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Abstract

We extend the Erdős-Gallai Theorem for Berge paths in r-uniform
hypergraphs. We also find the extremal hypergraphs avoiding t-tight
paths of a given length and consider this extremal problem for other
definitions of paths in hypergraphs.

1 Introduction

The aim of the present paper is to extend the following classical result to
uniform hypergraphs.
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Theorem 1.1 (Erdős-Gallai[3]). Let G be a graph on n vertices containing
no path of length k. Then e(G) ≤ 1

2
(k − 1)n. Equality holds iff G is the

disjoint union of complete graphs on k vertices.

The problem of finding the maximal size of a graph without a cycle of
length k is much harder even for ordinary graphs. However, there are some
papers containing results on the hypergraph version. Since the present paper
concentrates to the path version we only cite those results that are connected
to the path problem.

We consider several generalizations of Theorem 1.1 for hypergraphs. This
is due to the fact that there are several possible ways to define paths in
hypergraphs. One such definition of paths in hypergraphs is due to Berge.

Definition 1.2. A Berge path of length k in a hypergraph is a collection
of k hyperedges h1, . . . , hk and k + 1 vertices v1, . . . , vk+1 such that for each
1 ≤ i ≤ k we have vi, vi+1 ∈ hi.

We find the extremal sizes of r-uniform hypergraphs avoiding Berge paths
of length k. Interestingly, the size of the extremal hypergraphs depend on
the relationship between r and k. Especially, the cases when k ≤ r and k > r
behave differently.

Theorem 1.3. Fix k > r + 1 > 3, and let H be an r-uniform hypergraph
containing no Berge path of length k. Then e(H) ≤ n

k

(
k
r

)
.

We just learned that Mubayi and Verstraete proved this theorem if k >
2r > 2 or k > r + 1 > 11 but it was not published. On the other hand,
if k ≤ r, we have a different theorem. It is very annoying that the case
k = r+ 1 is still open, though we think that the theorem above is right. We
were able to prove it only when r = 3 and k = 4. The proof of this case is
presented after the proof of Theorem 1.3.

Theorem 1.4. Fix r ≥ k > 2. If H is an r-uniform hypergraph with no path
of length k, then e(H) ≤ n(k−1)

r+1
.

Remark 1.5. Both of the above theorems are sharp for infinitely many nas
the following two examples show. In the first case, if k > r, suppose that k
divides n and partition the n vertices into sets of size k. In each k set, take
all possible subsets of size r to be in the hypergraph. Such a hypergraph has
exactly n

k

(
k
r

)
hyperedges and clearly contains no k-path.
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In the second case, k ≤ r. Here we partition the vertices into sets of size
r+1 and then on each r+1 set, we select exactly k−1 of its subsets of size r
to be in the hypergraph. This hypergraph has exactly k−1

r+1
n hyperedges and

as each component is encompasses exactly k− 1 edges, it is clear there is no
path of length k. In this paper we will not deal with the case when k = 2,
as it is trivial, but it is interesting to note that the above construction is not
best possible when k = 2.

A similar result can be found in [12], the authors give upper bounds for
the maximum number of edges in a hypergraph that avoids so called minimal
k-paths. These are Berge-paths that satisfy an additional constraint that two
edges of the path hi and hj are disjoint iff |i− j| ≥ 2.

One can further restrict the idea of a Berge path, the cycle version of the
following notion first appeared in [2].

Definition 1.6. Fix r ≥ 2 and t, 1 ≤ t ≤ r− 1. A t-tight path of length k in
a r-uniform hypergraph is a Berge-path on k + 1 vertices {v1, v2, . . . , vk+1}
and k hyperedges {h1, h2, . . . hk} such that consecutive hyperedges intersect
in at least t points.

Of course a 1-tight path is the same as a Berge path. In [2] t-tight paths
have been studied in other settings. A similar, but more restrictive notion
called ℓ-cycle appears in [11] yet in other context.

As in the case of Berge paths, we can get quite exact results regarding
hypergraphs avoiding t-tight paths.

