan Cmax for
the related instance of P |Mj , pj = {1, 2}|Cmax then there must exist a schedule M r in the
relaxed instance of P |Mj , pj = 1|Cmax (unit-length scheduling problem) with makespan
at most Cmax. Therefore the schedule corresponding to matching M ′ has makespan at
most Cmax + 1 for the original problem.

We note that Glass and Kellerer [6] gave an algorithm resulting in a 1.5-approximation
for P |Mj , pj = {1, 2}|Cmax, however, our algorithm is simpler than theirs, and has a faster
running time.

Matching with sizes

Theorem 3. Let I be an instance of d-ms on graph G(U ∪ V,E) with integer capacities
c and sizes in the set {1, 2, 4, . . . , 2k} for any constant integer k. If there is a feasible
matching M of I then we can find a feasible matching M ′ for the instance I ′ where c′(vj) =
c(vj) + (2k − 1) for each vj ∈ V in O(2kne) time.

Proof. Let U = U0∪U1∪U2∪ . . .∪Uk where s(ui) = 2t for each ui ∈ U t, t = {0, 1, . . . , k}.
We create k + 1 new instances of ms starting from t = k down to t = 0 in the following
way. Let Ik be essentially the same as I with the following minor differences. The
graph Gk(Uk, V) of Ik is the same as G, only U = U0 ∪ U1 ∪ U2 ∪ . . . ∪ Uk is renamed as
Uk = U0

k∪U1
k∪U2

k∪. . .∪Uk
k . The capacities are increased by 2k−1, so ck(vj) = c(vj)+2k−1

for each vj ∈ V .
For every t, t = {k − 1, . . . , 1, 0}, let It be an instance of ms with sizes {1, 2, 4, . . . , 2t}

as follows. Let the graph of It be Gt(Ut, V) where Ut = U0
t ∪ U1

t ∪ U2
t ∪ . . . ∪ U t

t . Let
U l

t = U l
t+1 for every index l < t and U t

t = U t
t+1 ∪ Û t+1

t+1 ∪ Ǔ t+1
t+1 where Û t+1

t+1 and Ǔ t+1
t+1

are two copies of U t+1
t+1 , i.e., each job ui ∈ U t+1

t+1 of length 2t+1 is replaced by two copies

ûi ∈ Û t+1
t+1 and ǔi ∈ Ǔ t+1

t+1 both of length 2t, keeping the same processing set. Finally, let
each capacity be increased by 2t − 1, so ct(vj) = c(vj) + 2t − 1 for each vj ∈ V .

By the above construction, for t = 0 we get an instance I0 of TA where the number of
(unit-length) jobs is at most 2kn (the number of machines remains the same). It is obvious
that if there is a feasible matching for I then there must be a feasible matching for I0

too. We solve this problem with the algorithm of Abraham, thereby obtaining matching
M0. After this we will create M ′ by repeatedly reuniting the separated groups as follows.
Starting with t = 0, given a feasible matching M t for instance It we create an undirected
graph Gt

B(V,Et
B) such that {vj , vk} is in Et

B if M t(ûi) = vj 6= vk = M t(ǔi) where ûi ∈ Û t+1
t+1

and ǔi ∈ Ǔ t+1
t+1 . We orient the edges of Gt

B in a balanced way, getting directed graph

Dt(V,Et
B), and then we construct M t+1 from M t as follows. Let M t+1(ui) = M t(ui) for

every ui ∈ Ut+1\U
t+1
t+1 . If ui ∈ U t+1

t+1 and M t(ûi) = M t(ǔi) then also let M t+1(ui) = M t(ui).

Finally, if ui ∈ U t+1
t+1 and M t(ûi) = vj 6= vk = M t(ǔi) with (vj , vk) ∈ Dt(V,Et

B) then let
M t+1(ui) = M t(ǔi).

If M t is a feasible matching for It then M t+1 is a feasible matching for It+1 since
ct+1(vj) = ct(vj) + 2t for each vj ∈ V and the load of a machine may be increased by at
most 2t in M t+1.

