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SUMMARY

The property that a graph has an embedding in the projective plane is closed

under taking minors. Thus by the well known Graph Minor theorem of Robertson

and Seymour, there exists a finite list of minor-minimal graphs, call it Ω, such that

a given graph G is projective planar if and only if G does not contain any graph

isomorphic to a member of Ω as a minor. Glover, Huneke and Wang found 35 graphs

in Ω, and Archdeacon proved that those are all the members of Ω, but Archdeacon’s

proof never appeared in any refereed journal. In this thesis we develop a modern

approach and technique for finding the list Ω, independent of previous work.

Our approach is based on conditioning on the connectivity of a member of Ω.

Assume G is a member of Ω. If G is not 3-connected then the structure of G is

well understood. In the case that G is 3-connected, the problem breaks down into

two main cases, either G has an internal separation of order three or G is internally

4-connected. In this thesis we find the set of all 3-connected minor minimal non-

projective planar graphs with an internal 3-separation. For proving our main result,

we use a technique which can be considered as a variation and generalization of

the method that Robertson, Seymour and Thomas used for non-planar extension of

planar graphs. Using this technique, besides our main result, we also classify the set

of minor minimal obstructions for a-, ac-, abc-planarity for rooted graphs. (A rooted

graph (G, a, b, c) is a-planar if there exists a split of the vertex a to a′ and a′′ in G such

that the new graph G′ obtained by the split has an embedding in a disk such that

the vertices a′, b, a′′, c are on the boundary of the disk in the order listed. We define

b- and c-planarity analogously. We say that the rooted graph (G, a, b, c) is ab-planar

if it is a-planar or b-planar, and we define abc-planarity analogously.)

vi



CHAPTER I

INTRODUCTION

In this chapter we will provide the graph theoretic context of the results to follow. In

Section 1.1 we describe terminology used for our results. In Section 1.2 we explain the

basic concepts and terminology for embedding a graph in a surface. In Section 1.3 we

present an overview of the history of excluding a set of graphs as a subdivision or as

a minor for classifying some structure or property in graphs. In Section 1.4 we briefly

explain the method of Robertson, Seymour and Thomas for classifying non-planar

extensions of planar graphs. Their method is the main motivation for the results

presented in Chapters 2 and 3. In Section 1.5 we present four applications of the set

of minor minimal non-projective planar graphs. In Section 1.6 we briefly sketch the

idea and approach used by Glover, Huneke and Wang, and Archdeacon for describing

the set of minor minimal non-projective planar graphs. In Section 1.8 we state the

main results of this thesis. In Section 1.9 we provide an outline of the proof of the

main results.

We should acknowledge that part of this thesis was joint work with Luke Postle.

An expository version of this result appeared in [6].

1.1 Graph Theoretic Preliminaries

We use standard graph theory notation and terminology, as found in [7, 12]. A graph

is an ordered pair (V (G), E(G)) consisting of a nonempty finite set V (G) of vertices

and a set E(G) of edges, which are two-element subsets of V (G). So, graphs have no

loops or multiple edges. In some part of this thesis, we use a more general notion,

called multigraph, which is an ordered pair (V (H), E(H)) consisting of a nonempty

set V (H) of vertices and a multiset E(H) of edges, which are two-element subsets of
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V (G). So, multigraphs have no loops but they could have parallel edges.

If e = {u.v} is an edge where u, v ∈ V (G), then we write e = uv and say that u

and v are the ends of e. If u is an end of e then we say that e is incident with u and

vice versa. If u, v ∈ V (G) such that there exists an edge e ∈ E(G) with e = uv, then

we say that u and v are adjacent. Path and cycle are defined as usual, in particular,

they do not have repeated vertices.

Graphs or multigraphs are usually represented in a pictorial manner with vertices

appearing as points or a solid circle and edges represented by lines or curves connecting

the two vertices associated with the edge.

The following are two classes of graphs. The first class is complete graphs which

consists of graphs with vertex set V where each pair of distinct vertices in V is

connected by an edge, and the second class is bipartite graphs which consists of

graphs with vertex set V where V is partitioned into two sets A,B where if e is an

edge in the edge set E then e has one end in A and the other in B.

For a graph G = (V,E), if V ′ ⊆ V , E ′ ⊆ E and for every edge e′ ∈ E ′ both ends

of e′ belong to V ′, then the graph G′ = (V ′, E ′) is a subgraph of G. Given a graph

G = (V,E), if V ′ is a subset of vertices, we denote by G[V ′] the subgraph with vertex

set V ′ and edge set containing all edges of G with both ends contained in V ′. Then

graph G[V ′] is called the graph induced by V ′. For a graph G = (V,E), and S ⊂ V ,

we denote the graph obtained by removing the vertices in S by G− S or G \ S.

A graph G is connected if there exists a path between any two vertices of G, and

disconnected otherwise. We say a graph G is k-connected for |V (G)| ≥ k + 1 and

k ∈ N if for any S ⊂ V where |S| ≤ k − 1, G − S is connected. A subgraph H of

G is a connected component of G if H is a maximal connected subgraph of G. A

vertex v of a connected graph G is a cut vertex if G− {v} is disconnected. Similarly,

if G = (V,E), a set S ⊂ V is a cutset if G− S is disconnected. We say that (G1, G2)

is a separation of G if (G1, G2) are edge-disjoint subgraphs of G whose union is G. If
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k = |V (G1)∩V (G2)| then we say the order of the separation (G1, G2) is k, or (G1, G2)

is a k-separation of G.

Let G and H be two graphs, we say G and H are isomorphic if there exists a

bijection f between V (G) and V (H) such that any two vertices u and v are adjacent

in G if and only if f(u) and f(v) are adjacent in H . If v ∈ V (G), the neighborhood

of v, denoted by N(v), is the set of all vertices in G adjacent to v. The degree of a

vertex v ∈ V (G), denoted by d(v), is equal to the size of its neighborhood.

Let G and H be two graphs. The disjoint union of G,H denoted by G+H is the

graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪E(H).

Let G be a graph. We say that a function f : V (G) → X is a coloring of G if

for all e = uv ∈ E(G), f(u) 6= f(v). We say that L is a list-assignment for a graph

G if L(v) is a set of colors for every vertex v ∈ V (G). Let G be a graph with a

list-assignment L. We say G has an L-coloring if there exists a coloring f such that

f(v) ∈ L(v) for all v ∈ V (G). We say an L-coloring of a graph G is a k-list coloring

if |L(v)| = k for all v ∈ V (G).

Let G be a graph. The line graph of G, denoted by L(G), is a graph that each

vertex of L(G) represents an edge of G, and two vertices of L(G) are adjacent if and

only if their corresponding edges are adjacent in G.

Let G be a graph and e = uv be an edge of G. A contraction of the edge e is

the operation of removing the vertices u, v from G and replacing them with a new

vertex w 6∈ V (G) such w is adjacent to all vertices of (N(u) ∪ N(v)) \ {u, v}. We

denote the resulting graph by G/e. A graph H is called a minor of the graph G if

H is isomorphic to a graph that can be obtained by zero or more edge contractions

from a subgraph of G. A graph S is a subdivision of a graph G if S is obtained from

G by replacing its edges by internally disjoint nonzero length paths with the same

ends, called segments.

Let S be a subgraph of a graph G. An S-bridge in G is a connected subgraph
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B of G such that E(B) ∩ E(S) = ∅ and either E(B) consists of a unique edge with

both ends in S, or for some component C of G \ V (S) the set E(B) consists of all

edges of G with at least one end in V (C). The vertices in V (B)∩V (S) are called the

attachments of B.

The distance between two vertices u and v of G, denoted by d(u, v), is the the

length of the shortest path between them.

We say a graph H is a cover of a graph G if there exists a surjective function

f : V (H) → V (G) such that for each vertex u ∈ V (H), the restriction of f to N(u) is

a bijection between N(u) and N(f(u)). We say a graph H is an emulator of G if there

exists a surjective function f : V (H) → V (G) such that for each vertex u ∈ V (H),

the function fu : N(u) → N(f(u)) induced by f , is surjective.

1.2 Graphs on Surfaces

We follow standard terminology in topology, as can be found in Hatcher [21]. A surface

is a 2-dimensional topological manifold without boundary. For studying graphs on

surfaces, we follow the exposition of Mohar and Thomassen [37].

Two surfaces are homeomorphic if there exists a bijective continuous mapping

between them such that the inverse is also continuous. Let X be a topological space.

A curve (arc) in X is the image of a continuous function f : [0, 1] → X. We say a

curve is simple if f is one to one. We say the curve J = f([0, 1]) connects the points

f(0) and f(1). We refer to the points f(0), f(1) as the endpoints of the curve J , and

the set I = f((0, 1)) as the interior of J .

A topological space X is arcwise connected if for any two points in X there exists

a simple arc connecting them. Note that existence of a simple arc between two points

of X defines an equivalence relation on the points in X. The equivalence classes are

called arcwise connected components. We say a set C ⊆ X separates X if X \C is not

arcwise connected. For a set C ⊆ X, we refer to each arcwise connected component
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of X \ C as a face.

We say a graph G′ is embedded in a topological space X, if the vertices of G′

are distinct points of X and every edge of G′ is a simple arc in X connecting the

two vertices, such that its interior is disjoint from other edges and vertices. An

embedding of a graph G in a topological space X is an isomorphism Σ of G to a

graph G′ embedded in X. If there is an embedding of G into X, we say that G can be

embedded into X. We denote such embedding of G by Σ(G). For an embedding Σ(G)

in a surface S, we say a cycle C of Σ(G) is essential if C is a non-null-homotopic

cycle, or equivalently, C is not contractible in the surface S.

By the torus we mean the product of two circles, S1 × S1. By the projective

plane, RP2, we mean the topological space obtained from a closed disk by identifying

diagonally opposite points on the boundary of the disk.

Our main concern in this thesis are graphs which can be embedded in the plane,

R2, and projective plane, RP2. If G is a graph embedded in the plane then we say that

G is a planar graph; in which case, there exists an infinite face of G. If G is connected,

we call the infinite face of an embedding Σ(G) of G the outer face of Σ(G). If G can

be embedded in the plane or projective plane, we say G is planar, or projective planar,

respectively. For more details about surfaces and their characterization, we refer the

reader to [21, 37].

1.3 Embedding and Excluding Subgraphs and Minors

Graphs on surfaces and their properties and especially determining whether a graph

can be embedded in a given surface have been studied for decades. The best known

result for planar graphs is the famous theorem of Kuratowski [31] which characterizes

planar graphs in terms of forbidden subgraphs.

Theorem 1.3.1 ([31]). A graph is planar if and only if it does not contain a subdi-

vision of K3,3 or a subdivision of K5 as a subgraph.
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The forbidden graphs K3,3 and K5 are called Kuratowski graphs. The result of

Theorem 1.3.1 was independently discovered by Frink and Smith [17] and Pontrja-

gin [8]. Some short proofs of Theorem 1.3.1 are published by Dirac and Schuster [15],

Makarychev [32] and Thomassen [52, 53]. A natural generalization of Kuratowski’s

theorem could be characterizing which graphs are embeddable in other surface in

terms of forbidding some other structures.

Erdős and and König [30] raised the question:

Question 1.3.2 ([30]). For any surface S, is there a finite list of graphs Forb(S), such

that exclusion of theses graphs and all their subdivisions as subgraphs characterizes

the graphs embeddable in S?

Kuratowski’s theorem, Theorem 1.3.1, settled the question for the plane, i.e. S =

R2. Glover and Huneke [19] settled the question for the projective plane by proving

that Forb(RP2) is finite. Glover, Huneke and Wang [18] proposed a list of 103 graphs,

called Ω′, for Forb(RP2) and Archdeacon [1, 2] showed that the list Ω′ is a complete

list, i.e. Ω′ = Forb(RP2). We refer the reader to Appendix A in [37] to see the pictures

of graphs in Forb(RP2). Archdeacon and Huneke [4] found a proof of finiteness of

Forb(S) for all non-orientable surfaces. Robertson and Seymour [46, 43, 44] answered

the general question by showing that Forb(S) is finite for any S. Seymour [50] and

Thomassen [54] found a shorter proof of finiteness of Forb(S) for any surface S.

Mohar [33, 34] presented a linear time algorithm where for a given graph G and

surface S, it either finds an embedding of G in S or identifies a subgraph of G that is

homeomorphic to a member of Forb(S). A side result of his proof yields a constructive

proof of finiteness of Forb(S) for any surface S. We refer the reader to [37] for more

information about excluding subgraphs.

A related approach for charactering whether a graph can be embedded in a given

surface S is to exclude a finite set of graphs as a minor. We start with a well known

theorem of Robertson and Seymour [48], formerly known as Wagner’s conjecture [57].
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Theorem 1.3.3 ([48]). For any family of graphs F which is closed under taking

minors, (i.e. if G ∈ F then every minor of G belongs to F) there exists a finite list

of graphs L such that G ∈ F if and only if there exists no H ∈ L such that G has a

minor isomorphic to H.

Note that for any surface S, the property that a graph can be embedded in S

is closed under taking minors. Thus, as a consequence of Robertson and Seymour’s

theorem, for any surface S, there exists a finite list of graphs Forb0(S) such that G

can be embedded in S if and only if there exists no H ∈ Forb0(S) such that G has

a minor isomorphic to H . Wagner [57] showed that Forb0(R
2) = {K3,3, K5}.