Theorem 1.7. Fix r ≥ 2 and t, 1 ≤ t ≤ r − 1. Fix k large (and n should be
large enough too.. Let H be an extremal r-uniform hypergraph on n vertices
containing no t-tight path of length k. Then

(1− o(1))

(
n
t

)(
k
r

)(
k
t

) ≤ e(H) ≤
(
n
t

)(
k
r

)(
k
t

)
The lower bound follows directly from a theorem of Rödl [14].

Theorem 1.8 (Rödl [14]). The packing number m(n, k, l), i.e. the size of
the largest k-uniform family of subsets of an n-set such that every l-set is

contained in at most 1 member of the family is (1 + o(1))
(nl)
(kl)

.
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Remark. Just recently, Keevash improved the error term in his paper to
appear.

Next we consider a further, more strict definition of a path that was first
introduced by Katona and Kierstead in [10].

Definition 1.9 ([10]). A tight path of length k in a r-uniform hypergraph
is a collection of k + r − 1 vertices {v1, v2, . . . , vk+r−1} and k hyperedges
{h1, h2, . . . hk} such that for each 1 ≤ i ≤ k, hi = {vi, vi+1, . . . , vi+r−1}.

It follows from the definition that a tight path is always an (r − 1)-tight
path, but not all (r − 1)-tight paths are tight. The difference between the
two definitions will be explored later on.

There are numerous papers on tight cycles, mostly in connection with
Hamiltonicity. The results in [5, 15] are somewhat related to the present
topic, bounds are given for the maximum number of edges in a uniform
hypergraph with no tight Hamiltonian cycle.

For tight paths our lower and upper bounds differ by a factor r.

Theorem 1.10. Let H be an extremal r-uniform hypergraph containing no
tight path of length k. Then

(1− o(1))
k − r + 1

r

(
n

r − 1

)
≤ |e(H)| ≤ (k − 1)

(
n

r − 1

)
The lower bound again follows easily from Rödl’s Theorem 1.8.

Remark 1.11. The definition of tight paths in uniform hypergraphs can be
extended to tight trees in r-uniform hypergraphs. Such trees are defined
inductively. A single edge forms a tight 1 tree. If a collection of edges form
a tight (k− 1) tree, then adding a new edge which intersects a previous edge
in r − 1 vertices and contains a ‘new’ vertex (which is not contained in any
of the previous edges) yields a tight k tree. It is easy to see that tight paths
are also tight trees. Kallai [4] made the following conjecture regarding the
extremal number for tight trees.

Conjecture 1.12 (Kalai [4]). If the number of edges in an r-uniform hyper-
graph is > k−1

r

(
n

r−1

)
then it contains every r-tree with k edges.

In [4] the authors prove a special case of this conjecture.
Note that if true, the conjecture would imply that the upper bound in

Theorem 1.10 is k−1
r

(
n

r−1

)
.
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As noted above, there is an important difference between (r − 1)-tight
paths and tight paths in r-uniform hypergraphs. We can investigate this
difference by considering the following.

Definition 1.13. Let k > r ≥ 2 and 1 ≤ J < k. Then a Berge path
of length k in a r-uniform hypergraph H on hyperedges e1, . . . , ek satisifies
intersection conditions (J) if

for 1 ≤ l ≤ J and i > l, |ei ∩ ei−l| = max{r − l, 0}

Of course a Berge path satisfying intersection conditions (1) is the same
as an r − 1 tight path. Furthermore, a Berge path satisfying intersection
conditions (k − 1) is exactly a tight path. It is interesting that as above, an
extremal hypergraph excluding (r − 1)-tight paths of length k contains as-
symptotically k−r+1

r

(
n

r−1

)
hyperedges. On the other hand, our best construc-

tion for a hypergraph exluding a tight path of lenght k contains k−1
r

(
n

r−1

)
hyperedges. Supposedly, each Berge path satisfying intersection conditions
(J) falls somewhere between these two. However, while there are k − 1 dif-
ferent intersection conditions, there are only r − 1 possible block sizes in
Theorem 1.8 (which we believe form the extremal hypergraphs).