At the end of this process we get a feasible matching M ′ = Mk for instance I ′ = Ik

where c′(vj) = c(vj) + 1 + 2 + 4 + . . . + 2k−1 = c(vj) + 2k − 1.

6

Corollary 2. We can approximate P |Mj , pj = {1, 2, 4, . . . , 2k}|Cmax for any positive
constant k with an additive error 2k − 1, (giving a polynomial-time approximation with
ratio 2 − 1

2k .)

Proof. If an optimal schedule corresponding to a feasible matching M has makespan Cmax

for the related instance of P |Mj , pj = {1, 2, 4, . . . , 2k}|Cmax then there must exist a sched-
ule for the relaxed unit-length scheduling problem with makespan at most Cmax, therefore
M ′ corresponds to a schedule with makespan at most Cmax + 2k − 1 for the original
problem.

Here, the best known approximation-ratio in the scheduling context has been 2, proved
by Lenstra et al. [12] (for a more general setting). This was improved by Shchepin and
Vakhania [23] to 2 − 1

m (where m is the number of machines). But the ratio achieved by
our algorithm (2 − 1

2k) is better for any constant k. For example, for k = 2 (i.e., for job
lengths {1, 2, 4}) we have a 1.75-approximation. Also, our performance ratio is better for
any k ≤ log2 m.

5 Nested processing sets

Given an instance I of ms on a graph G(U, V), let N(ui) denote the processing set of a job
ui, i.e., the neighbours of ui in G. The processing sets form a nested set system if, for any
two jobs ui and u′

i, N(ui) ∩ N(u′
i) 6= ∅ implies either N(ui) ⊆ N(u′

i) or N(ui) ⊇ N(u′
i).

Henceforth we will use the notations ms-n and mc-n for ms and mc with nested set
systems, respectively, and d-ms-n and d-mc-n for the corresponding decision problems.
In the scheduling literature the standard notation for nested set systems is PN instead
of P at the beginning of the abbreviations. The case of PN |Mj |Cmax has been studied
by Glass and Kellerer [6] who gave an approximation algorithm with performance ratio
2 − 1

m (where m is the number of machines). For further descriptions of and motivation
for nested set systems in scheduling problems see [13] and [6].

Theorem 4. d-mc-n is solvable in O(e) time, where e is the number of eligible job-
machine pairs in I.

Proof. Suppose that we are given an instance I of d-mc-n on a graph G(U ∪V,E), where
U = U0∪U1, U0 = {u0

1, . . . u
0
n1
} are the jobs of length 1, U1 = {u1

1, . . . u
1
n2
} are the jobs of

length 2, and V = {v1, . . . vm} is the set of machines with capacities c : V → Z+. Suppose
also that the processing sets V = {V1, V2, . . . Vl} are ordered in such a way that Vi + Vj

for any i < j. Note that l ≤ 2m − 1. Let Ip denote the subinstance of I which is the
restriction of I to the set of machines Vp and to the jobs ui ∈ U such that N(ui) ⊆ Vp

(i.e., the jobs which are eligible for some subset of machines in Vp).
For any matching M , let rM (vj) denote the remaining capacity of machine vj , i.e.,

rM (vj) = c(vj)−
∑

ui:{ui,vj}∈M s(ui). We refer to 2
⌊

rM (vj)
2

⌋

as the remaining even capacity

of machine vj . We say that feasible matching M for Ip is economical if
∑

vj∈Vp
2
⌊

rM (vj)
2

⌋

(i.e., the total remaining even capacity of the set of machines Vp with respect to M) is
maximal.