Theorem 1.3.4 ([57]). A graph is planar if and only if neither K3,3 nor K5 is a

minor of G.

In his Ph.D. thesis [1], Archdeacon proved the list Ω ⊆ Forb(RP2) found by

Glover, Huneke and Wang [18] satisfies. The list Ω is shown in Figure 1.1.

Theorem 1.3.5 ([1]). A graph can be embedded in the projective plane if and only if

it has no minor isomorphic to a member of Ω.

Unfortunately, a proof of Theorem 1.3.5 never appeared in a refereed journal. An

announcement was published by Archdeacon [2], but so far a proof appeared only in

Archdeacon’s Ph.D. thesis [1].

In this thesis we propose a new proof of Theorem 1.3.5 based on the connectivity

of a graph in the set Ω. It consists of two steps and we carry out the first step.

There is a related result of Ding and Iverson [13]. Since in most applications the

graphs under consideration are almost always well-connected, it is desirable to refine

the set Ω for graphs which are well-connected. The first attempt along these lines is a

result of Robertson, Seymour, and Thomas (unpublished) which says a k-connected

graphG, k = 2, 3 is projective planar if and only if it does not contain any k-connected
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Figure 1.1: The set of minor minimal non-projective planar graphs

member of Ω as a minor. There are several attempts to establish similar results for

internally 4-connected graphs. We define the set Ωi4c to be the set of minor minimal

internally 4-connected non-projective planar graphs. There are several attempts for

determining the set Ωi4c. In particular, Maharry and Slilaty (unpublished) showed

that internally 4-connected projective planar graphs can be characterized by excluding

a subset of Ω (some of which are not internally 4-connected). Thomas (unpublished)

observed that in addition to the eleven internally 4-connected members of Ω which

belong to Ωi4c, there are at least two other minor-minimal internally 4-connected
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non-projective graphs in the set Ωi4c. Finally Ding and Iverson [13], by making use

of the set Ω, found the set Ωi4c (it has size 23) and they proved that these are the

only members of Ωi4c. So they completely determined the set Ωi4c.

As we mentioned earlier, the result of Ding and Iverson [13] is similar to our work

in the sense that in both works, we focused on non-projective planar graphs with

certain connectivity. However, our work tries to identify elements of Ω while Ding

and Iverson [13] use the set Ω for characterizing the set Ωi4c.

1.4 Non-Planar Extensions of Planar Graphs

In this section, we are going to briefly mention a beautiful result and technique of

Robertson, Seymour and Thomas [49], which is the main motivation toward the

technique that we used to get our main result in this thesis.

If S is a subgraph of a graph G, then an S-path in G is a path with at least

one edge, both ends in S, and otherwise disjoint from S. Robertson, Seymour and

Thomas [49] proved the following result.

Theorem 1.4.1. Let G be an internally 4-connected planar graph, and let H be an

internally 4-connected non-planar graph containing a subdivision of G as a subgraph.

Then there exists a subgraph S of H isomorphic to a subdivision of G such that one

of the following conditions holds:

(i) There exists an S-path in H such that no boundary of a face of S contains both

ends of the path, or

(ii) There exist two disjoint S-paths with ends s1, t1 and s2, t2, respectively, such

that the vertices s1, s2, t1, t2 belong to some region boundary of S in the order

listed. Moreover, for i = 1, 2 the vertices si and ti do not belong to the same

segment of S, and if two segments of S include all of s1, t1, s2, t2, then those

segments are vertex-disjoint.
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Let a non-planar graph H have a subgraph S isomorphic to a subdivision of a

planar graph G. By using the above theorem, we can get useful information about the

structure of minimal subgraphs ofH that have a subgraph isomorphic to a subdivision

of G and are non-planar.

We would like to mention some direct applications of the above theorem. Ding,

Oporowski, Thomas and Vertigan [14] using Theorem 1.4.1 showed that except for one

well-defined infinite family, there are only finitely many minimal graphs of crossing

number at least two. By the Petersen graph we mean the complement of the line graph

of K5. Thomas and Thomson [51] showed that every internally 4-connected non-

planar graph of girth at least five has a subgraph isomorphic to a subdivision of P−

10,

the Petersen graph with one edge deleted. This result implies that Tutte’s 4-flow con-

jecture [55] holds for graphs with no subdivision isomorphic to P−
10. Kawarabayashi,

Norine, Thomas and Wollan [28] applied Theorem 1.4.1 to make a major step toward

proving Jørgensen’s conjecture [27]. By using their result [28], they [29] succeeded

in proving Jørgensen’s conjecture [27] for graphs with sufficiently large number of

vertices.

In Chapters 2 and 3 we generalize a variation of Theorem 1.4.1 to certain projective

planar graphs, and we use the developed theory to obtain our main results in this

thesis.

1.5 Application of the list of minor minimal non-projective

planar graphs

Despite the fact that the size of the set Ω, the set of minor minimal non-projective

planar graphs, is fairly large, it has useful application for attacking questions and

conjectures related to graphs which can be or can not be embedded in the projective

plane.

We start by showing an application of the set Ω in settling the Hanani-Tutte’s

Conjecture [20, 56] for the projective plane. There are two versions of the conjecture:
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the weak version, which has been settled, so we call it the weak Hanani-Tutte’s Theo-

rem, see Theorem 1.5.1, and strong Hanani-Tutte’s Conjecture, see Conjecture 1.5.2.

Note that the strong version implies the weak version.

Theorem 1.5.1. If a graph can be drawn in a surface S so that every two edges cross

an even number of times, then the graph can be embedded in the surface S.

Hanani [20] and Tutte [56] proved the Conjecture for planar graphs, i.e. the

surface S2. Using homology theory, Cairns and Nikolayevsky [9] showed that if a

graph can be drawn on an orientable surface so that every pair of non-adjacent edges

crosses an even number of times, then the graph can be embedded in that surface.

Pelsmajer, Schaefer, and Stefankovic [40] gave a proof of the weak Hanani-Tutte’s

theorem (Theorem 1.5.1) for the projective plane, which also established the result

for any non-orientable surface. These results completely established Theorem 1.5.1.

Conjecture 1.5.2. If a graph can be drawn in a surface S so that every two non-

adjacent edges cross an even number of times, then the graph can be embedded in

the surface S.

Pelsmajer, Schaefer, and Stefankovic [41] established Conjecture 1.5.2 for the pro-

jective plane. They used the list of minimal forbidden minors for the projective plane

and their proof heavily depends on the list Ω and it can not be extended to other

surfaces in a natural way. This shows an application and importance of the list Ω.

For more details and history about the Hanani-Tutte’s conjecture, we refer the reader

to [40, 41].

The second application of the set Ω would be a helpful tool to answer the following

question:

Question 1.5.3. Determine the graphs which have two disjoint essential cycles in every

embedding in a surface.

Mohar and Robertson [35] found a sufficient and necessary condition for graphs
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embedded in the torus to have two disjoint essential cycles. They solve this problem by

characterizing graphs embedded in the torus which do not have two disjoint essential

cycles. They raised Question 1.5.3 in [35] as a possible generalization of their result.

By using the list Ω, Mohar and Robertson [36] answered Question 1.5.3. They showed

that graphs which have two disjoint essential cycles in every embedding in surfaces, are

precisely the graphs that cannot be embedded in the projective plane with exception

of the graphs K3,k, k ≥ 5 and simple extensions of these graphs. We refer the reader

to [36] to see more details and more precise statement of the result.

As a third application of the list Ω, we should mention its application toward

proving of a beautiful conjecture of Negami [39]:

Conjecture 1.5.4. A connected graph is projective planar if and only if it has a planar

cover.

There was a lot of effort by various authors [3, 5, 22, 23, 24, 26, 38] in trying to

prove the conjecture; however Conjecture 1.5.4 is still open. Previous results proved

the following theorem:

Theorem 1.5.5. Negami’s conjecture (Conjecture 1.5.4) holds if and only if the graph

K1,2,2,2 does not have a planar cover.

The main resource for proving Theorem 1.5.5 was the list Ω, since all authors [3,

5, 22, 23, 24, 26, 38] try to show that if G ∈ Ω then G does not have a planar cover.

For more details and history on planar covers, we refer the reader to a survey paper

by Hliněný [25]

Fellows [16] conjectured that Conjecture 1.5.4 should hold for planar emulators.

To be more precise, he conjectured that a connected graph G has a planar emulator

if and only if G has a planar cover. One direction of the above statement holds

trivially since any planar cover of G is also a planar emulator. Surprisingly, Rieck

and Yamashita [42] found planar emulators for the graphs K1,2,2,2 and K4,5 − M4.
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Note that K1,2,2,2, K4,5 − 4K2 ∈ Ω. The property of having a planar emulator is

closed under taking minors. Thus, by the well known theorem of Robertson and

Seymour [48], Theorem 1.3.3, there exists a finite set of graphs called Λ, such that

G has a planar emulator if and only if G does not include any graph isomorphic to

a member of Λ as a minor. Various authors [11, 25, 42] try to identify members

of Λ. Their approach was to start from a graph G ∈ Ω and study whether G has

a planar emulator. For more details and results on planar emulators, we refer the

reader to [10, 25].

Finally, we briefly mention a result of Robertson and Seymour [47], where they

used the list Ω to characterize which graphs are a minor of a graph that can drawn

in the plane with at most one crossing.

Theorem 1.5.6 ([47]). A graph G is a minor of a graph H where H can be drawn in

the plane with at most one crossing, if and only if G can be embedded in the projective

plane in such a way that some non-null homotopic closed curve intersects the graph

at most twice.

1.6 Previous approaches for finding the list of minor min-

imal non-projective planar graphs

Toward settling the question of Erdős and and König, Question 1.3.2, Glover, Huneke

and Wang [18] proposed a list of 103 graphs, called Ω′, for Forb(RP
2). We briefly

explain some of their techniques and approaches here. First we need to define some

basics.

A subgraph K of G is a K-graph if either K is a subdivision of a graph H

isomorphic to K2,3 where there is a K-bridge with attachments on all vertices of K

that correspond to a vertex of H of degree two, or K is a subdivision of a graph H

isomorphic to K4, where there is a K-bridge with attachments on all degree three

vertices of H . It is easy to see that if G is embedded in the projective plane then any
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K-graph of G contains an essential cycle. Therefore, we have the following lemma:

Lemma 1.6.1 ([18]). If G contains two disjoint K-graphs, then G cannot be embedded

in the projective plane.

The above lemma was one of the key tools for the result of Glover, Huneke and

Wang [18]. Let G be a graph, v ∈ V (G) and N(v) = {v1, v2, . . . , vj, vj+1, . . . , vn}.

We define a new graph Sv:(1,...,j)(G), to be the graph obtained from G by deleting the

edges vvk for k = j + 1, . . . , n and adding a new vertex v′ and edges vv′ and v′vk for

k = j + 1, . . . , n. Observe that by contracting the edge vv′ in Sv:(1,...,j)(G), we get

a graph isomorphic to the graph G. We call the above procedure vertex splittings

and edge deletions. Note that we reserve the terminology of vertex splitting for some

other definition which comes across in Section 1.8

Lemma 1.6.2 ([18]). For any surface S, if G cannot be embedded in S then Sv:(1,...,j)(G)

cannot be embedded in S, for any vertex v ∈ V (G) and 1 ≤ j ≤ |N(v)|.

For any surface S, we can define a partial order relation � in Forb(S) as follow:

for G,G′ ∈ Forb(S), we say G′ � G if there exists v ∈ V (G) and 1 ≤ j ≤ |N(v)|

such that Sv:(1,...,j)(G) contains a subdivision of G′ as subgraph. Glover, Huneke and

Wang [18] proposed a set M of five graphs as a maximal set for Forb(RP2) with

respect to the relation � and they showed that all 103 graphs in Ω′ can be obtained

from elements of M using the vertex splittings and edge deletions procedures. We

refer the reader to Appendix A in [37] to see the pictures of graphs in Forb(RP
2) and

Figure 1.1 for graphs in Ω.

Archdeacon [1] verified that the set M is maximal and he checked that graphs

in the set Ω′ are the only graphs that can be obtained from M using the vertex

splittings and edge deletions procedure. As we mentioned in Section 1.3, unfortu-

nately, Archdeacon’s work never appeared in a refereed journal. An announcement
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was published by Archdeacon [2], but so far a proof appeared only in Archdeacon’s

Ph.D. thesis [1].

1.7 Minor Minimal Non-Projective Planar Graphs

In this section, we briefly explain our approach for finding the list Ω. Suppose G

is a non-projective planar minor minimal graph. We consider five different cases

depending on the connectivity of G.

In the first case, if G is disconnected then G is a disjoint union of two Kuratowski

graphs. Therefore, there are three possibilities: either G is isomorphic to K3,3 +K3,3,

K3,3 +K5 or K5 +K5.

In the second case, if G has a separation of size one, then G is obtained by

identifying two Kuratowski graphs along a single vertex. Therefore, there are three

possibilities: either G is isomorphic to K3,3 ·K3,3, K3,3 ·K5 or K5 ·K5.

In the third case, if G has a separation of order two then G is obtained by identi-

fying two Kuratowski graphs along two vertices and removing the edge between the

two vertices if it exists. Therefore, there are six possibilities: either G is isomorphic

to B3, C2, D1, F6 , D4 or E6.

