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Abstract

We study the behavior of lift-and-project procedures for solving combinatorial opti-
mization problems as described by Lovász and Schrijver (1991), in the context of the
stable set problem on graphs. Following the work of Wolsey (1976), we investigate
how to generate facets of the relaxations obtained by these procedures from facets of
the relaxations of the original graph, after applying fundamental graph operations.
We show our findings for the odd subdivision of an edge and its generalization, the
stretching of a vertex operation.
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1 Introduction

In a seminal paper, Lovász and Schrijver [5] introduced two lift-and-project
operators, N0 and N , which—starting from a polytope P ⊂ [0, 1]n—construct
a sequence of polytopes yielding in at most n steps the convex hull of the
integer points in P , PI = conv(P ∩ {0, 1}n). (A third operator, N+, generally
does not yield a polyhedron and our results may not apply.)

A particularly interesting case is when PI = STAB(G), the stable set
polytope of a simple graph G = (V,E), and P = FRAC(G), the fractional
stable set polytope defined by the edge inequalities,

FRAC(G) = {x ∈ [0, 1]V : xu + xv ≤ 1, uv ∈ E}.

(Edges will be denoted by {u, v} or simply by uv when no confusion arises.)

In what follows, when there is no need to distinguish between N andN0, we
simply denote them by N�. We define N0

� (P ) = P and Nk
� (P ) = N�(N

k−1
� (P ))

for every integer k ≥ 1, and for simplicity we write Nk
� (G) = Nk

� (FRAC(G)).

Lovász and Schrijver pointed out that STAB(G) = FRAC(G) if and only if
G is bipartite, whereas after one iteration we have N(G) = N0(G), and these
are defined by the trivial, edge and odd cycle inequalities.

This brings up the idea of the N�-rank or index of the graph G, r�(G),
defined here as the smallest k for which Nk

� (G) = STAB(G). Thus, for bipar-
tite graphs we have r�(G) = 0, for t-perfect graphs (which are not bipartite)
we have r�(G) = 1, and in general, r�(G) ≤ |V | − 2, with equality attained if
G = Kn, the complete graph on n vertices. Many other properties were shown
in [5].

Two questions naturally arise: are there simple characterizations of Nk
0 (G)

or Nk(G) for k ≥ 2?, and, is it always the case that Nk
0 (G) = Nk(G) or even

r0(G) = r(G)?

The second question was raised by Lipták and Tunçel [4], who were among
the first to study the ranks of N�(G), and was partially answered by Au and
Tunçel [1] who showed examples of graphs where N2

0 (G) �= N2(G). But in
general these questions remain unanswered.

With a view to understanding these problems, here we extend the work of
Lipták and Tunçel on the N�-ranks of FRAC(G) by studying the relationship
between the facets of Nk

� (G) and those of its induced subgraphs. Following
Wolsey [7], we focus on the odd subdivision of an edge, and its generalization,
the stretching of a node.
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2 Odd subdivision of an edge

Wolsey [7] introduced the odd subdivision of an edge defining it as follows:
given the simple graph G = (V,E), with |V | = n, construct the graph G′

obtained from G by deleting the edge v1v2, adding two new nodes vn+1 and
vn+2, and adding the edges v1vn+1, vn+1vn+2, and vn+2v2.

Denoting by G0 the graph G with the edge v1v2 removed, Wolsey showed:

Proposition 2.1 ([7, Prop. 2]) If aTx ≤ b, with a ≥ 0, defines a facet of
STAB(G) different from that defined by x1 + x2 ≤ 1, and b′ = max {aTx− b :
x ∈ STAB(G0)} is such that b′ > 0, then aTx+b′ (xn+1+xn+2) ≤ b+b′ defines
a facet of STAB(G′).

It is our purpose to generalize this result to the Nk
� (G) context, that is,

given a valid inequality π of Nk
� (G) of the form

π : aTx ≤ b, (1)

with a ≥ 0, a �= 0, a �= e1 + e2, and b > 0, we look for a valid inequality of
Nk

� (G
′) of the form

π̄ : aTx+ b′ (xn+1 + xn+2) ≤ b+ b′, (2)

with b′ > 0.

Notice that the inequality x1+x2 ≤ 1 in FRAC(G) is replaced by the three
inequalities

x1 + xn+1 ≤ 1, xn+1 + xn+2 ≤ 1, xn+2 + x2 ≤ 1, (3)

in FRAC(G′), and that these define facets of Nk
� (G

′) for all k.
Lipták and Tunçel [4] studied theN�-ranks ofG andG′, using the following:

Lemma 2.2 ([4, Lemma 17]) Given x ∈ R
n, let x̄ = (x, 1−x1, x1) ∈ R

n+2.
Then:

(i) If x /∈ STAB(G) then x̄ /∈ STAB(G′).

(ii) If x ∈ Nk
� (G) then x̄ ∈ Nk

� (G
′).

For x̄ ∈ R
n+2 let us write x̄ = (x, xn+1, xn+2) with x ∈ R

n, and set

H = {x̄ ∈ R
n+2 : xn+1 + xn+2 = 1}.

The next result establishes a partial converse and a more precise version
of Lemma 2.2:
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Lemma 2.3 Given x ∈ R
n, let x̄1 = (x, 1− x1, x1) and x̄2 = (x, x2, 1− x2).