The rest of the paper is organized as follows. In section 2 we prove
Theorem 1.3. No really new new ideas are needed; our proof is very similar
to the original one. In section 3 we look at t-tight paths. In section 4 we
consider tight paths and (r − 1)-tight paths satisfying a certain number of
intersection conditions as in Definition 1.13.

Remark. An extended abstract of our results already appeared in [9].
Since that several papers cited them in various context: [6, 8, 13], further-
more Allen, Böttcher, Cooley and Mycroft [1] have obtained upper and lower
bounds for an analogue of Theorem 1.10 in the range k = αn for α constant,
which are asymptotically almost equal when α is small.

2 Berge Paths

Proof of Theorem 1.3. Let P be a longest path in H. Let v1, v2, . . . , vl+1

be the vertices of P , and h1, h2, . . . , hl the hyperedges such that for each
i = 1, . . . l, vi, vi+1 ∈ hi. Let H′ be the hypergraph obtained by deleting the
edges of P from H. Specifically, let H′ = H\{h1, h2, . . . , hl}. Suppose that
l < k.
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Lemma 2.1. If there is a cycle of length l+1 on the vertices v1, v2, . . . , vl+1,
then these vertices constitute a component of the hypergraph H.

Proof. To see this, suppose that C is such a cycle. Then if an edge h in
the cycle C does not lie completely within the vertices v1, v2, . . . , vl+1, then
deleting h from C we have an l-path which can be extended (by the edge h)
to a path of length at least l + 1. Thus every edge h in the cycle C must
be contained within the vertices v1, v2, . . . , vl+1. In fact, something stronger
is true. For each vertex in the cycle, vi, the neighborhood of vi lies within
v1, v2, . . . , vl+1. (The neighborhood of a vertex is the set of vertices in H
which are connected to vi by an edge.) Indeed, suppose that for some i,
the vertex vi has a neighbor y outside of {v1, v2, . . . , vl+1}. Then the edge
containing both vi and y is not an edge of C (by the above argument.) Thus,
removing an appropriate edge of C so that it is a path of length l with vi
as an endvertex, we can extend this to a path of length l + 1 with y as an
endvertex, a contradiction.

Based on Lemma 2.1, we prove the theorem by induction on n. Clearly,
for small values of n, the theorem trivially holds. Now, fix n such that the
theorem holds for all n′ < n Then let H = (E , V ) be a r-uniform hypergraph
on n vertices with e(H) > n

k

(
k
r

)
. We can asssume that the following holds

for the minimal degree, δ, in H.

δ = e(H) >
1

r

(
k − 1

r − 1

)
(1)

Otherwise, if there is a vertex x in H with degree no more than
(
k−1
r−1

)
, then

we may delete this vertex (and all the edges incident with it) from H. The
result will be a hypergraph on n − 1 vertices with more than n−1

k

(
k
r

)
edges.

Thus by the induction hypothesis, this hypergraph will have a path of length
k.

Let P be a longest path in H. Let v1, v2, . . . , vl+1 be the vertices of P ,
and h1, h2, . . . , hl the hyperedges such that for each i = 1, . . . l, vi, vi+1 ∈ hi.
Suppose that l < k.

Let H′ be the hypergraph obtained by deleting the edges of P from H.
Specifically, let H′ = H\{h1, h2, . . . , hl}. Note that by the choice of P , the
neighborhoods of v1 and vl+1 in H′ must fall within {v1, v2, . . . , vl+1}

Claim 2.2. We may assume that vl+1 (and similarly v1) is contained by at
least one hyperedge in H′.
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Proof of Claim 2.2. Suppose vl+1 is not contained by any hyperedge in H.
Let S be a maximal set of vertices vi of P such that the vertices and edges
of P can be reordered to constitute a path P ′ = v′1, h