The last two cases deal with the cases when G is 3-connected with an internal

separation of size three and G is internally 4-connected, respecting the later two cases

are more complicated. We solve the former and we outline an approach for the latter

in the last Chapter.

The main idea for dealing with the last two cases is a generalization of the theory

developed by Robertson, Seymour and Thomas [49], Theorem 1.4.1 for classification of

all minor minimal non-planar extensions of a planar connected graph. In Section 1.8,

we outline the procedure for finding members of Ω which are 3-connected but have

an internal separation of size three. This thesis is devoted to settling this case. As

a result, if G ∈ Ω is 3-connected with an internal separation of size three then there
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are twelve possibilities, either G is isomorphic to C7, D3, D9, D12, E5, E11, E19, E27,

F1, G1, K7 − C4 or K3,5. This is the statement of Theorem 1.8.1.

We briefly outline our plan to settle the case when G is internally 4-connected in

Chapter 6.

1.8 Main Results

Let us now state the main results of this thesis.

Theorem 1.8.1. Let G be a minor-minimal graph that cannot be embedded in the

projective plane such that G is 3-connected but not internally 4-connected. Then G is

isomorphic to one of the graphs C7,D3,D9,D12, E5, E11, E19, E27,F1,G1, K7 − C4, K3,5,

depicted in Figure 1.2.

s

s

s

s s

s

s

s

C7

s

s

s

s

s

s

s

s

D3

s

s

s

s

s

s

s

s

s

s

D9

s

s

s

s

s

s

s

s

s

D12

s

s

s

s

s

s

s

s

s

E5

s

s

s

s

s

s

s

s

s

s

E11

s

s

s

s s

s

s

ss

E19

s

s

s

s

s

s

s

s

s

s

E27

s

s

s

s

s

s

s

s

s

F1

s

s

s

s

s

s

s

s

s

s

G1

s

s

s

s

s

s

s

K7 − C4

s s s s s

s s s

K3,5

Figure 1.2: 3-connected minor-minimal non-projective planar graphs with an internal
3-separation.

Here, we briefly highlight the procedure of proving Theorem 1.8.1. In this proce-

dure, we prove some theorems which may be of independent interest.

As we mentioned in Section 1.4, we are going to generalize Theorem 1.4.1 as a

tool for further applications. First, we would like to motivate why an extension of

Theorem 1.4.1 is useful.

Let G be a graph and let x1, x2, x3 be distinct vertices of G. We say that

(G, x1, x2, x3) is a rooted graph. We refer to x1, x2, x3 as terminal vertices. We say
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two rooted graphs (G, x1, x2, x3) and (H, y1, y2, y3) are isomorphic if there exists an

isomorphism φ from V (G) to V (H) such that φ(xi) = yi for all i ∈ {1, 2, 3}.

We say G′ is obtained from G by splitting v, if there exist v1, v2 ∈ V (G′) such

that v1 and v2 are not adjacent in G′ and G is isomorphic to the graph obtained from

G′ by identifying v1, v2, where v corresponds to the vertex obtained from identifying

v1, v2.

We say a rooted graph (G, x1, x2, x3) is x1-planar if there exists a split of the

vertex x1 to x′1 and x′′1 in G such that the new graph G′ obtained by the split has

an embedding in a disk such that the vertices x′1, x2, x
′′
1, x3 are on the boundary of

the disk in the order listed. We define x2- and x3-planarity analogously. We say that

the rooted graph (G, x1, x2, x3) is x1x2-planar if it is x1-planar or x2-planar, and we

define x1x3-, x2x3- and x1x2x3-planarity analogously. We say that the rooted graph

(G, x1, x2, x3) is 3-connected if there exists no separation (G1, G2) of G of order at

most two such that x1, x2, x3 ∈ V (G1) and V (G2) − V (G1) 6= ∅. Similarly we say

that (G, x1, x2, x3) is internally 4-connected if it is 3-connected and there exists no

separation (G1, G2) of G of order three such that x1, x2, x3 ∈ V (G1), |V (G)| ≥ 4 and

|E(G2)| ≥ 4.

Let (G, x1, x2, x3) and (H, y1, y2, y3) be two rooted graphs. We say (G, x1, x2, x3) is

a rooted minor of (H, y1, y2, y3) if there exists a rooted graph (K, y1, y2, y3) isomorphic

to (G, x1, x2, x3) obtained from a subgraph of H by contracting edges with the proviso

that an edge with both ends in {y1, y2, y3} cannot be contracted, if an edge with one

end yi is contracted, then the resulting new vertex will be labeled yi, and no edge

contraction produces a new edge between yi and yj, 1 ≤ i < j ≤ 3, such that

(G, x1, x2, x3) is isomorphic to (K, y1, y2, y3). For simplicity, we sometimes say H

contains G as a minor where x1, x2, x3 correspond to y1, y2, y3, respectively.

The following theorem is not hard to prove, although its proof is presented in

Section 4.
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Theorem 1.8.2. Let G be a 3-connected minor-minimal non-projective planar graph

with an internal 3-separation (G1, G2). Let V (G1) ∩ V (G2) = {a, b, c}. Then there

does not exist x ∈ {a, b, c} such that the rooted graphs (G1, a, b, c) and (G2, a, b, c) are

x-planar.

Theorem 1.8.2 implies that if G,G1, G2, a, b, c are as in the theorem, then, after

possibly permuting a, b, c and possibly swapping G1 and G2 we have that either

• G1 is not a-planar and G2 is not bc-planar, or

• G2 is not abc-planar.

Unfortunately, the converse does not hold: gluing together two graphs G1, G2 as

above along a cutset of size three may result in a graph that is projective planar. The

difficulty lies in edges with both ends in {a, b, c}. Such edges may “migrate” from

G1 to G2, causing the aforementioned problem. This is the main reason why in the

definition of minor minimal rooted graphs that are not a-, ab- or abc-planar, no edge

contraction is allowed if it produces some new edges between terminal vertices. Thus,

we need to understand graphs that are not c-planar, not ac-planar and not abc-planar.

Therefore, we should study not “c-planar, not ac-planar and not abc-planar” exten-

sions of planar graphs. This is the main motivation for generalizing Theorem 1.4.1

for our application. Theorem 2.2.10, and Theorem 3.0.17 in Chapter 2 and Chap-

ter 3, respectively, are analogues of Theorem 1.4.1. By use of Theorem 2.2.10, and

Theorem 3.0.17, we characterize minor minimal obstructions for not c-planar, not

ac-planar and not abc-planar rooted graphs as follows.

Theorem 1.8.3. Let (G, a, b, c) be a 3-connected rooted graph. If (G, a, b, c) is not

c-planar then there exits a graph J ∈ Ωc, where Ωc = {O1, O2, O3, O4, O5, O6, O7},

shown in Figure 1.3, such that (G, a, b, c) contains J(1, 2, 3) or J(2, 1, 3) as a rooted

minor. Moreover, the rooted graphs in Ωc are minor minimal with respect to the not

c-planarity property.
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Figure 1.3: The set of minor minimal not 3-planar graphs satisfying the conditions
mentioned in the statements of Theorem 4.1.4 and 1.8.3.

Theorem 1.8.4. Let (G, a, b, c) be a 3-connected rooted graph. If (G, a, b, c) is not ac-

planar then there exits a graph J ∈ Ωac, where Ωac = {O2, O3, O4, O5, O6, O8, O9,

O10, O11, O12, O15, O23, O24, O26, O28}, shown in Figure 1.4, such that (G, a, b, c)

contains J(2, 1, 3) or J(3, 1, 2) as a rooted minor. Moreover, the rooted graphs in Ωac

are minor minimal with respect to the not ac-planarity property.

Theorem 1.8.5. Let (G, a, b, c) be a 3-connected rooted graph. If (G, a, b, c) is not

abc-planar then there exits a graph J ∈ Ωabc, where Ωabc = {O2, O5, O12, O13, O14,

O15, O16, O17, O18, O19, O20, O23, O24, O25, O26, O27, O28}, shown in Figure 1.5,

such that (G, a, b, c) contains J(α, β, γ) as a rooted minor for some α, β, γ such that

{α, β, γ} = {1, 2, 3}. Moreover, the rooted graphs in Ωabc are minor minimal with

respect to the not abc-planarity property.

1.9 Outline of the Proof

In Section 2.1 in Chapter 2, we start with definitions which help us to state our

results. For a graph G and a vertex c ∈ V (G), we define a notion of c-disk system,

Definition 2.1.1, where instead of face boundaries we work with a collection of cycles

that cover every edge twice. This definition will be extremely useful for working with

embeddings in the projective plane.

In Section 2.2 we prove some basic lemmas and we reduce the embedding problem

to 2-list coloring of certain auxiliary graphs. By studying the obstructions of 2-list
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Figure 1.4: The set of minor minimal not 23-planar graphs satisfying the conditions
mentioned in the statement of Theorem 1.8.4.

coloring of the auxiliary graph, we are able to build enough theory such that at the

end of Chapter 2, we are able to prove Theorem 2.2.10, which is an analogue of

Theorem 1.4.1.

In Chapter 3 we are going to focus on application of Theorem 2.2.10 to inter-

nally 4-connected rooted graphs in chapter 3. We will see some of the outcomes of

Theorem 2.2.10 eliminated or substituted by other outcomes which are easier to deal

with in the application. At the end of chapter 3 we present Theorem 3.0.17, which is

another analogue of Theorem 1.4.1.

In Chapter 4, using the definition of c-disk system, Theorem 2.2.10 and Theo-

rem 3.0.17, we are ready to find obstructions for c-, ac- and abc-planarity. We also

present a proof of Theorem 1.8.2 from the beginning of this chapter.

In Section 4.1 we find the set of obstructions for c-planarity. First, by use of
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Figure 1.5: The set of minor minimal not 123-planar graphs satisfying the conditions
mentioned in the statement of Theorem 1.8.5.

Theorem 3.0.17, we find the set of minor minimal rooted graphs such that an internally

4-connected rooted graph (G, a, b, c) must contain one if (G, a, b, c) is not c-planar.

This is the statement of Lemma 4.1.3. Second by use of Lemma 4.1.3 and some

beneficial lemmas presented in Section 4.1, we reduce the connectivity condition and

at the end of Section 4.1, we prove Theorem 1.8.3 which gives the set of minor minimal

obstructions for c-planarity for 3-connected rooted graphs.

In Section 4.2, for a rooted graph (G, a, b, c), we repeat the same procedure as we

did in Section 4.1 with the further assumption that the rooted graph (G, a, b, c) already

contains a subdivision of one of the graphs listed in the statement of Theorem 1.8.3 as

a subdivision. Therefore (G, a, b, c) is not c-planar and we try to prevent a-planarity.

At the end of Section 4.2, we prove Theorem 1.8.4 which gives the set of minor

minimal obstructions for ac-planarity of 3-connected rooted graphs.
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In Section 4.3, for a rooted graph (G, a, b, c), we repeat the same procedure as we

did in Section 4.2 with the further assumption that the rooted graph (G, a, b, c) already

contains a subdivision of one of the graphs listed in the statement of Theorem 1.8.4 as

a subdivision. Therefore (G, a, b, c) is not ac-planar and we try to prevent b-planarity.

At the end of Section 4.3, we prove Theorem 1.8.5 which gives the set of minor minimal

obstructions for abc-planarity of 3-connected rooted graphs.

In the final chapter, Chapter 5, by applying Theorem 1.8.2 and having the list of

minor minimal obsructions for c-, ac-, abc-planarity, obtained in Chapter 4, we start

to glue the graphs on their terminal vertices to produce the list of minor minimal

non-projective planar graphs. This will prove the main theorem.
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CHAPTER II

NON-c-PLANAR EXTENSIONS OF A c-DISK SYSTEM

2.1 Definitions and Preliminaries

Let S be a multigraph which is a subgraph of a multigraph H . We say a cycle C

in the multigraph S is proper if its length is at least three. An S-bridge in H is a

connected subgraph B of H such that E(B)∩E(S) = ∅ and either E(B) consists of a

unique edge with both ends in S, or for some component C of H \V (S) the set E(B)

consists of all edges of H with at least one end in V (C). The vertices in V (B)∩V (S)

are called the attachments of B.

Let G be a multigraph with minimum degree three. A multigraph S is a subdi-

vision of a multigraph G if S is obtained from G by replacing its edges by internally

disjoint nonzero length paths with the same ends, called segments. For an edge

uv ∈ E(G) we denote the segment connecting u, v in S by seg(u, v). We denote

seg[u, v] \ {u}, seg[u, v] \ {v}, seg[u, v] \ {u, v} by seg(u, v], seg[u, v), seg(u, v), respec-

tively.

Let G, S,H be multigraphs such that S is a subgraph of H and is isomorphic to

a subdivision of G. In that case we say that S is a G-subdivision in H . Suppose

V (G) = {v1, . . . , vn} and V (H) = {u1, . . . , um} and H contains G as a subdivision.

It is easy to see that for showing this fact it is enough to identify the branch vertices

of G in H . For doing that we use the notation (v1, v2 . . . , vn)→֒(ui1, . . . , uin), implying

uij corresponds to vj , 1 ≤ j ≤ n, and we call it signature.

Let P be a path in H . Let Int(P ) be an empty set if the length of P is at most

one; otherwise Int(P ) denotes the path obtained from P by removing its end vertices.

We say a set of cycles C is a double cycle cover of G if for any edge e ∈ E(G),
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there exist exactly two cycles C1, C2 ∈ C both containing e.