(i) If x is an extreme point of Nk
� (G), then x̄1 and x̄2 are extreme points of

Nk
� (G

′).

(ii) If x̄ = (x, xn+1, xn+2) ∈ Nk
� (G

′) ∩H, then x ∈ Nk
� (G) and x̄ is a convex

combination of x̄1 and x̄2.
In particular, x1+x2 ≤ 1, and if x̄ is an extreme point of Nk

� (G
′) then

x̄ = x̄1 or x̄ = x̄2.

It is easy to see that if π in (1) is valid for Nk
� (G), then π̄ in (2) is valid

for Nk
� (G

′) ∩ H for every b′. Thus, we need to fix b′ using points outside H.

To do so, let W be the set of extreme points of Nk
� (G

′) not in H, and for
x̄ = (x, xn+1, xn+2) ∈ W let us consider

β(x̄) = min {γ ≥ 0 : γ (1− xn+1 − xn+2) ≥ aTx− b}.

For every x̄ ∈ W we will have

b′ ≥ β(x̄) ⇒ aTx+ b′ (xn+1 + xn+2) ≤ b+ b′,

and it is natural to define

b′ = max {β(x̄) : x̄ ∈ W}. (4)

As a side remark, notice that the definition of b′ in (4) may be viewed as
a generalization of the strength of an edge in [3].

We have:

Theorem 2.4 If b′ is given by (4), then π̄ defined in (2) is a valid inequality
for Nk

� (G
′).

Theorem 2.5 If π in (1) defines a facet of Nk
� (G) different from that defined

by x1 + x2 ≤ 1, and b′ given in (4) is positive (in particular if π is not a valid
inequality for Nk

� (G0)), then π̄ given in (2) defines a facet of Nk
� (G

′).

By defining the N�-rank of a valid inequality of STAB(G) as the minimum
k for which it is valid for Nk

� (G), there holds:

Corollary 2.6 If π and π̄ are defined as in Theorem 2.5, then both of them
have the same N�-rank.

We conclude this section with a few comments.

Proposition 2.1 is complemented by a nice structural result by Mahjoub [6]:
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Lemma 2.7 ([6, Lemma 1]) Let āTx̄ ≤ b define a facet of STAB(G′) dif-
ferent from those in (3). If both an+1 and an+2 are positive, then an+1 = an+2.

However, the converse of Proposition 2.1 is not true: some of the facets in
STAB(G′) are not obtained by this method (see [2,3]).

Moreover, Lemma 2.7 is no longer true when we consider Nk
� (G

′) instead
of STAB(G′). A counterexample is the graph G′ shown in Figure 1, where the
edge {5, 7} has been subdivided and the inequality

x1 + x2 + 2x3 + x4 + 3x5 + x6 + 3x7 + 3x8 + 2x9 ≤ 6,

defines a facet of N2
0 (G

′) (here r0(G) = r0(G
′) = 3).

Mahjoub presents a simpler result than that of Lemma 2.7:

Lemma 2.8 ([6, Lemma 3]) If āTx̄ ≤ b defines a facet of STAB(G′) differ-
ent from those in (3), then we cannot have an+1 > 0 and an+2 = 0 (and vice
versa).

By using a result by Lipták and Tunçel [4, Theorem 6], we can show:

Lemma 2.9 Lemma 2.8 remains valid if Nk
� (G

′) is substituted for STAB(G′).

3 Stretching of a node

Wolsey [7] presented a generalization of the odd subdivision of an edge, called
stretching of a node: given the graph G = (V,E) and a selected node vn, we
obtain G′ by separating the adjacent nodes of vn into two non-empty subsets
V1 and V2, introducing two new nodes vn+1 and vn+2 so that each vertex of V�

is joined to vn+�, � = 1, 2, and finally joining vn to vn+1 and vn+2 only.

Since the results are analogous to those of the previous section, we briefly
mention the main points.

Proposition 3.1 ([7, Prop. 3]) If aTx ≤ b (a ≥ 0) defines a facet of STAB(G)
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such that max
{
aTx : x ∈ A, xj = 0, j ∈ V� ∪ {n}

}
= b, for � = 1, 2, then π̄

given by
π̄ : aTx+ an (xn+1 + xn+2) ≤ b+ an, (5)

defines a facet of STAB(G′).

Lemma 3.2 ([4, Lemma 26]) Given x = (x̂, xn) ∈ R
n, let x̄ = (x̂, 1 −

xn, xn, xn) ∈ R
n+2. Then,

(i) If x /∈ STAB(G) then x̄ /∈ STAB(G′).

(ii) If x ∈ Nk
� (G) then x̄ ∈ Nk

� (G
′).

We have:

Lemma 3.3 If H� = {x̄ ∈ R
n+2 : xn + xn+� = 1}, � = 1, 2, and x̄ =

(x̂, xn, xn+1, xn+2) ∈ Nk
� (G

′) ∩H1 ∩H2, then (x̂, xn+1) ∈ Nk
� (G).

Theorem 3.4 If aTx ≤ b defines a facet of Nk
� (G) and π̄ given in (5) is such

that

(i) max {âTx̂+ anxn+2 : H1 \H2} = max {âTx̂+ anxn+1 : x̄ ∈ H2 \H1} = b.

(ii) π̄ is valid for Nk
� (G

′).

Then π̄ defines a facet of Nk
� (G

′).
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