In the algorithm we take the processing sets according to the above defined order of
V and we consider the corresponding jobs one by one (in any order). We start with the
empty matching, M = ∅, and we enlarge M whenever we allocate a job to a machine. We
use the following greedy rule to choose an eligible machine for the job considered. For
each job u1

i ∈ U1 we allocate u1
i to any machine vj in N(u1

i) for which rM (vj) ≥ 2 if such
a machine exists (and in case rM (vj) < 2 for every machine vj ∈ N(u1

i) we report that no

7

feasible solution exists). For each job u0
i ∈ U0 either we allocate u0

i to any machine vj in
N(u0

i) for which rM (vj) ≥ 1 and rM (vj) is odd, if there exists such a machine, or (in case
rM (vj) is even for every machine vj ∈ N(u0

i)) we allocate u0
i to any machine vj in N(u0

i)
such that rM (vj) ≥ 1. Finally we report that no feasible solution exists in case rM (vj) = 0
for every machine vj ∈ N(u0

i).
We claim that if I is solvable then our algorithm finds a feasible matching M . Moreover,

we will show that M is economical for Ip for every 1 ≤ p ≤ l and for V as well. We prove
this by induction on p. Let Mp−1 and Mp denote the matchings obtained by the algorithm
before and after considering set Vp, respectively.

It is easy to verify the assumption for each set Vp which has no subset in V. In this
case the subgraph of G induced by Ip is complete and no job in Ip is allocated in Mp−1.
Therefore the subinstance Ip is solvable if and only if the total length of the jobs is less
than or equal to the total capacity of the machines, and the total length of the jobs of

length 2 is less than or equal to the total even capacity (i.e.,
∑

vj∈Vp
2
⌊

c(vj)
2

⌋

). It is

straightforward to verify that if Ip is solvable then our algorithm will produce a feasible
matching Mp that is economical for Ip (and the final matching M remains economical for
Ip, since we do not reallocate these jobs later on).

Let us now consider a set Vq that is a superset of some set in V (that we have already
considered in our algorithm). We call a subset Vp ⊂ Vq a child of Vq if there exists no
Vp′ such that Vp ⊂ Vp′ ⊂ Vq. According to our inductive assumption, Mp−1 is economical
for each child of Vq. Let us consider Iq without the new jobs, i.e., without the jobs
{ui : N(ui) = Vq}. For this subinstance Mq−1 is economical, since Mq−1 is economical for
each child of Vq and the processing sets of the children do not intersect with each other.

Therefore a feasible solution exists for Iq if and only if the total length of the new jobs
is less than or equal to the total remaining capacity of the machines with respect to Mq−1,
and the total length of the new jobs of length 2 is less than or equal to the total remaining

even capacity with respect to matching Mq−1 (i.e.,
∑

vj :N(vj)=Vq
2

⌊

rMq−1
(vj)

2

⌋

). Moreover,

if Iq is solvable then our algorithm finds such a feasible matching Mq that is economical
for Iq (and so the final matching M is also economical for Iq).

Finally the claim that M is economical for I (if I is solvable) comes from the fact
that, if V is not a processing set itself, then the processing sets of V with no superset can
be considered as the children of V , thus if M is economical for each of the subinstances
induced by these sets then M is economical for I too.

Corollary 3. PN |Mj , pj = {1, 2}|Cmax is solvable in O(e log n) time, where e is the
number of eligible job-machine pairs.

Proof. It is obvious that the makespan is within the range of [1, . . . , 2n], hence we can find
it by a standard binary search by running our algorithm at most ⌈log2 n⌉ + 1 times.

Theorem 5. d-ms-n with sizes {1, 2, 4, . . . , 2k} is solvable in O(e) time for any constant
k, where e is the number of eligible job-machine pairs.

Proof. We generalise the algorithm and proof given in the proof of Theorem 4 in the
following way. Here let U = U0 ∪ U1 ∪ . . . ∪ Uk, where U r is the set of jobs of length 2r

(for 0 ≤ r ≤ k). Again, we consider the processing sets one by one according to the same
ordering V = {V1, V2, . . . Vl}, and we allocate each job ur

i ∈ U r with the actual processing
set (in any order) using the following greedy rule. If, for the current matching M , there
is a machine with remaining capacity at least 2r then we allocate ur

i to any machine

8

vj ∈ N(ur
i) such that the remaining capacity of vj satisfies the following strict inequality

with the smallest possible s (where r ≤ s < k):

2s+1

⌊

rM (vj)

2s+1

⌋

< 2s

⌊

rM (vj)

2s

⌋

.