Definition 2.1.1. Let G be a multigraph and c be a vertex of G with degree at least

three. We say a double cycle cover C is c-disk system if it has the following properties:

(i) For any two distinct cycles C1, C2 ∈ C, either C1 ∩ C2 has only one component

and it is a segment, null or a vertex, or C1 ∩ C2 has exactly two components

where one of its components is exactly the single vertex c and the other one is a

segment or a vertex, in which case for any cycle C ∈ C \ {C1, C2}, C ∩ C1 and

C ∩ C2 are a segment, null or a vertex.

(ii) If e1, e2, e3 are three distinct edges incident with a vertex v of G and there exist

cycles C1, C2, C3 ∈ C such that ei ∈ E(Cj) for all 1 ≤ i 6= j ≤ 3, then v has

degree three.

(iii) For C1, C2 ∈ C with C1 ∩ C2 = P ∪ {c} where P is a segment or vertex and

c 6∈ V (P ), there exists an edge e from c to one end of P , and there is no segment

other than e containing c and the other end of P .

(iv) For any three distinct proper cycles C1, C2, C3 ∈ C, we have |V (C1) ∩ V (C2) ∩

V (C3)| ≤ 1.

A trivial example of a c-disk system is the set of facial cycles of any 3-connected

plane graph G for any choice of c ∈ V (G). Figure 2.1 illustrates a non-trivial example

of a c-disk system.

We refer to an element of a c-disk system as a disk. We say v1, v2 ∈ V (G) are

cofacial in C if there exists C ∈ C such that {v1, v2} ⊆ V (C).

Let c be a vertex of G and C is a c-disk system of S.

If B is an S-bridge of H , then we say that B is unstable if some segment of S

includes all the vertices of attachments of B, and otherwise we say that B is rigid.
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Figure 2.1: The set of facial cycles of the graph G, C =
{axc, axby, xcb, bc, ycb, ayc, ac}, is a c-disk system.

We say a segment P is a special segment if c 6∈ V (P ) and there exist C1, C2 ∈ C

such that {c} ∪ V (P ) = V (C1) ∩ V (C2).

Let P be a path inH and x, y ∈ V (P ), then we denote the subpath of P connecting

x and y by xPy. Suppose P and P ′ are two internally disjoint paths connecting x, y

and y, z, respectively. We denote the unique path P ′′ ⊆ V (P ) ∪ V (P ′) connecting x

to z by xPyP ′z. Let |P | denote the length of the path P ; i.e. the number of edges

in P . The P -distance of x, y is defined by the length of the sub-path xPy.

Let B,B′ be two distinct S-brides with the set of attachments A and A′, respec-

tively. Suppose there exists a cycle C ∈ C such that A ∪ A′ ⊆ V (C). We say B and

B′ are crossing in C, if B ∪ C ∪ C ′ does not have an embedding in the plane such

that C bounds a region.

A path P in H is an S-path if it has at least one edge, and only its ends belong

to S.

An S-path P with ends u, v is an S-jump if no cycle of C includes both ends of P .
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Let v1, v2, v3 ∈ V (S) and v ∈ V (H) \ V (S), and let P1, P2, P3 be three paths in

H such that Pi has ends v and vi, they are pairwise disjoint except for v, and each

is disjoint from V (S) \ {v1, v2, v3}. Moreover v1, v2, v3 do not belong to the same

segment of S. In those circumstances we say that the triple (P1, P2, P3) is an S-fork,

the vertices v1, v2, v3 are its feet and the vertex v is its center. If each pair vi, vj,

1 ≤ i < j ≤ 3, are cofacial but no cycle in C contains all of v1, v2, v3, then we say the

S-fork is an S-triad.

Let v be a vertex of degree three in S and Q1, Q2, Q3 be the segments of S with

one end v and the other ends v1, v2, v3, respectively. Let (P1, P2, P3) be an S-triad

with feet {x1, x2, x3} where xi ∈ V (Qi), 1 ≤ i ≤ 3. In these circumstances we say

the S-triad is local around v. We say the sub-paths x1Q1v1, x2Q2v2 and x3Q3v3 are

the legs of the local triad. Let S ′ be a G-subdivision obtained from S by removing

V (vQ1v1) ∪ V (vQ2v2) ∪ V (vQ3v3) and adding V (P1) ∪ V (P2) ∪ V (P3). We say S ′ is

obtained form S by a triad exchange.

Let P1, P2, P3 and Q1, Q2, Q3 be two S-forks with feet on x1, x2, x3 and centers

u, v, respectively, such that V (Pi) ∩ V (Qj) = ∅ for all 1 ≤ i 6= j ≤ 3, and Pi ∩ Qi is

a path with an end xi. In this circumstance we say that (P1, P2, P3;Q1, Q2, Q3) is a

double fork in H . We say a double fork is connected if u, v are in the same S-bridge

of H .

Let P1 and P2 be two disjoint S-paths with ends u1, v1 and u2, v2, respectively,

such that u1, u2, v1, v2 belong to V (C) and occur on C in the other listed. In these

circumstances we say that the pair (P1, P2) is an S-cross on C. We call u1, u2, v1, v2

the feet of the cross in the order listed, and P1, P2 the arms of the cross. We say a

cross is solid if either none of its feet is the vertex c or if c is an end of Pi for some

i ∈ {1, 2} then the other end of Pi does not belong to a special segment. We say the

cross (P1, P2) is weakly free on C if for i = 1, 2 no segment of C includes both ends

of Pi. We say a weakly free cross is free if no two segments of C that share a vertex
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include all the feet of the cross. A cross, denoted by (P1, P2, P ), is called connected if

there exists a path P with ends u, v distinct from u1, u2, v1, v2 such that u ∈ V (P1)

and v ∈ V (P2) and P is disjoint from P1, P2 and S except at u and v. We call the

vertices u, v the connections of the connected cross. We say a connected S-cross is

c-blocking if Pi, for some i ∈ {1, 2}, has one end c and the other end on a special

segment. Note that a c-blocking S-cross is weakly free and it is contained in a rigid

bridge, by its definition.

Let (P1, P2) be a cross as described in the previous paragraph. We say (P1, P2, P )

is a degenerate S-cross if there exists a special segment Q in C such that u1 =

c, v1 ∈ V (Q), and u2 ∈ V (C) \ (V (Q) ∪ {c}), v2 ∈ V (Q) and there exists a path P

from u ∈ V (Int(P1)) to u2 which is disjoint from S, P1, P2 except at its ends. See

Figure 2.2 (A) for an illustration of it.

Let (P1, P2) be an S-cross as defined above and Q1, Q2 be two segments of S

sharing a vertex x 6= c of degree at least four such that u1, u2 ∈ V (Q1), v1, v2 ∈ V (Q2).

Suppose there exists a cycle C,C1, C2 ∈ C such that Q1 ∪Q2 ⊆ C and Q1 ⊂ C1 ∩ C,

Q2 ⊂ C2 ∩ C, and c 6∈ V (Q1) ∪ V (Q2). Assume u2, u1, x, v2, v1 appear in C as the

order listed and there exists a path P form vertex u ∈ (V (P1)∪ V (P2)∪ V (xQ1u2) ∪

V (xQ2v1)) to c which is disjoint from S ∪ P1 ∪ P2 excepts at its ends. In these

circumstances we say (P1, P2, P ) is an S-cross anchored at c. See Figure 2.2 (C) for

an illustration of it.

Let Q be a special segment of S and C1, C2 ∈ C be such that V (C1) ∩ V (C2) =

V (Q) ∪ {c}. Let P1 and P2 be two disjoint S-paths with ends u1, v1 ∈ V (Cj) and

u2, v2 ∈ V (C3−j), j ∈ {1, 2}, respectively, such that c 6∈ {u1, v1, u2, v2}. Moreover

assume that P1, P2 each has exactly one end on V (Q) and there exists an S-path P

with one end on c and the other one on u ∈ V (Q) such that (P, P1) and (P, P2) are

S-crosses. In these circumstances, we say that the triple (P, P1, P2) is a double facial

S-cross. See Figure 2.2 (B) for an illustration of it.
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Let P be a segment of S with ends z, w. Let P1, P2 be two S-paths with ends

x1, y1 and x2, y2, respectively such that z, x1, x2, y1, w appear on P in the order listed.

Assume that y2 6∈ V (P ) and there exists a path P3 from x ∈ Int(P1) to y ∈ V (P2) \

{x2}. In these circumstances we say that the triple (P1, P2, P3) is a tripod based at

P . We say x1, y1, x2, y2 are its feet in the order listed, and zPx1, y1w and yP2y2 are

its legs.

Let Q be a special segment of S with ends x, y such that cx ∈ E(S) by property(iii)

in Definition 2.1.1. Suppose C1, C2 ∈ C are such that V (C1) ∩ V (C2) = V (Q) ∪ {c}.

Let (P1, P2, P3) be an S-fork with feet on c, u, v and center o where {u, v} ⊆ V (Q) and

x, u, v, y appear on Q in the order listed. Let P be an S-path disjoint from P1, P2, P3

except at c connecting c to w, where w ∈ V (Int(vQu)). Let α : c = v1, v2, . . . , vn = y

be the path contained in V (C1) between c, y and internally disjoint from Q. Assume

R is an S-path disjoint from P, P1, P2, P3 between v′ ∈ V (Int(α)) and u′ ∈ V (uQx).

In these circumstances we say H-contains a blocking interlaced S-fork of type I. See

Figure 2.2 (D) for an illustration of it.

Let P, P1, P2, P3 be as in the previous paragraph. Let (R1, R2, R3) be a fork

with feet on c, u, v and center o′ disjoint from P, P1, P2, P3 except at c, u, v. In these

circumstances we say H contains a blocking interlaced S-fork of type II. We call o and

o′ the centers and w the connections of a blocking interlaced S-fork of type II. See

Figure 2.2 (E) for an illustration of it.

Let P be a segment of S of length at least two, and let Q be a path in H with

ends x, y ∈ V (P ) and otherwise disjoint from S. Let S ′ be obtained from S by

replacing the path xPy by Q; then S ′ is a G-subdivision in H and we say that S ′

is obtained from S by I-rerouting P through Q, or simply I-rerouting. Let v be a

vertex of S of degree k, let P1, P2, . . . , Pk be the segments of S incident with v. let

k = 3, x ∈ V (P1) \ {v}, y ∈ V (P2) \ {v} and let P be an S-path joining x, y. Let S ′

be obtained from S by removing the internal vertices of the path yP2v and replacing
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Figure 2.2: The above figures show illustrations of (A): degenerate cross, (B): double
facial cross, (C): weakly free cross anchored at c, (D): blocking interlaced fork of type
I, (E): blocking interlaced fork of type II.

by the path xPy. In those circumstances S ′ is called a T-rerouting of S. Now, let

k ≥ 4 and u1, u2 ∈ V (P1) \ {v} and v1, v2 ∈ V (P2) \ {v} be distinct vertices such

that the vertices u1, u2, v, v1, v2 appear on the path P1 ∪ P2 in the order listed, and

for i = 1, 2 let Qi be an S-path in H with ends ui and vi such that Q1 and Q2 are

disjoint. Moreover assume that there exits a cycle C ∈ C containing P1 ∪ P2. Let S ′

be obtained from V (S) ∪ V (Q1) ∪ V (Q2) by deleting the edges and internal vertices

of the paths u1P1u2 and v1P2v2. Then S ′ is a G-subdivision in H , and we say that S ′

is obtained by an X-rerouting from S.

Let v1, v2, v3, v4 ∈ V (S) be branch vertices of S such that v4 = c, v1, v2, v3 are

distinct from c. Suppose C is a connected component of H \ S and P1, P2, P3, P4 ⊂

(V (C) ∪ {v1, v2, v3, v4}) are four internally disjoint paths such that Pi has ends on
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vi and a vertex in V (C) for all 1 ≤ i ≤ 4. Assume that for each {vi, vj , vk} ⊂

{v1, v2, v3, v4} there exists a cycle in C containing vi, vj , vk, but no cycle in C contains

all of v1, v2, v3, v4. Moreover suppose vi and vj , 1 ≤ i 6= j ≤ 3 are connected by a

segment in S. In those circumstances we say that the quadruple (P1, P2, P3, P4) is an

S-pyramid with feet on v1, v2, v3, c in the order listed.

Definition 2.1.2. Let C be a c-disk system in S. We say a vertex v 6= c of S is

ambiguous if either

(i) v belongs to the intersection of two disks both containing c, or

(ii) v belongs to a segment whose ends satisfy condition (i) and the segment is a

subgraph of a disk containing c.

Lemma 2.1.3. Let G be a graph with minimum degree three and c be a vertex of G.

Let H be a graph and S be a G-subdivision in H with a c-disk system C. If H contains

an S-pyramid then the graph induced by ambiguous vertices of S is not a forest.

Proof. Suppose H contains an S-pyramid with feet on v1, v2, v3, c. The definition of

S-pyramid implies that v1, v2, v3, c ∈ V (S) and v1, v2, v3 are ambiguous. By (i) in

Definition 2.1.2, if v is a vertex on the segment connecting vi to vj, 1 ≤ i 6= j ≤ 3

then v belongs to a cycle of C which contains c. So by (ii) in Definition 2.1.2, v is

ambiguous. This immediately implies that the graph induced by ambiguous vertices

of S have a cycle. This completes the proof of the lemma.

