N

N

Climbing discrepancy search for flowshop and jobshop
scheduling with time-lags

Wata Karoui, Marie-José Huguet, Pierre Lopez, Mohamed Haouari

» To cite this version:

Wafa Karoui, Marie-José Huguet, Pierre Lopez, Mohamed Haouari. Climbing discrepancy search for
flowshop and jobshop scheduling with time-lags. ISCO 2010 - International Symposium on Combi-
natorial Optimization, Mar 2010, Hammamet, Tunisia. pp.821 — 828, 10.1016/j.endm.2010.05.104 .
hal-00957670

HAL Id: hal-00957670
https://hal.science/hal-00957670
Submitted on 10 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00957670
https://hal.archives-ouvertes.fr

Climbing discrepancy search for flowshop and
jobshop scheduling with time-lags

Wafa Karouil?
Marie-José Huguet!

Pierre Lopez!

Mohamed Haouari?

LCNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France

and Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077
Toulouse, France

and
2Unité de recherche ROI ; Ecole Polytechnique de Tunisie,
2078 La Marsa, Tunisia

Abstract

This paper addresses the jobshop and the flowshop scheduling problems with mini-
mum and maximum time lags. To solve this kind of problems, we propose adapta-
tions of Climbing Discrepancy Search (CDS). We study various parameter settings.
Computational experiments are provided to evaluate the propositions.

Keywords: Scheduling, jobshop, flowshop, time lags, discrepancy.

! Email:wakaroui ,huguet,lopez@laas.fr
2 Email:mohamed . haouari@ept.rnu.tn

1 Introduction

This paper addresses the jobshop and the flowshop scheduling problems with
minimum and maximum time lags. The objective is to find a schedule that
minimizes the makespan. Different definitions can be associated to time lags
constraints. Initially, Mitten [5] proposes this concept. [2] defines it as time
between the end of one operation and the start of another. In our case,
we speak about two extra constraints added to the jobshop and flowshop
problems, linking successive operations of a same job. Time between these
operations is bounded by minimum and maximum time lags. These problems
can be considered as a generalization of basic problems without time lags
(NP-hard in the strong sense). With time lags, problems become at least
as difficult as the basic ones. Few methods have been used to solve this
type of problems. [1] proposed a memetic algorithm which obtained good
results on jobshop instances with null minimum and maximum time lags (no-
wait problems). [3] also studied this problem including generalized resource
constraint propagation rules and branch-and-bound.

In this paper, we propose adaptations of Climbing Discrepancy Search
(CDS) [6], to solve scheduling problems with time lags. The remainder of
the paper is organized as follows. Section 2 introduces the principle of CDS
and proposed adaptations for the studied problems. Section 3 synthesizes
experiments carried out to evaluate the performance of CDS. Finally, Section
4 highlights the conclusions and some further works.

2 Discrepancy and learning for problems with time lags

To solve problems with time lags, we propose a variant of Climbing Discrep-
ancy Search method, a tree search principle for optimization based on dis-
crepancy. This method starts from an initial solution proposed by a given
heuristic and tries to improve it by increasing step by step the number of
times we do not follow this solution (discrepancy). It then builds a neighbor-
hood around this initial solution. Nodes with a number of discrepancies equal
to 1 are first explored, then those having a number of discrepancies equal to
2, and so on. When a leaf with improved value of the objective function is
found, the reference solution is updated, the number of discrepancy is reset to
0, and the process for exploring the neighborhood is restarted. To limit the
tree search expansion, we put a stop condition as a timeout on the CPU time.
To adjust our method to problems under study, we propose various param-
eter settings: discrepancy position in the search tree, heuristics to generate

the initial solution, learning mechanisms based on weights associated to jobs.
The discrepancies counting is binary: the heuristic choice corresponds to zero
discrepancies, all the other choices correspond to one discrepancy.

2.1 Discrepancy position

We experiment to diverge alternatively, first at the top of the search tree,
or first at its bottom. We try also to diverge only in a part of the tree, for
example at the top, and to visit the other part without discrepancy at all.