′
1, v

′
2, . . . , v

′
l, h

′
l, v

′
l+1 such

that
(1) v′1 = v1 ,
(2) v′l+1 = vi
(3) if vj−1, vj ̸∈ S then vj−1 and vj are consecutive (there are two possible

orders!) and they are joined by the hyperedge hj−1.
If v is contained in a hyperedge not in P then we are done.
Notice that {vl+1} is such a set, so S is nonempty. Suppose that hj is

a hyperedge such that vj−1, vj ̸∈ S but hj contains a vertex v ∈ S. Then
take the path P ′ satisfying (1)-(3) with v′l+1 = v. Then take the starting
segment of P ′ to the first vertex of vj−1 and vj , then continue with hj and
the segment of P ′ backward from v to the second vertex of vj−1 and vj. By
definition, the last vertex of this path should belong to S, a contradiction.
So if we delete a vertex vj ∈ S from V (H) then we delete just the hyperedges
hj−1, hj from H, so at most 2|S| − 1 edges and the proof of the Claim is
complete by the induction hypothesis, since 1

r

(
k−1
r−1

)
≥ 2.

Clearly, if there is an edge of H′ containing both v1 and vl+1, then the
edges of P form a cycle of length l + 1 and we are done as above. On the
other hand, if there exist edges g1, g2 ∈ H′ such that for some i, 1 < i < l+1,
v1, vi+1 ∈ g1 and vl+1, vi ∈ g2 then clearly k ≥ 2r and there is an (l+1)-cycle
again on the vertices

v1, vi+1, vi+2, vi+3, . . . , vl+1, vi, vi−1, vi−2, . . . , v1.

Thus by the pigeonhole principle, if in H′ the degrees of both v1 and vl+1 are

greater than
( k−2

2
r−1

)
, then there is a l + 1 cycle on v1, v2, . . . , vl+1 in H. If the

degree of both v1 and vl+1 are at most
( k−2

2
r−1

)
, then delete these vertices and

the hyperedges in P and we are done since

2

r

(
k − 1

r − 1

)
≥ 2

(
k−2
2

r − 1

)
+ k − 1

if k ≥ 2r. (We leave the details to the reader.)

Finally if, say, the degree of v1 is greater than
( k−2

2
r−1

)
but the degree of vl+1

is at most
( k−2

2
r−1

)
then the degree of vl+1 is at most

( k−2
2

r−1

)
+ k−2

2
since if vj is

7



contained by a hyperedge e in H′ and hj−1 contains vl+1 then e, h1, . . . hj −
1, hl, hl−1, . . . hj constitute a cycle and we are done by induction. So the
degree of vl+1 is at most

1

r

(
k − 1

r − 1

)
≥

(
k−2
2

r − 1

)
+

k − 1

2

and we are done again by induction as above if we delete the vertex vl+1 and
the hyperedges containing it.

This completes the proof of the theorem.

Conjecture 2.3. Fix k = r + 1 > 2, and let H be an r-uniform hypergraph
containing no Berge path of length k. Then e(H) ≤ n

k

(
k
r

)
= n.

We can prove the conjecture if r = 3 and k = 4.

Theorem 2.4. Let H be a 3-uniform hypergraph containing no Berge path
of length 4. Then e(H) ≤ n.

Proof. The following claim is an easy exercise to prove.

Claim 2.5. If a connected graph on n vertices contains at least n+ 1 edges
and does not contain a path of length 4 (with 5 different vertices) then it is
either a K4 or K4 − e.

To prove the theorem we use the method introduced in [7]. Suppose
indirectly that there exists a 3-uniform hypergraph H without a path of
length 4 that contains at least n+1 edges. If the hypergraph is not connected
then at least one of the components must have more edges than vertices, so
we can assume that our hypergraph is connected.

Let us construct a graph H on the ground set of H by embedding a
(unique) edge into each hyperedge of H. Construct H greedily, take the
hyperedges of H in arbitrary order and for each hyperedge embed an edge
that has not already been used in H.