A separation in a graph G is a pair of subgraphs (G1, G2) such that E(G1) ∩

E(G2) = ∅ and G1 ∪G2 = G. The order of the separation is |V (G1) ∩ V (G2)|.

We say a separation (G1, G2) is internal if |E(G1)|, |E(G2)| ≥ 4. We say a graph

or multigraph G is internally 3-connected if it is 2-connected, has at least five vertices,

and has no internal separation of order two. Similarly, we say a graph or multigraph

G is internally 4-connected if it is 3-connected, has at least five vertices, and has no

internal separation of order three.
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2.2 Useful lemmas

Theorem 2.2.1. Let G be a multigraph with minimum degree three, H be a 3-

connected multigraph, and let S be a G-subdivision in H satisfying the following

condition:

(∗) if e, f are parallel edges in H then e, f are parallel in S.

Then there exists a G-subdivision S ′ in H obtained from S by a sequence of I-

reroutings such that every S ′-bridge is rigid.

Proof. Choose a G-subdivision S ′ obtained from S by a sequence of I-reroutings such

that the number of vertices that belong to rigid S ′-bridges is maximum. Then S ′

satisfies condition (∗). We show that all S ′-bridges are rigid.

For any S ′-bridge B, let A(B) denote the set of attachments of B. Suppose there

exists a segment P : v0v1 . . . vn of S ′ and an S ′-bridge B∗ such that A(B∗) ⊆ V (P ).

Let B be the set of all S ′-bridges such that their sets of attachments are contained

in V (P ). Note that B 6= ∅ since B∗ ∈ B. We claim that there exists a bridge

B ∈ B, x, y ∈ A(B) and an S ′-bridge B′ such that A(B′) ∩ V (Int(xPy)) 6= ∅ and

A(B′) ∩ (V (S) \ V (P )) 6= ∅. For any B ∈ B, let xB, yB ∈ A(B) be such that the

P -distance of xB , yB is maximum among all pairs of vertices in A(B). Let A =

⋃
B∈B

A(B), x∗, y∗ ∈ A be such that the P -distance of x∗, y∗ is maximum among all

pairs of vertices in A. The fact that H is 3-connected and condition (∗) imply that

there is no 0 ≤ i ≤ n − 1 and B ∈ B such that {xB, yB} = {vi, vi+1}. Note that for

any B ∈ B since {xB, yB} is not a cut set in H there exists an S ′-bridge B′ such that

B′ has an attachment in V (Int(xBPyB)) and an attachment in V (S) \ V (xBPyB).

Therefore either there exists a B ∈ B such that the bridge B′ has an attachment

on V (S) \ V (P ) in which case the the proof of the claim is completed, or for any

v ∈ V (Int(x∗Py∗)) there exists a an S ′-bridge B ∈ B such that v ∈ V (Int(xBPyB)).

Since H is 3-connected {x∗, y∗} is not an S ′-cut set. Thus there exists an S ′-bridge
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B′′ and v ∈ V (Int(x∗Py∗)) such that v ∈ A(B′′) and A(B′′)∩ (V (S) \V (P )) 6= ∅. By

the above statement there exists an S ′-bridge B such that v ∈ V (xBPyB) \ {xB, yB}.

This completes the proof of the claim.

Assume B is such a bridge and let Q ⊆ B be a path connecting xB, yB and let

S ′′ be a G-subdivision of S ′ obtained by I-rerouting of xBPyB through Q. Note that

any rigid S ′-bridge B̃ where A(B̃)∩ (V (xBPyB) \ {xB, yB}) = ∅, is a rigid S ′′-bridge,

and there exists a rigid S ′′-bridge containing V (xBPyB) and V (B̃) for all S ′-bridge

B̃ where A(B̃) ∩ V (Int(xBPyB)) 6= ∅. This contradicts the choice of S ′.

Lemma 2.2.2. Let G be a multigraph with minimum degree three and c ∈ V (G).

Let H be a 3-connected multigraph, and let S be a G-subdivision in H satisfying

condition (∗) in Theorem 2.2.1. Let C be a c-disk system in S, and B be an S-bridge

such that no disk includes all attachments of B. Then one of the following conditions

holds.

(i) there exists an S-jump, or

(ii) there exists an S-triad, or

(iii) there exists an S-pyramid, or

(iv) G is isomorphic to K4.

Proof. We may assume that (i) and (ii) do not hold. Let A be the set of all attach-

ments of B and k be the maximum integer such that for every k-element subset A′

of A there exists a disk C ∈ C such that A′ ⊆ V (C). By the lemma’s hypothesis and

our assumption 3 ≤ k < |A|, there exist distinct vertices a1, a2, . . . , ak+1 ∈ A such

that a1, a2, . . . , ak+1 ∈ V (C) for no disk C ∈ C. For i = 1, 2, . . . , k + 1 let Ci ∈ C be

a disk in S such that V (Ci) includes all of a1, a2, . . . , ak+1 except ai. We may assume

a1, . . . , ak are distinct from c. Since a1, a2 belong to C3 and C4, there exists a segment

P12 which is a subgraph of C3 ∩ C4 of S containing a1 and a2. Similarly there exist
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segments Pij ⊂ V (Ct), t ∈ {1, . . . , k+1}\{i, j}, 1 ≤ i 6= j ≤ k containing ai, aj. Note

that a1, . . . , ak are branch vertices of S, because otherwise for some i ∈ {1, . . . , k}, ai

belongs to the interior of some segment of S, hence a1, . . . , ak, ak+1 all belong to the

cycle C1, a contradiction. Since P12 ∪ P23 ∪ P13 is a cycle and is a subgraph of C4, it

is equal to C4. Hence, k = 3. Now consider two cases, either a4 6= c, in which case

property (ii) in Definition 2.1.1 implies deg(a1) = deg(a2) = deg(a3) = deg(a4) = 3

so S is isomorphic to a subdivision of K4 which implies G is isomorphic K4 so (iv)

holds. Or, a4 = c, in which case, there exists an S-pyramid and (iii) holds.

Lemma 2.2.3. Let G be a multigraph and C be a cycle in G. Then one of the

following conditions holds:

(i) The multigraph G has a planar embedding so that C bounds a region.

(ii) there exists a separation (A,B) of G of order at most three such that V (C) ⊆ A

and G[B] has at least five vertices and it does not have a drawing in a disk with

vertices in A ∩ B drawn on the boundary of the disk.

(iii) There exist two disjoint paths in G with ends s1, t1 ∈ V (C) and s2, t2 ∈ V (C),

respectively which are disjoint from C except at s1, t1, s2, t2 such that s1, s2, t1, t2 occur

on C in the order listed.

Definition 2.2.4. Let G be a multigraph with minimum degree three and c ∈ V (G).

Let H be a 2-connected multigraph, and let S be a G-subdivision in H satisfying

condition (∗) in Theorem 2.2.1. Let C be a c-disk system in S. An auxiliary graph

A(S,H) is a graph with vertex-set V (A(S,H)) corresponding to the set of all S-bridges

of H. For each B ∈ V (A(S,H)), let L(B) be the set of all cycles C ∈ C such that C

contains all attachments of B and C ∪B has an embedding in the plane such that the

cycle C bounds a region. Two vertices B and B′ of A(S,H) are adjacent by an edge

if there exists some C ∈ C such that B and B′ are crossing in C.
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Note that since H is 2-connected then for each B ∈ V (A), |L(B)| ≤ 2, and if

L(B) = {C1, C2} then c ∈ C1 ∩C2. Moreover, if B,B′ are adjacent vertices of A with

L(B) = L(B′) = {C1, C2} then B and B′ are crossing on C1 and C2.

For simplicity, if the graphs S and H are easily understandable from the context,

we refer to A(S,H) by A(S) or A. Note that we use B to refer to a vertex of

A(S,H) and the corresponding a S-bridge. We say a vertex B ∈ V (A(S,H)) is valid

if L(B) 6= ∅, and we say B ∈ V (A(S,H)) is invalid if L(B) = ∅. We say a vertex B ∈

V (A(S,H)) is pre-colored, |L(B)| = 1. We say an auxiliary graph A is list colorable

if all of its vertices are valid and there exists a mapping ϕ : V (A) →
⋃

B∈V (A) L(B)

such that ϕ(B) ∈ L(B) and if BB′ is an edge of A then ϕ(B) 6= ϕ(B′). We say a

vertex B ∈ A(S,H) is rigid if B is rigid as an S-bridge.

Here we should point out that the list coloring of the auxiliary graph is exactly the

same as ordinary 2-list coloring, where the number of colors appearing in the union

of the lists of colors in each connected component of the auxiliary graph is at most

two.

The following lemma follows from Lemma 2.2.2 and Lemma 2.2.3.

Lemma 2.2.5. Let G be a graph with minimum degree three and c be a vertex of G.

Let H be an internally 3-connected multigraph containing S as a G-subdivision with a

c-disk system C such that all S-bridges are rigid. If a subgraph of the auxiliary graph

A(S,H) contains an invalid vertex then one of the following condition holds:

(i) there exists a connected S-cross contained in a rigid S-bridge, or

(ii) there exists a separation (A,B) of H of order at most three such that V (S) ⊆ A

and G[B] has at least five vertices and it does not have a drawing in a disk with

vertices in A ∩ B drawn on the boundary of the disk, or

(iii) there exists an S-jump, or

(iv) there exists an S-triad, or
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(v) there exists an S-pyramid, or

(vi) G is isomorphic to K4.

Proof. It is easy to see that if a bridge B is invalid either there is no cycle in C

containing all of its attachments in which case by Lemma 2.2.2 (iii), (iv), (v) or (vi)

occurs, or there exists a cycle C ∈ C such that C contains all attachments of B, but

C ∪ B does not have an embedding such that the cycle C bounds a region, thus by

Lemma 2.2.3, and the fact that all of S-bridges are rigid either (i) or (ii) holds.

Lemma 2.2.6. Let G be a graph and for all v ∈ V (G), let L(v) be a nonempty subset

of {1, 2}, v ∈ V (G). Then G has no L-coloring if and only if one of the following

conditions holds:

(i) there exists an odd cycle in G, or

(ii) there exists a path v0, v1, . . . , v2k, k ≥ 1 in G such that L(v0) = {i} and L(v2k) =

{3 − i} for some i ∈ {1, 2}, or

(iii) there exists a path v0, v1, . . . , v2k+1, k ≥ 0 in G such that L(v0) = L(v2k+1) = {i}

for some i ∈ {1, 2}.

Lemma 2.2.7. Let G be a multigraph with minimum degree three and c ∈ V (G).

Let H be a 3-connected multigraph, and let S be a G-subdivision in H satisfying

condition (∗) in Theorem 2.2.1. Let C be a c-disk system in S such that all S-

bridges are rigid. Let ∆ be a subgraph of the auxiliary graph A(S,H) such that for

each S-bridge B in ∆ there exist exactly two cycles in C containing all attachments

of B and L(B) 6= ∅. Then H has a G-subdivision S ′ obtained from S by repeated

I-reroutings such that S ′ and the c-disk system C′ induced in S ′ satisfy one of the

following conditions:

(i) there exists a c-blocking S ′-cross in H, or
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(ii) there exists a special segment P and a connected double S-fork such that its feet

are contained in V (P ) ∪ {c}, or

(iii) there exists blocking interlaced S-fork of type II, or

(iv) ∆ is list colorable.

Proof. Note that if all components of ∆ are list colorable then (iv) holds, so assume

that there exists a connected component of ∆ which is not list colorable, or without

loss of generality we may assume ∆ is connected and it is not list colorable. The prop-

erty (i) in Definition 2.1.1 implies that if B1 and B2 are two bridges and C1, C2, C3 ∈ C

are such that C1, C3 each contains all attachments of B1 and C2, C3 each contains

all attachments of B2, then C1 = C2. So the union of all lists associated to vertices

of ∆ has size exactly two. So for each vertex B ∈ ∆, L(B) = {C1, C2}, and P is the

special segment where C1 ∩ C2 = P ∪ {c}. Note that since (iv) does not hold the

intersection of C1 and C2 contains a special segment. Since (iv) does not hold and for

each vertex B ∈ ∆ we have L(B) = {C1, C2}, by Lemma 2.2.6, there exists an odd

cycle in ∆.

Let S ′ be obtained from S by a sequence of I-reroutings such that the length of

an induced odd cycle consisting of rigid bridges with list size exactly two in A(S ′, H)

is minimum.

Claim 1. The length of the shortest induced odd cycle consisting of rigid bridges with

list size exactly two in A(S ′, H), is three.

For proving Claim 1, let γ : B0B1B2 . . . B2kB0, k ∈ N be the shortest induced odd

cycle consisting of rigid vertices in A(S ′, H), where k ≥ 2. Note that B1B2B3 is an

induced path in A(S ′, H). Let Ai be the set of attachments of Bi, 0 ≤ i ≤ 2k. By

the lemma’s assumption,
⋃3

i=1Ai ⊆ V (P ) ∪ {c}. Since B1B2B3 is an induced path,

|A2 ∩ V (P )| ≥ 2. Let x1, . . . , xk be attachments of B2 on P listed in the order they

appeared on P . Moreover, suppose a, b are the end vertices of P such that aPx1 and
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bPxk are disjoint sub-paths. First, we are going to show that Ai∩V (Int(x1Pxk)) 6= ∅,

i = 1, 3. By symmetry assume A1 ∩ V (Int(x1Pxk)) = ∅. Since B1 crosses B2,

|A1∩V (aPx1)| ≥ 1 and |A1∩V (xkPb)| ≥ 1. The fact that B3 crosses B2 implies that

either |A3 ∩ V (Int(x1Pxk))| ≥ 1, or |A3 ∩ V (aPx1)| ≥ 1 and |A3 ∩ V (xkPb)| ≥ 1. It

is not hard to see that in either case, B3 crosses B1, a contradiction.