Otherwise, if 2k
⌊

rM (vj)

2k

⌋

= rM (vj) then we allocate ur
i to any eligible machine vj with

rM (vj) ≥ 2r (and we report that no feasible solution exists if rM (vj) < 2r for every
machine vj in N(ur

i)).
In this setting, we say that a feasible matching is economical for a processing set Vp if

∑

vj∈Vp
2k

⌊

rM (vj)

2k

⌋

is maximal, and subject to
∑

vj∈Vp
2k−1

⌊

rM (vj)

2k−1

⌋

being maximal and

subject to . . .
∑

vj∈Vp
2
⌊

rM (vj)
2

⌋

being maximal.

We claim that if I is solvable then our algorithm finds a feasible matching M . Moreover
M is economical for each Ip (subinstance of I corresponding to processing set Vp ∈ V) and
economical for I as well. We will prove this by induction on p.

Again, it is easy to prove that the assumption is true for each subinstance Ip where
the corresponding processing set, Vp, has no subset in V. Let Gp(Up, Vp) be the induced
subgraph of Ip and let Mp−1 and Mp denote the matchings obtained by our algorithm
before and after considering set Vp, respectively. Gp is a complete graph, obviously, and
Mp−1 has no edge in Gp. Therefore Ip is solvable if and only if the following inequality
holds for every r, 0 ≤ r ≤ k.

∑

ui∈Up∩(Ur∪Ur+1∪...∪Uk)

s(ui) ≤
∑

vj∈Vp

2r

⌊

c(vj)

2r

⌋

.

Note that for r = 0 this means that the total length of the new jobs must be less than
or equal to the total capacity of the new machines; for r = 1 we get that the total length
of the new jobs of length 2 or more must be less than or equal to the total even capacity
of the new machines, and so on. It is straightforward to verify that our algorithm finds a
feasible matching for the subinstance Ip if it is solvable (resulting in matching Mp), and
that Mp is economical for Ip.

Let us now consider a set Vq that is a superset of some set in V. Here again, Mq−1 is
economical for the subinstance Iq without the new jobs ({ui : N(ui) = Vq}), since Mq−1 is
economical for each child of Vq according to our inductive assumption. Therefore a feasible
solution exists for Iq if and only if the following inequality holds for every r, 0 ≤ r ≤ k.

∑

ui∈{ui:N(ui)=Vq}∩(Ur∪Ur+1∪...∪Uk)

s(ui) ≤
∑

vj∈Vp

2r

⌊

rMq−1
(vj)

2r

⌋

.

That is, for r = 0 we get that the total length of the new jobs is less than or equal to
the total remaining capacity in Vq; r = 1 implies that the total length of the new jobs of
length at least 2 is less than or equal to the total remaining even capacity in Vq, and so
on. It is straightforward to verify that our algorithm finds a feasible solution for Iq if Iq is
solvable, and that Mq is economical for Iq. We can also show that the final matching M
is economical for I, in a way similar to the corresponding result in the proof of Theorem
4.

Corollary 4. PN |Mj , pj = {1, 2, 4, . . . , 2k}|Cmax is solvable in O(e log n) time, where e
is the number of eligible job-machine pairs.

Proof. It is obvious that the makespan is within the range of [1, . . . , 2kn], hence we can
find it by a standard binary search by running our algorithm at most k⌈log2 n⌉ times.

9

6 Further notes

We conjecture that there is a polynomial time approximation algorithm for ms with sizes
{1, 2, 3, . . . , k} with an additive (k − 1) error. One might start to consider ms with sizes
{1, 2, 3} first. In this case, an approximation algorithm with additive error 2 would be
a novel result. On the other hand, if it turns out that it is NP-hard to decide between
Cmax ≤ 3 and Cmax ≥ 5 for P |Mj , pj = {1, 2, 3}|Cmax , then this would lead to a 5

3 -
inapproximability result (breaking the 3

2 inapproximability ratio, which is the best known
even for some more general settings as well).

Finally, we note that the gap is even larger at the moment for nested set systems. It
is unknown whether ms-n is polynomial time solvable with sizes {1, 2, 3, . . . , k} for any
constant k larger than 2. Similarly, PN |Mj , pj = {1, 2, 3, . . . , k}|Cmax is open for any
constant k larger than 2, whilst the best approximation ratio for PN |Mj |Cmax is still
2 − 1

m .