If at some step we cannot find such an edge, then H contains the edge
e0 = {v1, v2, v3} so that each edge in H is already assigned to a hyperedge.
Let these edges be e1 = {v1, v2, u1}, e2 = {v2, v3, u2}, e3 = {v3, v1, u3}. If u1 =
u2 = u3 then u1, e1, v1, e0, v2, e2, v3, e3, u1 is a cycle of length 4, so by Lemma
2.1 these 4 vertices and 4 edges form a component, contradicting the assump-
tion. On the other hand, if say u1 ̸= u2, then u1, e1, v1, e0, v2, e2, v3, e3, u2 is
a path of length 4.
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Thus we can assume that the greedy algorithm assigned an edge to each
hyperedge. If H contains a path of length 4 on 5 different vertices then a
hyperedges that were assigned to the edges to the path clearly form a path
of length 4 in H, a contradiction again. Thus by Claim 2.5 every component
of H is a K4 or K4− e. Take one such component. It clearly contains a cycle
of length 4, therefore the corresponding hyperedges form a cycle of length 4.
Using Lemma 2.1 we get a contradiction again.

We now consider the case of r-uniform hypergraphs avoiding a Berge path
of length k where r ≥ k > 2.

Proof of Theorem 1.4. We will prove Theorem 1.4 by induction on k. In
fact, we prove a bit stronger statement.

Proposition 2.6. Fix k and r such that r ≥ k > 2. Let H be a connected
r-uniform hypergraph with

e(H) >
k − 1

r + 1
n

where n is the number of vertices in H. Then for each edge e ∈ H, there is
a Berge path of length k in H starting with e.

It is easy to see that the proposition is a strengthening of Theorem 1.4.

Proof of Proposition 2.6. By induction on k.
We first consider the case k = 3. Suppose the theorem does not hold and

let H be a minimal (in terms n) counterexample. Then by assumption, there
exists an edge e ∈ H such that all paths starting with e in H are of length
k − 1 or less. We will show this leads to a contradiction.

If there exists an edge f ∈ H disjoint from e then, as H is connected,
there must be a 3-path starting at e. We can thus suppose that every edge
of H meets e. Suppose that two edges f and g of H meet outside e. Clearly
e, f, g form a 3-path. On the otherhand if there exist edges f and g such
that |e∩ f | ≥ 2 and |e∩ f ∩ g| ≥ 1 then again e, f, g form a 3-path. Thus we
may assume that every edge of H meets e, no edges meet outside of e and
an edge meeting e in at least 2 vertices meets no other edges of H.

We can now count the n vertices of H. First there are the r vertices in e.
Then there is at most one edge, f , which intersects e in two or more points;
this edge contributes at least one new vertex to the count. The remaining
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edges each intersect e in one point and thus each contribute r− 1 vertices to
the count: n ≥ (r − 1)(e(H)− 1) + 2. But then as n ≥ r + 1,

e(H) ≤ n− 2

r − 1
+ 1

≤ 2

r + 1
n,

contradicting the inequality in Proposition 2.6.
Now suppose the theorem holds for k − 1, where k ≥ 4 is fixed. Let H a

connected r-uniform hypergraph satisfying the inequality in Proposition 2.6.
Fix an edge e in H. The basic idea is to remove e from H and apply induction
on the remaining graph to find a k − 1 path P , such that P + e forms a k
path. The only difficulty arise in finding an apropriate subgraph in which
to apply the inductive hypothesis. To this end, consider the components of
H − e: C1, C2, . . . , Cm. We claim there must be an i such that

e(Ci) + 1 >
k − 1

r + 1
v(Ci).

Otherwise we get the contradiction

e(H) ≤
∑

e(Ci) + 1 ≤
∑ k − 1

r + 1
v(Ci) ≤

k − 1

r + 1
n.

Now pick a vertex x ∈ e∩Ci and let Ci−x be the (possibly no longer uniform)
hypergraph obtained by removing x from every edge of Ci: Ci−x = {g−x|g ∈
Ci}. Let Ci1, Ci2, . . . , Cit be the connected componenets of Ci − x. It can be
checked that for r ≥ k, e(Ci) + 1 > k−1

r+1
v(Ci) implies e(Ci) >

k−2
r
(v(Ci)− 1).

Thus there exists a j such that

e(Cij) >
k − 2

r
v(Cij).