2.2 Heuristic to generate the initial solution

The heuristic selects a job and places all its operations in the order of their
definition (routing). In the sequel, we call D the duration of a job equal to
the sum of all its operation durations and DTL the sum of all its time lags
durations. To obtain an initial solution, we can consider heuristics which sort
jobs in the lexicographical order, as in [3], or in the ascending or descending
order of D, DTL, D+DTL, and D/DTL. For a given problem, it is obvious
that if we start the search from a good solution, we have more chance to get
more improvements.

2.3 Learning based on weights on jobs

Learning can guide the method and improve it. To adjust the proposed
method to problems under study, we associate a weight to each job. At the
beginning, all weights are identical. We can increase the weight W (.J;) associ-
ated to job J; in different ways. We studied three cases as shown in Figure 1
where operations of job J3 cannot be placed in their first slack period on the
associated machine. In Figure 1, (O;;, my, d;;) denotes the j operation of job
J; to execute on machine my, with duration d;;. T'Lmin and T'Lmax denote
the minimum time lag and the maximum time lag, respectively.

e Case A) The job weight is increased every time one of its operations is not
inserted in some slack period. In the example, the weight of .J3 is then 5.

¢ Case B) The job weight is increased every time one of its operations is not
inserted in the first slack period on one of its associated machine. As we can
see in the example, we increment the weight at most one time per machine
(or operation). The maximal factor to get on a considered operation is equal
to the number of machines (or operations). In the example, the weight of
J3 is then 3.

Ji and J already scheduled:

N j
" 77 R
Tl | 77

VA Ji = {(O11,m1,6), (012, m2,4), (O13,m3,8)}

E:i Ja = {(0217m379)a(0227m155)3(0237m255)}

& J3 = {(031,m2,3), (032,m1,2), (033, m3,4)}
031-035 : TLmin=0 and T Lmax = 1

032-033 : TLmin=0 and T'Lmax = 0

J3 insertion:

w2 BN N
__6_8 14 16_ 22 24

~a_ -

. @ 2\ \i§w

o f S, Y

22 24
Case
A | B C
of incrementations | Oz | +2 | +1 | true
associated O3y | +2 | +1 | true
to the operation Oss | +1 | +1 | true
Weights of the job Js | +5 | +3 | +1

Fig. 1. Different ways to increment job weights

e Case C) The job weight is increased every time one or more operations of
this job are not placed in their first slack periods on the associated machine.
In the example, the weight of J3 is then 1. As we can see in the example,
the weight is increased at most one time for the same job.

Anyway, in addition of the manner to increase weights, we have to choose
a way to count them. For example, we can consider the sum of all weights
obtained by the job during the iteration (denoted in the following by Sum),
or the maximum of all its weights (denoted by Maz) as shown in Figure 2. In
the next iterations, obtained weights are integrated in the basic heuristic to
choose the job to schedule first. For instance, if the heuristic is based on the
duration D of jobs, the heuristic using weights can be based on D /weights.

W (J3)=3

W(Js)=5

Max | 6 | 4 | 5
Sum | 71|17 |9

Fig. 2. Different ways to count job weights

2.4 Algorithm

Algorithm 1 summarizes the principle of CDS method. Various parameter
settings (in bold) offer many choices. The heuristic (line 3) can be adapted, as
well as the parameters of CDS iteration (line 6). Div_pos increment denotes
the discrepancies position chosen to diverge first: either first at the top or
first at the bottom. Case denotes the case A, B or C chosen to increment the
discrepancies. Its value is equal to zero if we do not associate weights to jobs.
Counting denotes the weight counting way, Maz or Sum.

Algorithm 1 Climbing Discrepancy Search iteration
1 k«— 0%k is the discrepancy number
2 ke — n % n is the variable number
3 Sinit < initial_solution(heuristic) % Siniy is the initial solution
4 while k <k, do
k «— k+1 % Generate k-discrepancies branches from Si.
Sinit” — Generate(Sipi, k, Div_pos, Case, Counting)
if Best(S],;, Sinit) then
Sinit < Sl % Update the initial solution
k<« 0
10 end if
11 end while