References

[1] D.J. Abraham. Algorithmics of two-sided matching problems. Master’s thesis, Uni-
versity of Glasgow, Department of Computing Science, 2003.

[2] N. Alon, T. Azar, G. Woeginger, and T. Yadid. Approximation schemes for schedul-
ing. In Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, pages
493–500. ACM-SIAM, 1997.

[3] P. Biró. Matching with couples is NP-complete. Unpublished manuscript, 2007.

[4] D. Gale and L.S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69:9–15, 1962.

[5] N. Garg, T. Kavitha, A. Kumar, K. Mehlhorn, and J. Mestre. Assigning papers to
referees. Unpublished manuscript, 2009.

[6] C.A. Glass and H. Kellerer. Parallel machine scheduling with job assignment restric-
tions. Naval Research Logistics. A Journal Dedicated to Advances in Operations and
Logistics Research, 54(3):250–257, 2007.

[7] C.A. Glass and H.R. Mills. Scheduling unit length jobs with parallel nested machine
processing set restrictions. Computers & Operations Research, 33:620–638, 2006.

[8] N.J.A. Harvey, R.E: Ladner, and L. László. Semi-matchings for bipartite graphs and
load-balancing. Journal of Algorithms, 59:53–78, 2006.

[9] R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal
matchings. ACM Transactions on Algorithms, 2(4):602–610, 2006.

[10] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[11] B. Klaus, F. Klijn, and J. Massó. Some things couples always wanted to know about
stable matchings (but were afraid to ask). Review of Economic Design, 11:175–184,
2007.

[12] J.K. Lenstra, D.B. Shymoys, and E. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, 46:259–271, 1990.

10

[13] J.Y.-T. Leung and C.-L. Li. Scheduling with processing set restrictions: A survey.
International Journal of Production Economics, 116:251–262, 2008.

[14] D.F. Manlove and E. McDermid. Keeping partners together: Algorithmic results for
the Hospitals / Residents problem with couples. Journal of Combinatorial Optimiza-
tion, (forthcoming), 2009.

[15] D. Marx and I. Schlotter. Stable assignment with couples: Parameterized complexity
and local search. In Proceedings of the 4th IWPEC: International Workshop on Pa-
rameterized and Exact Computation, Lecture Notes in Computer Science. Springer,
2009.

[16] S. Thomas McCormick, Scott R. Smallwood, and Frits C. R. Spieksma. A polynomial
algorithm for multiprocessor scheduling with two job lengths. Math. Oper. Res.,
26(1):31–49, 2001.

[17] C.St.J.A. Nash-Williams. On orientations, connectivity and odd vertex pairings in
finite graphs. Canadian Journal of Mathematics, 12:555–567, 1960.

[18] http://www.nrmp.org/about nrmp/how.html (National Resident Matching Pro-
gram website).

[19] P.A. Robards. Applying two-sided matching processes to the United States Navy
enlisted assignment process. Master’s thesis, Naval Postgraduate School Monterey
CA, 2001.

[20] E. Ronn. NP-complete stable matching problems. Journal of Algorithms, 11:285–304,
1990.

[21] A. E. Roth. The economist as engineer: Game Theory, Experimentation, and Com-
putation as tools for design economics. Econometrica, 70(4):1341–1378, 2002.

[22] http://www.nes.scot.nhs.uk/sfas/ (Scottish Foundation Allocation Scheme web-
site).

[23] E.V. Shchepin and N. Vakhania. An optimal rounding gives a better approximation
for scheduling unrelated machines.

[24] M.M. Short. Analysis of the current navy enlisted detailing process. Master’s thesis,
Naval Postgraduate School Monterey CA, 2000.

[25] W. Yang, J.A. Giampapa, and K. Sycaratech. Two-sided matching for the U.S. Navy
detailing process with market complications. Technical Report CMU-RI-TR-03-49,
Robotics Institute, Carnegie Mellon University, 2003.

11