Now suppose that a = v1, . . . , vt = b are the vertices of P listed in the order in

which they appear in P . Note that Bi crosses Bj if and only if min{ℓ : vℓ ∈ Aj} <

max{ℓ : vℓ ∈ Ai} and min{ℓ : vℓ ∈ Ai} < max{ℓ : vℓ ∈ Aj}. Now it is easy to

see that the fact that B0 crosses B1 and B2k implies that B0 crosses B2, . . . B2k−1, a

contradiction. This completes the proof of Claim 1.

Claim 2. The multigraph H has a G-subdivision S ′′ obtained from S ′ by at most

one I-rerouting, an S ′-path Z with ends c, z where z is in interior of the special

segment of S ′′, called Q, and two forks F1, F2 with feet c, x1, x2 and c, y1, y2 such that

x1, x2, y1, y2 ∈ V (Q) and z ∈ Int(x1Qx2) ∩ Int(y1Qy2).

As Claim 1 implies, let γ : B′
1B

′
2B

′
3 be a triangle in A(S ′, H) where B′

i, 1 ≤ i ≤ 3

are rigid. Let A′
i be the set of attachments of B′

i, 1 ≤ i ≤ 3. Let a, b be the end

vertices of P . Note that there exist 1 ≤ m 6= n ≤ 3 such that |A′
m ∩ V (P )| ≥ 2

and |A′
n ∩ V (P )| ≥ 2. Without loss of generality, m = 1, n = 2 and x′1, . . . , x

′
k and

y′1, . . . , y
′
ℓ are attachments of B′

1 and B′
2 on P listed in the order in which they appear

on P . Moreover assume that x′i, 1 ≤ i ≤ k and y′j, 1 ≤ j ≤ ℓ are such that aPx′1 and

x′kPb are disjoints sub-paths of P and, similarly aPy′1 and y′ℓPb are disjoint sub-paths

of P . Note that B′
1 contains a fork F ′

1 with feet on c, x′1, x
′
k and similarly, B′

2 contains

a fork F ′
2 with feet on c, y′1, y

′
ℓ.

Without loss of generality, we may assume that a, x′1, y
′
1 appear on P in the order

listed, where x′1 could be equal to y′1. First assume that |A′
3 ∩ V (P )| = 1. The

fact that B′
3 crosses both B′

1 and B′
2 implies that there exists z ∈ A′

3 such that

z ∈ Int(x′1Px
′
k) ∩ Int(y

′
1Py

′
ℓ), which shows that Claim 2 holds.
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So assume that |A′
3 ∩ V (P )| ≥ 2. Let z′1, . . . , z

′
t be the attachments of B′

3 on P in

the order listed such that aPz′1 and z′tPb are disjoint subpaths of P . We assume that

the P -distance of a to z′1 is at least as large as the P -distance of a to y′1, otherwise by

switching the role of B′
2, B

′
3 or B′

1, B
′
3 and B′

3, B
′
2 we could maintain the condition. If

z′1 6= y′1 then Claim 2 holds by setting z = z′1, F1 = F ′
1 and F2 = F ′

2.

Therefore z′1 = y′1. Without loss of generality, assume that a, z′t, y
′
ℓ appear on P in

the order listed. Note that B′
3 contains a fork (W,W ′,W ′′) with feet on c, z′1 and z′t,

and center w. Let S ′′ be obtained from S ′ by I-rerouting z′1Pz
′
t through z′1W

′wW ′′z′t.

By setting z = w, F1 = F ′
1 and F2 = F ′

2, Claim 2 holds. This completes the proof of

Claim 2.

So by applying Claim 2, assume S ′′, Q, Z, F1, F2, z, x1, x2, y1 and y2 are as stated

in the statement of Claim 2. Let F1 = (X,X ′, X ′′) with feet on c, x1, x2 and center x

and, F2 = (Y, Y ′, Y ′′) with feet on c, y1, y2 and center y. Without loss of generality,

assume that aQx1 and x2Qb are disjoints sub-paths of Q and, similarly aQy1 and

y2Qb are disjoint sub-paths of Q. Moreover a, x1, y1 appear on Q in the order listed.

• y2, x2, b appear on Q in the order listed.

If x1 = y1 and x2 = y2 then it is easy to see that (iii) holds. So by symmetry assume

that x2 6= y2. Let S∗ be obtained from S ′′ by I-rerouting x1Qx2 through x1X
′xX ′′x2.

It is not hard to see that the fork (α, α′, α′′) where α : zZc, α′ : zQy1Qx1, α
′′ :

zQy2Qx2 and the fork (β, β ′, β ′′) where β : yY c, β ′ : yY ′y1Qx1, β
′′ : yY ′′y2Qx2 form a

connected double S∗-folk. Thus (ii) holds.

• x2, y2, b appear on Q in the order listed.

Note that in this case, x1 6= y1 and x2 6= y2, otherwise we are in the previous case.

Let S∗ be obtained from S ′′ by I-rerouting x1Qx2 through x1X
′xX ′′x2. It is not hard

to see x1Qy1Y
′yY ′′y2, cZzQx2, y1Qz form a c-blocking S∗-cross. Thus (i) holds.

This completes the proof of the lemma.
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Lemma 2.2.8. Let G be a multigraph with minimum degree three, H be a 3-connected

multigraph, and let S be a G-subdivision in H satisfying condition (∗) in Theo-

rem 2.2.1. Let C be a c-disk system in S. Let B1 and B2 be two rigid S-bridges

crossing in C, where for i = 1, 2, C ∈ C is the unique cycle containing the attach-

ments of Bi. Then one of the following conditions holds:

(i) there exists a solid S-cross with its arms contained in S-rigid bridges, or

(ii) there exists a connected S-cross contained in a rigid S-bridge, or

(iii) there exists a degenerate S-cross, or

(iv) there exists a separation (H1, H2) of H of order at most three such that V (S) ⊆

H1, and H2 has at least five vertices and it does not have a drawing in a disk

with vertices in V (H1)∩V (H2) drawn on the boundary of the disk. Furthermore,

there is no special segment P ⊂ C such that H1 ∩H2 ⊂ V (P ) ∪ {c}.

Proof. By assumption of the lemma for the S-bridge Bi, 1 ≤ i ≤ 2, there is no special

segment Q such that V (Q)∪{c} contains all attachments of Bi. Now assume that (iv)

does not hold. Since B1 and B2 are crossing in C, by Lemma 2.2.3, there exist two S-

paths P1, P2 ⊆ B1∪B2 with ends x1, y1 and x2, y2, respectively, such that x1, x2, y1, y2

appear in C in the order listed. If P1 and P2 belong to the same S-bridge then (ii)

holds. Now assume that V (P1) ⊆ V (B1) and V (P2) ⊆ V (B2). Assume that (P1, P2)

is not a solid S-cross. So by symmetry, we may assume that x1 = c and y1 belong to

a special segment, called Q. Since C is the unique disk containing all attachments of

B1, there exists a path P from x ∈ V (Int(P1)) to a vertex y ∈ V (C) \ (V (Q) ∪ {c})

disjoint from S and P1 and P2 except at its ends. Now by symmetry, we consider

three cases: either {x2, y2}∩V (Q) = ∅, or x2 6∈ V (Q), y2 ∈ V (Q), or {x2, y2} ⊆ V (Q).

Note that the first case does not happen by property (iii) in Definition 2.1.1. In the

second case if y 6= x2 then it is easy to see that there exists a solid S-cross, so (i)

39



holds, and if y = x2 there exists a degenerate S-cross, thus (iii) holds. In the last case

note that since C is the unique cycle containing all attachments of B2, there exists a

path P ′ from x′ ∈ V (Int(P2)) to a vertex y′ ∈ V (C) \ (V (Q) ∪ {c}) disjoint from S

and P1 and P2 except at its ends. Note that (P1, y2P2x
′P ′y′) form an S-cross. Now it

is easy to see that the same argument presented for settling the second case applies

to this case. This completes the proof of the lemma.

Lemma 2.2.9. Let G be a multigraph with minimum degree three, H be a 3-connected

multigraph, and let S be a G-subdivision in H satisfying condition (∗) in Theo-

rem 2.2.1. Let C be a c-disk system in S such that all S-bridges are rigid. Let ∆

be a subgraph of A(S,H) such that for any S-bridge B ∈ ∆, 1 ≤ |L(B)| ≤ 2. Then

H has a G-subdivision S ′ obtained from S by repeated I-reroutings such that S ′ and

the c-disk system C′ induced in S ′ satisfy one of the following conditions:

(i) there exists an S ′-jump, or

(ii) there exists a degenerate S ′-cross, or

(iii) there exists a connected S ′-cross contained in a rigid S ′-bridge, or

(iv) there exists a separation (H1, H2) of H of order at most three such that V (S) ⊆

H1, and H2 has at least five vertices and it does not have a drawing in a disk

with vertices in V (H1)∩V (H2) drawn on the boundary of the disk. Furthermore,

there is no special segment P ⊂ C such that H1 ∩H2 ⊂ V (P ) ∪ {c}, or

(v) there exists a solid S ′-cross with its arms contained in rigid S-bridges, or

(vi) there exists a double facial S ′-cross, or

(vii) there exists a blocking interlaced S-fork of type I, or

(viii) there exists a blocking interlaced S ′-fork of type II, or
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(ix) there exists a special segment P and a connected double S-fork such that one of

its feet is on c and the other two are contained in V (P ), or

(x) ∆ is list colorable.

Proof. Suppose (x) does not hold, i.e. ∆ is not list colorable. Note that if all compo-

nents of ∆ are list colorable then (x) holds, so assume that there exists a connected

component of ∆ which is not list colorable, or without loss of generality we may as-

sume ∆ is connected and it is not list colorable. Now Lemma 2.2.6 implies that there

exist three possible cases: either there exist two pre-colored vertices with different

lists connected by a path of even length in ∆, there exist two pre-colored vertices

with the same list connected by a path of odd length in ∆, or there exists an odd

cycle consisting of not pre-colored vertices in ∆. Let a, b be ends of P such that

bc ∈ E(S) as Definition 2.1.1 (iii) implies. Suppose β : c = v1, v2, . . . , vn = a is the

path connecting c and a in C1 and that it is internally disjoint from P .

• Case 1: Suppose α : B0B1B2 . . . B2k, k ∈ N is an even path of rigid bridges

where B0, B2k are pre-colored vertices with different lists and Bi, 1 ≤ i ≤ 2k−1

are not pre-colored with list size exactly two.

Note that L(B0) = {Cj}, L(B2k) = {C−j+3}, j ∈ {1, 2} and L(Bi) = {C1, C2}, 1 ≤

i ≤ 2k − 1. Let S ′ be a G-subdivision obtained from S by a sequence of I-reroutings

such that there exists an even length path consisting of rigid bridges which connects

two pre-colored bridges with different lists using not pre-colored vertices of A(S ′, H)

with list size exactly two, and with respect to this condition the length of the path is

minimum.

Claim 1. The length of the shortest even path consisting of rigid not pre-colored

vertices with list size exactly two connecting two pre-colored bridges with different

lists in A(S ′, H), is two, or (iii) holds.
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Let α : B0B1B2 . . . B2k+1B2k+2, k ∈ N be the shortest even path connecting B0

and B2k+2. Note that B1B2B3 is an induced path in A(S ′, H). Let Ai be the set of

attachments of Bi, 1 ≤ i ≤ 3. By the lemma’s assumption,
⋃3

i=1Ai ⊆ V (P ) ∪ {c}.

It is easy to see that |A2 ∩ V (P )| ≥ 2. Let y1, . . . , yℓ be the attachments of B2 on

P listed in the order they appeared on P . Moreover, suppose aPy1 and bPyℓ are

disjoint subpaths of P . Similarly as in the proof of Claim 1 in Lemma 2.2.7, we

have Ai ∩ V (Int(y1Pyℓ)) 6= ∅, i = 1, 3. Assume A1 ∩ V (Int(y1Pyℓ)) = ∅. Since B1

crosses B2, |A1 ∩ V (aPy1)| ≥ 1 and |A1 ∩ V (yℓPb)| ≥ 1. The fact that B3 crosses

B2 implies that either |A3 ∩ (V (y1Pyℓ) \ {y1, yℓ})| ≥ 1, or |A3 ∩ V (aPy1)| ≥ 1 and

|A3 ∩ V (yℓPb)| ≥ 1. It is not hard to see that in either case, B3 crosses B1, a

contradiction.

Suppose u ∈ A1 and v ∈ A3 are such that y1 ∈ V (aPu) and yℓ ∈ V (bPv). An

immediate consequence of the above argument is that since neither B0 nor B4 crosses

B2, A3 ∩ V (yℓPb) \ {yℓ} 6= ∅ and A1 ∩ V (aPy1) \ {y1} 6= ∅. Let x1, . . . , xk, z1, . . . , zt

be attachments of B1, B3 on P listed in the order they appear on P , respectively.