© 03D W,

3 Computational results

We experiment our propositions on the data set of classical instances of schedul-
ing problems proposed in [4]. For jobshops, we consider the Lawrence’s in-
stances {laX}x—1 90 in addition to Fisher and Thompson’s instances, ft06
and ft10. For flowshops, we consider Carlier’s instances {carX}x_s s. The
data set contains instances created from classical instances with minimum and
maximum time lags generated with a minimum time lag (7'Lmin) equal to
0 and a maximum time lag (7'Lmaz) equal to 0, 0.25, 0.5, 1, 2, 3, 5, and
10. Comparisons are done vs. results obtained by [1] which consider only
the ft06 with T'Lmax of 0, 0.5, 1 and 2, {laX}x—1 20 with T'Lmaz equal
to 0, {laX}x—1.5 with TLmax equal to 0.5, 1 and 2, and {laX}x—¢.s with
T Lmaz equal to 0.5, 1, 2 and 10, in addition to {carX}x—s s with T Lmazx
equal to 0, 0.5, 1 and 2. Comparisons are also done ws. results obtained with
ILOG-Scheduler for all considered instances.

The tests about the heuristic to generate the initial solution show that
descending D gives the best results. In Table 1, we can observe the number
of instances on which every heuristic is the best.

Table 1

Comparison of heuristics to generate an initial solution

Order D | DTL | D+DTL | D/DTL | Lexicographical
Descending | 55 | 51 55 29 20

Ascending | 5 12 5 22

For other tests, timeout is of 200 seconds. In general, the best known
solutions (BKSs) are divided between [1], ILOG-Scheduler, and our proposi-
tions, without any regularity. Nevertheless, we claim the following: For the
no-wait problems, [1] obtain the best results. For other instances, ILOG-
Scheduler provides the best results except for cases referred in Table 2 where
our propositions have the best results. In Table 2, WF refers to the version
of CDS without weights which diverges at the top first. B-Sum, respectively
B-Mazx, refers to case B for weighting jobs, as presented below, associated to
the counting way Sum, respectively Maz. Case B seems to be better than
other cases of weighting jobs on considered instances.

Table 2
Obtained results on some instances

Instance | T'Lmaz | ILOG-Scheduler | WF | B-Sum | B-Maz
lall 0.25 2058 1861 | 1965 1965
0.5 1945 1874 | 1874 | 1874

lal2 0.25 1710 1682 1671 1656
lal3 0.25 1906 1897 | 1892 1892
0.5 1804 1787 | 1808 1808

lal4 0.25 2143 1823 | 2042 2042
0.5 2067 1964 | 1953 1953

1 1976 1772 | 1762 | 1762

2 1976 1612 | 1660 1660

3 1695 1567 | 1542 1542

5 1695 1452 | 1477 1477

lalb 0.25 2371 2084 | 2043 2043
0.5 2217 2118 | 1910 1910

lal7 0.25 1455 1410 | 1427 1460

4 Conclusions and further works

In this paper, a Climbing Discrepancy Search (CDS) method is proposed to
solve jobshop and flowshop scheduling problems with time lags. We stud-
ied various parameter settings for the proposed method, such as discrepancy
positions, heuristic to generate the initial solution, and learning mechanisms
based on weights associated to jobs. Proposed variants were tested on known
benchmarks in the literature. The obtained results show that we have to study
variants of CDS associated to classical scheduling techniques as heuristic in-
sertion to determine upper bounds, and resource constraint propagation rules
adaptation for lower bounds.

References

[1] Caumond, A., Lacomme, P., and Tchernev, N., “A memetic algorithm for the
jobshop with timelags,” Computers and Operations Research 35 (2008), 2331—
2356.

[2] Dell’amico, M., “Shop problems with two machines and time lags,” Operations
Research 44(5) (1996), 777-787.

[3] Huguet, M.-J., Artigues, C., Dugas, M., and Lopez P., “Generalized constraint
propagation for solving job shop problems with time lags,” PMS’10. Submitted.

[4] Lacomme, P., URL: http://www.isima.fr/~ lacomme/Job_Shop_TL.html.

[5] Mitten, L.G., “Sequencing n jobs on two machines with arbitrary time lags,”
Management Science 9 (1958), 293-298.

[6] Milano, M. and Roli, A. , “On the relation between complete and incomplete
search: an informal discussion,” Proceedings CPAIOR’02, Le Croisic, France
(2002), 237-250.

http://www.isima.fr/~lacomme/Job_Shop_TL.html

	Introduction
	Discrepancy and learning for problems with time lags
	Discrepancy position
	Heuristic to generate the initial solution
	Learning based on weights on jobs
	Algorithm

	Computational results
	Conclusions and further works
	References