Let e∗ be an edge of Cij for which the edge e∗ ∪ {x} belongs to Ci. To
complete the proof, we will reduce the r-edges of Cij each by one vertex to
achieve a (r − 1)-uniform hypergraph, H∗, connected and satisfying

e(H∗) >
k − 2

r
v(H∗).

We will then use induction to find a k − 1 path starting at e∗ in H∗. To
be able to apply the inductive hypothesis, we must ensure that the process
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of reducing the r edges of Cij to r − 1 edges neither disconnects the graph
nor creates multiple edges. We claim that, one by one, for each r-edge of
Cij, we can pick a vertex of the edge and remove it from the edge such that
the remaining graph is still connected and such that no multiple edges are
created.

Suppose for some r-edge f this is not possible. If every vertex of f is
a cut vertex, then no other edge meets f in more than one vertex and we
simply contract the vertices of f to one vertex and delete f from the graph.
The graph is still connected, there are no multiple edges created in this step
(otherwise not every vertex of f would be a cut-vertex) and it can be checked
that

(k − 2)(r − 1)

r
≥ 1,

which holds for r ≥ k ≥ 4, implies that

e(Cij)− 1 >
k − 2

r
(v(Cij)− (r − 1)) .

Thus we may assume that not every vertex of f is a cut vertex. Suppose
now that the deletion of any vertex of f would lead to multiple edges in the
graph. This means that every r − 1 subset of f is already an edge of the
graph. In this case there is clearly a Pr−1 path within the edge f . This path
can be extended (in the original graph H) to the edge e; such a path will
have length at least k.

Finally it is clear that if removing a vertex x from f causes a multiple
edge to appear in the graph then there cannot be another vertex y of f whose
removal (from f) would cut the graph. Thus we can indeed transform Cij

into a (r − 1) uniform, connected hypergraph satisfying

e(H∗) >
k − 2

r
v(H∗).

In particular, by the induction hypothesis, there is a k−1 path in H∗ starting
at e∗. Let e∗, e∗2, . . . , e

∗
k−1 be the edges of this path and consider the associated

edges in H : e1, e2, . . . , ek−1. Now by definition of H∗, x ∈ e ∩ e1 and x ̸∈
∪l>2e

∗
l . Thus we can extend the path in H to e, e1, e2, . . . , ek−1 except in the

case when r = k and e consists precisely in those vertices in the intersections
el ∩ el+1 together with the endpoint of the path in ek−1. However as ek−1

must be different from e, we may simply choose a different endpoint in ek−1.
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3 t-Tight Paths

Proof of Theorem 1.7. First consider the lower bound. By Theorem 1.8,
there is a family B of k-sets of an initial n set such that no t set is con-
tained in more than 1 element of the family and such that

|B| ≥ (1− o(1))

(
n
t

)(
k
t

)
We claim that the r-uniform hypergraph H obtained by replacing each mem-
ber of B with all its

(
k
r

)
r-sets contains no t-tight path. Any such path would

have vertices in at least 2 different memebers of B. Specifically, such a path
would contain vertices u and v with u ∈ B1\B2 and v ∈ B2\B1 where B1

and B2 are two distinct members of B. But |B1 ∩ B2| < t (the same holds
for all distinct pairs of members of B.) Thus there can be no t-tight path in
H from u to v.

We now look at the upper bound. If t = 1 then we are done by Theorem
1.3. Suppose then that t ≥ 2. Let H be a hypergraph on n vertices with
more than

(
n
t

)(
k
r

)
/
(
k
t

)
hyperedges. Then it is easy to see that there exists a

vertex x1 ∈ V with degree at least

r

n

(
n
t

)(
k
r

)(
k
t

) =

(
n−1
t−1

)(
k−1
r−1

)(
k−1
t−1

)
Let H1 = {h\{x1} : h ∈ H∧ x1 ∈ h} be the link of x1. Then continuing we
can clearly find vertices x2, . . . , xt−1 such that for 1 < i < t, Hi is the link
of xi in Hi−1 and such that for 1 < i < t, the degree of xi in Hi−1 is greater
than

(
n−i
t−i

)(
k−i
r−i

)
/
(
k−i
t−i

)
. But then Ht−1 is simply a (r−t+1)-graph on n−t+1

vertices with more than n−t+1
k−t+1

(
k−t+1
r−t+1

)
edges. But then applying Theorem 1.3

we can find a path of length k− t+1 in Ht−1. If the minimal degree in Ht−1

is large enough, we can then extend this path using the vertices x1, . . . , xt−1

to a t-tight path of length k in H.