Assume that xi 1 ≤ i ≤ k and zj , 1 ≤ j ≤ t are such that aPx1, bPxk and aPz1, bPzt

are disjoint subpaths of P and a, x1, y1, z1, b appeared on P as the order listed. Let

Q2 ⊆ V (B2) \ (A2 \ {y1, yℓ}) be a path connecting y1, yℓ. Let S ′′ be obtained from S ′

by I-rerouting y1Pyℓ through Q2. Since α is an induced path, Bj∩V (Int(y1Pyℓ)) = ∅,

j ∈ {0, . . . , 2k + 2} \ {1, 2, 3}. Note that Bj becomes an S ′′-bridge and it remains

rigid for j ∈ {0, . . . , 2k + 2} \ {1, 2, 3}. Note that B3 contains a fork (W,W ′,W ′′)

with feet on c, z1 and zt, respectively and center w.

Let B be the S ′′-bridge such that (V (B1)∪V (B3)∪V (y1Pyℓ)∪{c}) ⊆ V (B). Now

either for all S ′-bridges, B′, with the property V (B′) ∩ V (Int(y1Pyℓ)) 6= ∅ we have

V (B′) ∩ ((V (C1) ∪ V (C2)) \ (V (P ) ∪ {c})) = ∅, in which case B is a valid not pre-

colored S ′′-bridge and α′ : B0, B,B4, . . . , B2k+2 is an induced even path consisting

of rigid vertices which has shorter length than α. Or, there exists a S ′-bridge B′
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containing a pathO from o′ ∈ V (y1Pyℓ)\{y1, yℓ} to o ∈ (V (C1)∪V (C2))\(V (P )∪{c}).

By symmetry assume that o ∈ V (C1) and a, b, o, c are listed in the order they appear

on C1. Now, either o′ ∈ V (y1Pxk), o
′ ∈ V (xkPz1) or o′ ∈ V (z1Pyℓ). We just

investigate the case that o′ ∈ V (xkPz1) since the other cases are completely similar.

It is not hard to see that if o′ ∈ V (xkPz1) then oOo′PxkPy1, cWwW ′′zt and wW ′z1Po
′

is a c-blocking S ′′-cross, so (iii) holds. This proves Claim 1.

As Claim 1 implies assume B0B1B2 is a path such that B0, B2 are pre-colored

and B1 is not pre-colored. Let Ai be the set of attachments of Bi, 0 ≤ i ≤ 2. Let

x1, . . . , xk be the attachments of B1 on P listed in the order they appear on P (k

could be equal to 1). Assume x1Pa and xkPb are internally disjoint paths. Similarly

to β assume λ : c = v′1, v
′
2, . . . , v

′
n = a is a path contained in V (C2) between c, a and

internally disjoint from P . Since B0, B2 are pre-colored, A0 ∩ V (Int(β)) 6= ∅ and

A2 ∩ V (Int(λ)) 6= ∅. Let u′ ∈ A0 ∩ V (Int(β)) and v′ ∈ A2 ∩ V (Int(λ)). Since B0, B2

are crossing B1, there exist u, v ∈ V (x1Pb) \ {x1} and S ′-paths U connecting u, u′

and V connecting v, v′ contained in B0 and B2, respectively. This immediately shows

that (vi) holds.

• Case 2: Suppose α : B0B1B2 . . . B2k+1, k ∈ N is an odd path of rigid bridges

where B0, B2k+1 are pre-colored vertices with the same list and if Bi, 1 ≤ i ≤

2k + 1 are not pre-colored with list size exactly two.

Let S ′ be a G-subdivision obtained from S by a sequence of I-reroutings such

that there exists an odd length path consisting of rigid bridges which connects two

pre-colored bridges with the same list using not pre-colored vertices of A(S ′, H) with

list size exactly two, and with respect to this condition the length of the path is

minimum.

Claim 2. The length of the shortest odd path consisting of rigid not pre-colored

vertices with list size exactly two connecting two pre-colored bridges with the same
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list, is three, or either (ii), (iii), (iv) or (v) holds.

For proving Claim 2 note that if α : B0B1 is a path connecting two pre-colored

bridges with the same list, call it C1, then the fact that B0 crosses B1 and they are

pre-colored and rigid, implies that by applying Lemma 2.2.8 either (ii), (iii), (iv) or

(v) holds. So assume that α : B0B1B2 . . . B2k+1 and k ∈ N. In this case the rest of

the proof of Claim 2 is similar to the proof of Claim 1 in Case 1, so we skip its proof

here.

As Claim 2 implies, we assume α : B0B1B2B3. Let Ai, 0 ≤ i ≤ 3 be the set

of attachments of Bi. Without loss of generality, assume LB0
= LB3

= {C1}. We

consider two possibilities, either B0 6= B3 or B0 = B3.

First assume B0 6= B3. Similarly to the argument presented in Case 1, we have

|Ai ∩ V (P )| ≥ 2, i = 1, 2. Let x1, . . . , xk, y1, . . . , yℓ be attachments of B1, B2 on P

listed in the order they appeared on P , respectively. Assume that a, x1, y1, xk, yℓ, b

are listed in the order they appeared on P . Since α is induced, |{x1, y1, xk, yℓ}| = 4.

Note that since α is an induced path, B0 crosses B1, B2 crosses B3, and B0 and B3

are pre-colored, there must exist vertices v ∈ V (Int(β)), u ∈ V (C1) \ (V (β)∪ V (P )),

v′ ∈ A0 ∩ V (x1Py1), u
′ ∈ A3 ∩ V (xkPyℓ) and paths V ⊆ V (B0) and U ⊆ V (B3)

connecting v, v′ and u, u′, respectively. However, as the property (iii) of c-disk system

in Definition 2.1.1 implies V (C1) \ (V (β) ∪ V (P )) = ∅, so the first case does not

happen.

Thus B0 must be equal to B3. It is easy to see that either |A1 ∩ V (P )| ≥ 2 or

|A2 ∩ V (P )| ≥ 2. By symmetry, we may assume |A1 ∩ V (P )| ≥ 2. Let x1, . . . , xk be

attachments of B1 on P listed in the order they appear on P such that aPx1 and

bPxk are disjoint subpaths of P . Let Q1 ⊆ (V (B1) \ (A1 \ {x1, xk})) be the path

connecting x1 and xk. Suppose β : c = v1, v2, . . . , vn = a is the path contained in

V (C1) between c, x1 and it is internally disjoint from P . By switching the roles of B1

and B2, we may assume A2 ∩ V (P ) ⊆ V (x1Pb).
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Now if A2 ∩V (Int(x1Pxk)) 6= ∅ then let y ∈ A2 ∩V (Int(x1Pxk)) be the vertex in

A2 ∩ V (Int(x1Pxk)) which has the minimum P -distance to x1. Let O ⊆ V (B2) be a

path from y to c. The fact that B0 is pre-colored and B0 crosses B2, B1 implies that

there exist v ∈ V (Int(β)) and v′ ∈ V (yPb) \ {y}. If v′ ∈ V (xkPb) then (vii) holds.

If v′ ∈ V (Int(yPxk)) then S ′′ obtained from S ′ by I-rerouting x1Pxk through Q1,

has the property that vV v′Pxk, cOyPx1, yPv
′ form a c-blocking S ′′-cross. Therefore,

(iii) holds.

Now assume that A2 ∩ V (Int(x1Pxk)) = ∅. Since B1 crosses B2 implies that

|A2 ∩ V (P )| ≥ 2. We may assume x1, xk ∈ A2 since otherwise by the switching roles

of B1 and B2, as the above argument shows either (iii) or (vii) holds. Moreover, we can

also infer that A2 ∩ V (P ) = {x1, xk}. Note that B1 contains a fork (W,W ′,W ′′) with

feet on c, x1, xk, respectively and center w. Similarly B2 contains a fork (O,O′, O′′)

with feet on c, x1, xk, respectively and center o. Since B0 is pre-colored, there exist

v ∈ V (Int(β)) and v′ ∈ V (x1Pb) \ {x1}. If S ′′ is obtained from S ′ by I-rerouting

x1Pxk through Q1 then it is easy to see that (vii) holds.

• Case 3: Suppose γ : B0B1B2 . . . B2kB0, k ∈ N is an odd induced cycle consisting

of rigid bridges where Bi, 0 ≤ i ≤ 2k are not pre-colored and have list size

exactly two.

In this case Lemma 2.2.7 implies either (iii), (viii), (ix) holds.

This completes the proof of the lemma.

Theorem 2.2.10. Let G be a multigraph with minimum degree three, H be a 3-

connected multigraph, and let S be a G-subdivision in H satisfying condition (∗) in

Theorem 2.2.1. Let C be a c-disk system in S such that all S-bridges are rigid. Then

H has a G-subdivision S ′ obtained from S by repeated I-reroutings such that S ′, the
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c-disk system C′ induced in S ′ and the auxiliary graph A(S ′, H) satisfy one of the

following conditions:

(i) there exists an S ′-jump, or

(ii) there exists a degenerate S ′-cross, or

(iii) there exists a connected S ′-cross contained in a rigid S ′-bridge, or

(iv) there exists a separation (H1, H2) of H of order at most three, and there is no

special segment P ⊂ C such that V (C) ⊆ H1, and H2 has at least five vertices

and it does not have a drawing in a disk with vertices in V (H1)∩ V (H2) drawn

on the boundary of the disk, or

(v) there exists a solid S ′-cross with its arms contained in rigid S-bridges, or

(vi) there exists a double facial S ′-cross, or

(vii) there exists a blocking interlaced S-fork of type I, or

(viii) there exists a blocking interlaced S ′-fork of type II

(ix) there exists a special segment P and a connected double S-fork such that one of

its feet is on c and the other two are contained in V (P ), or

(x) there exists an S ′-triad, or

(xi) there exists an S ′-pyramid, or

(xii) G is isomorphic to K4, or

(xiii) A(S ′, H) is list colorable.

Proof. By Theorem 2.2.1, we may assume that all the S-bridges are rigid. Suppose

(xiii) does not happen. If A(S,H) contains an invalid vertex then by Lemma 2.2.5

either (i), (iii), (x), (xi) or (xii) holds. Note that in the case that A(S,H) contains an
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invalid vertex, the outcome (ii) of Lemma 2.2.5 combined with Lemma 2.2.7 implies

that either (iv) or (iii), (viii), (ix) holds. So suppose that all of the vertices of A(S,H)

are valid.

Note that if A(S,H) is list colorable then (xiii) holds, a contradiction. The prop-

erty (i) in Definition 2.1.1 implies that if B1 and B2 are two bridges and C1, C2, C3 ∈ C

are such that C1, C3 each contains all attachments of B1 and C2, C3 each contains

all attachments of B2, then C1 = C2. So for each B ∈ V (A(S,H)), |L(B)| ≤ 2.

Now Lemma 2.2.8 and Lemma 2.2.9 implies either (i), (ii), (iii), (iv), (v), (vi),

(vii), (viii) or (ix) holds. This completes the proof of the theorem.
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CHAPTER III

SOME APPLICATIONS OF THE THEORY TO ROOTED

GRAPHS

Let G be a graph and let x1, x2, x3 be three distinct vertices of G. We say that

(G, x1, x2, x3) is a rooted graph.

We say (G, x1, x2, x3) is a subgraph of (H, x1, x2, x3), if (G, x1, x2, x3) can be ob-

tained from (H, x1, x2, x3) by deleting some vertices in V (H) \ {x1, x2, x3} and edges

of H .

Let (G, x1, x2, x3) and (H, y1, y2, y3) be two rooted graphs. We say (G, x1, x2, x3)

is a isomorphic of (H, y1, y2, y3) if G and H are isomorphic and there exists and

isomorphism φ from V (G) to V (H) such that φ(xi) = yi. For simplicity, we sometimes

say G and H are isomorphic where x1, x2, x3 correspond to y1, y2, y3, respectively.

We say (G, x1, x2, x3) is a subdivision of (H, y1, y2, y3), if there exists a rooted graph

(K, y1, y2, y3) obtained from (H, y1, y2, y3) by replacing edges of H by segments such

that (K, y1, y2, y3) is isomorphic to (G, x1, x2, x3). For simplicity, we sometimes say

G contains H as a subdivision where x1, x2, x3 correspond to y1, y2, y3, respectively.

Lemma 3.0.11. Let (G, a, b, c) be a rooted multigraph with minimum degree three,

(H, a, b, c) be an internally 4-connected rooted multigraph, and let (S, a, b, c) be a

(G, a, b, c)-subdivision in (H, a, b, c) satisfying condition (∗) in Theorem 2.2.1. Let

C be a c-disk system in S. If there exists a special segment P and a connected double

S-fork such that one of its feet is on c and the other two are contained in V (P ) then

either there exists an S-jump, S-triad or a c-blocking S-cross.

Proof. Let C1, C2 ∈ C be such that C1 ∩C2 = V (P )∪ {c}. Let x, y be ends of P , and

cx ∈ E(S). Let (P1, P2, P3) and (Q1, Q2, Q3) be two forks with feet on c, u, v where
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u, v ∈ V (P ) and centers o, o′, respectively. Suppose uPx and vPy are disjoint.

Since (H, a, b, c) is internally 4-connected, {c, u, v} is not a cut set. Thus there

exists a path Z from z1 ∈ X \ {c, u, v} to z2 ∈ V (S) \ X such that Z is internally

disjoint from X ∪ S except at z1, z2. We consider two cases, either z2 6∈ C1 ∪ C2 or

z2 ∈ C1 ∪ C2.