4 Even Tighter Paths

In this section we consider the relationship between tight and t-tight paths.
We prove Theorem 1.10 and a related theorem concerning (r−1)-tight paths
satisfying intersection conditions J for fixed 1 ≤ J ≤ k − 1. First we will
need a simple averaging argument.
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Lemma 4.1. Let H be an r-uniform hypergraph on n vertices with strictly
more than c

(
n

r−1

)
edges. Then there exists an nonempty sub-hypergraph, H′

,
of H such that

∀S ∈
(
V(H)

r − 1

)
, dH′ (S) ≤ c ⇒ dH′ (S) = 0 (2)

where dH′ (S) refers to the number of hyperedges of H′
containing the set S.

Proof of Lemma 4.1. Let H be as in the statement of the lemma, and let H1

be the (r− 1)-uniform hypergraph on V(H) with edge set {e ∈
(V(H)
r−1

)
: ∃h ∈

H, e ⊂ h}. The hypergraph H1 is commonly called the lower shadow of H.
Let w be a weight function on the edges of H1 where w(e) = dH(e). Then∑

e∈H1

w(e) = r · e(H) > rc

(
n

r − 1

)

and the average weight, w̄, over the edges of H1 is strictly more than rc
(

n
r−1

)
.

Let e be an edge of H1 with weight no more than c. Now let H′
= H\{h : e ⊂

h} be a subgraph of H and let define a new weight function w
′
on the edges

of H1: w
′
(g) = dH′ (g) for each g ∈ H1. Finally let H′

1 = H1\{g : w
′
(g) = 0}.

Then ∑
g∈H′

1

w
′
(g) =

∑
g∈H1

w
′
(g) ≥

∑
g∈H1

w(g)− rc > rc · e(H′

1)

and in particular, (1/e(H′
1))

∑
g∈H′

1
w

′
(g) > rc. Replacing H with H′

and

H1 with H′
1, we may repeat the above operation (as long as there are edges

e ∈ H1 with degree no more than c and the average weight of the resulting
hypergraph H′

1 will always be bounded below by rc. In particular at some
point there will be no more edges of degree less than or equal to c in H′

1,
and at that point H′

will have the desired property. Note that H′
will not

be empty as the average degree of (r − 1) sets in the shadow of H′
will be

bounded below by rc.

Proof of Theorem 1.10. The lower bound follows from our usual construction
using Theorem 1.8. The upper bound follows just as easily from Lemma 4.1.
If an r-uniform hypergraph H on n vertices satisfies 2 then it is quite clear
that we can find a tight path of length k in H: in fact every edge of H will
be contained in such a path.
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It is thus perhaps unsurprising that the upper bound (and trivially the
lower bound) of Theorem 1.7 for (r− 1)-tight paths also holds for paths sat-
isfying intersection conditions (2) if k is big enough compared to r. On the
otherhand it is easy to see that our construction for maximal hypergraphs
containing no tight path does indeed contain Berge paths satisfying intersec-
tion conditions (k − 2). We give the following theorem which is clearly best
possible up to a factor of r.

Theorem 4.2. Let H be an r-uniform hypergraph containg no Berge path
of length k which satisfies intersection conditions (J) in Definition 1.13. If
k − J > r − 1, set a := r − 1. Otherwise set a := k − J . Then e(H) <
(k − a)

(
n

r−1

)
.

Note that for J = 1 (i.e. for (r− 1)-tight paths), the theorem is a weaker
result than Theorem 1.7.

Proof of Theorem 4.2. This proof is a simple application of Lemma 4.1.
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