In the first case, i.e. z2 6∈ C1 ∪ C2 then either there exists a vertex z ∈ {c, u, v}

such that there is no disk in C containing z, z2, in which case there exists an S-jump

with one ends at z and the other at z2. So assume that for all z ∈ {c, u, v}, z, z2 are

co-facial. If there is no C ∈ C such that u, v, z2 ∈ C, then there exists an S-triad with

feet on z, u, v, so the assertion of the lemma holds. So there exists C ∈ C containing

u, v, z2. Note that u, v ∈ C1 ∩C2 ∩C3, so by property (iv) of Definition 2.1.1, C = C1

or C = C2, implying z2 ∈ C1 ∪ C2, a contradiction with the assumption of the first

case.

In the second case, i.e. z2 ∈ C1 ∪C2 it is easy to see that P1 ∪P2 ∪P3 ∪Q1 ∪Q2 ∪

Q3 ∪ Z contains a c-blocking S-cross. The fact that (P1, P2, P3) and (Q1, Q2, Q3) are

connected S-forks implies the S-cross is connected.

Lemma 3.0.12. Let (G, a, b, c) be a rooted multigraph and (H, a, b, c) be an internally

4-connected rooted multigraph. Let (S, a, b, c) be a (G, a, b, c)-subdivision in (H, a, b, c)

satisfying condition (∗) in Theorem 2.2.1. Let C be c-disk system of (S, a, b, c).

Suppose (H, a, b, c) contains a blocking interlaced fork of type II. Then H has a G-

subdivision S ′ obtained from S by an I-rerouting such that S ′, the c-disk system C′

induced in S ′ satisfy one of the following conditions:

(i) there exists an S ′-jump, or

(ii) there exists an S ′-triad, or

(iii) there exists a blocking interlaced S ′-fork of type I, or

(iv) there exists a c-blocking S ′-cross.
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Proof. Since (H, a, b, c) contains a blocking interlaced fork of type II, there exist a

special segment Q of S with ends x, y where cx ∈ E(S), two S-forks (P1, P2, P3) and

(R1, R2, R3) with feet on c, u, v and centers o and o′, respectively, where {u, v} ⊆

V (Q) and x, u, v, y appear on P in the order listed, and an S-path P disjoint from

P1, P2, P3, R1, R2, R3 except at c connecting c to w, where w ∈ V (Int(vPu)). Note

that the two forks only share three vertices of their feet.

Since (H, a, b, c) is an internally 4-connected rooted graph, by symmetry, there

exists a path Z from z1 ∈ V (R1 ∪R2 ∪R3) \ {c, u, v} to z2 ∈ V (S) \ {c, u, v} disjoint

from V (P1, P2, P3). Similarly as in the proof of Lemma 3.0.11, we consider two cases,

either z2 6∈ C1 ∪ C2 or z2 ∈ C1 ∪ C2.

In the first case, i.e. z2 6∈ C1∪C2 either there exists a vertex z ∈ {c, u, v} such that

there is no disk in C containing z, z2, in which case there exists an S-jump with one

ends at z and the other at z2. So assume that for all z ∈ {c, u, v}, z, z2 are co-facial.

If there is no C ∈ C such that u, v, z2 ∈ C, then there exists an S-triad with feet on

z, u, v, so the assertion of the lemma holds. So there exists C ∈ C containing u, v, z2.

Note that u, v ∈ C1 ∩ C2 ∩ C3, so by property (iv) of Definition 2.1.1, C = C1 or

C = C2, implying z2 ∈ C1 ∪C2, a contradiction with the assumption of the first case.

In the second case, i.e. z2 ∈ C1 ∪ C2, if V (Z) ∩ V (Int(P )) 6= ∅ then it is easy to

see that P ∪ R1 ∪ R2 ∪ R3 ∪ Z contains a c-blocking S-cross, thus (iv) holds. So we

assume that V (Z) ∩ V (Int(P )) = ∅. If z2 6∈ V (Q), then R1 ∪ R2 ∪ R3 ∪ Z contains

a path W from u to z2 such that the fork (P1, P2, P3), and paths W and P form a

blocking interlaced fork of type I, hence (iii) holds.

So assume z2 ∈ V (Q). If z2 ∈ V (Int(uQv)) then let S ′ be obtained from S by

I-rerouting of uQv through uP2oP3v. We can see that the S-forks (R1 ∪R2∪R3) and

(wQu,wQv, wPc) and the path Z from a connected S ′-fork. If z2 6∈ V (Int(uQv))

then there exists a path W ⊂ R1 ∪ R2 ∪ R3 ∪ Z from u to z2. Let S ′ be obtained

from S by I-rerouting of uQz2 through W . It is easy to see that the two S ′-forks

50



(oP1c, oP2u, oP3vQz2) and (wPc, wQu,wQvQz2) form a connected double S ′-fork.

Now by applying Lemma 3.0.11 either (i) or (iv) happens. This completes the proof

of the lemma.

The following lemma, i.e. Lemma 3.0.13 only has a use in the proof of Lemma 3.0.14.

Here we also define and describe three configurations which become useful in ex-

plaining the proof of Lemma 3.0.14. They only have application in the proof of

Lemma 3.0.14 and the statement of Lemma 3.0.13.

Let (P1, P2, P3) be an S-fork with feet on x, u, v and P be an S-path with ends

w, z disjoint from P1, P2, P3 such that there exists a disk C ∈ C containing x, w, u, z, v,

listed in the order they appear on C. Moreover assume that there exists a segment Q

such that u, z, v ∈ V (Q) and x, w 6∈ V (Q). In these circumstances, if x = c and Q is

a special segment then we say the quadruple (P1, P2, P3, P ) is an interlaced S-fork of

type I, and if x = c, Q is not a special segment, and there exists a special segment Q′

such that Q and Q′ have the vertex u in common (note that w must be on the special

segment) then we say the quadruple (P1, P2, P3, P ) is an interlaced S-fork of type II,

and if Q is not a special segment and there exists a special segment Q′ such that

x ∈ V (Q′) and u = c then we say the quadruple (P1, P2, P3, P ) is an interlaced S-fork

of type III. The vertices x, w, u, z, v are called feet of the corresponding interlaced

S-fork in the order listed. See Figure 3.1 (A), (B), (C) for their illustrations.

Lemma 3.0.13. Let G be a multigraph with minimum degree three, H be a 3-

connected multigraph, and let S be a G-subdivision in H satisfying condition (∗) in

Theorem 2.2.1. Let C be a c-disk system in S. Let (P1, P2, P3, P ) be an interlaced S-

fork with feet on x, w, u, z, v, and C ∈ C be the unique disk such that x, w, u, z, v ∈ C.

If B1, B2 are S-bridges such that V (P1) ∪ V (P2) ∪ V (P3) ⊆ V (B1), V (P ) ⊆ V (B2),

C is the only disk containing all attachments of B1 and C is the only disk containing

all attachments of B2, then
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Figure 3.1: The above figures show illustrations of (A): interlaced fork of type I, (B):
interlaced fork of type II, (C): interlaced fork of type III.

(i) If (P1, P2, P3, P ) is an interlaced S-fork of type I then there exists either a degen-

erate S-cross or a weakly free solid S-cross.

(ii) If (P1, P2, P3, P ) is an interlaced S-fork of type II or III, thenH has a G-subdivision

S ′ obtained from S by I-reroutings such that S ′ and the c-disk system C′ induced in

S ′ contains a weakly free solid S-cross.

Proof. First assume that (P1, P2, P3, P ) is an interlaced S-fork of type I. So x = c and

there exists a special segment Q with ends a, b such bc ∈ E(S) and a, u, z, v, b appear

on Q in the order listed. Let α : c = u0, u1, . . . , um = a be the path in C connecting

c to a and internally disjoint from Q. Since C ∈ C is the only cycle containing all

attachments of B1, there exists a path Z from a vertex x ∈ V (P1) ∪ V (P2) ∪ V (P3)

to a vertex in y ∈ V (Int(α). If y ∈ V (Int(cαw)) then there exists an S-path W in

B1 with one end on u and the other end on y such that (W,P ) form a weakly free

solid S-cross on C. Similarly, If y ∈ V (Int(wαa)) then there exists an S-path W in

B1 with one end on v and the other end on y such that (W,P ) form a weakly free

solid S-cross on C. At the end if y = w then there exists a degenerate S-cross. This

completes the proof of (i).

Now assume that (P1, P2, P3, P ) is an interlaced S-fork of type II or III. Let Q
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be the segment such that {u, z, v} ⊆ Q. Let o be the common vertex of P1, P2, P3.

Let S ′ be obtained from S by I-rerouting of uQv through uP2oP3v. We claim that

(xP1o, vQzPw) is a solid weakly free S ′-cross. By definition of interlaced S-fork, none

of x or w belongs to Q. So x and w are in different segments of S ′ than o. This shows

that the S ′-cross is weakly free. Note that since (P1, P2, P3, P ) is an interlaced S-fork

of type II or III, Q is not a special segment of S, therefore the vertex o does not

belong to a special segment of S ′ which guarantees that (xP1o, vQzPw) is a solid

S ′-cross. This completes the proof of (ii) and the proof of the lemma.

Lemma 3.0.14. Let (G, a, b, c) be a rooted multigraph with minimum degree three,

(H, a, b, c) be an internally 4-connected rooted multigraph, and let (S, a, b, c) be a G-

subdivision in H satisfying condition (∗) in Theorem 2.2.1. Let C be a c-disk system

in S. Suppose H contains a solid S-cross (P1, P2) or a connected S-cross (P1, P2, P3),

and the rigid S-bridges B1, B2 containing P1, P2, respectively, such that there exists a

unique C ∈ C, where all attachments of B1 are only contained in C and all attach-

ments B2 are only contained in C. Then H has a G-subdivision S ′ obtained from S

by repeated I, T , X-reroutings such that S ′ and the c-disk system C′ induced in S ′

satisfy one of the following conditions:

(i) there exists an S ′-jump

(ii) there exists a weakly free S ′-cross anchored at c, or

(iii) there exists an S ′-triad, or

(iv) there exists a free solid S ′-cross, or

(v) there exists a free c-blocking S ′-cross, or

(vi) there exists a degenerate S ′-cross.
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Proof. Let (P1, P2) be solid S-cross or (P1, P2, P3) be a connected S-cross with feet

u1, v1 and u2, v2, respectively. Let B1 and B2 be the S-rigid bridges containing P1, P2,

respectively.

For seeking a contradiction assume that none of (i) to (vi) holds.

Claim 1. H has a G-subdivision S∗ obtained from S by at most one I-rerouting such

that S∗ and the c-disk system C∗ induced in S∗ satisfy one of the following conditions:

there exists either a weakly free solid S∗-cross, a weakly free connected S∗-cross, or

an S∗-tripod.

Assume that there exists a segment Q such that u1, u2, v1 appear on Q in the order

listed, otherwise there exists a weakly free S-cross so Claim 1 holds. The fact that B2

is rigid implies that there exists a path P between P2 and a vertex v in V (S) \V (Q).

Thus P1 ∪ P2 ∪ P includes a cross with one foot outside of Q. So we may assume

v2 6∈ V (Q).

Note that if B1 = B2 then there exists an S-tripod and Claim 1 holds.

So assume that B1 6= B2 which implies that the S-cross (P1, P2) is solid. Since B1

is rigid there exists a path P3 with one end u3 ∈ V (P1) \ {u1, v1} and the other end

z ∈ V (S) \ V (Q). Note that u2 6= c. If z = v2 then there exists a tripod so Claim 1

holds. So we assume that z 6= v2. By symmetry assume that u1, u2, v1, z, v2 appear

on C in the order listed. Note that z 6∈ V (Q).

If z and u1 do not belong to the same segment then the fact that (P1, P2) is a solid

S-cross implies that (P2, u1P1u3P3z) forms a weakly free solid S-cross unless u1 = c

and z belongs to a special segment, or z = c and u1 belongs to a special segment.

Note that since (P1, P2) is solid either v2 6= c or Q is not a special segment. In the first

case, there exists an interlaced S-fork of type III, so by Lemma 3.0.13(ii), Claim 1

holds. In the second case, if v1 belongs to the same special segment containing u1 then

there exists an interlaced S-fork of type I, so by Lemma 3.0.13(i) either there exists a

degenerate S-cross, i.e. (vi) holds, a contradiction, or Claim 1 holds. And, if v1 does
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not belong to the same special segment containing u1 then u1 must be a branch vertex

of S, therefore there exists an interlaced S-fork of type II, so by Lemma 3.0.13(ii),

Claim 1 holds.

Now assume that z and u1 belong to the same segment, called Z. Then the fact

that z 6∈ V (Q) implies that u1 is a branch vertex of S. We consider two cases, either

deg(u1) = 3 or deg(u1) ≥ 4. First assume that deg(u1) = 3. Let S ′ be obtained from

S by T -rerouting, i.e. by removing u1Zv2 and adding P2 to S. Then there exists an

S ′-triad with center at u3 and feet on u1, v1, z, thus (iii) holds, a contradiction. Now

assume deg(u1) ≥ 4 in which case let S ′ be obtained from S by I-rerouting of u1Zz

through u1P1u3P3z. Note that since c is a branch vertex of S, u3 6= c and u2 6= c.

Note that u1Zz belongs to a special segment of S if and only if u1P1u3P3z belongs to

a special segment of S ′. Now (u3P1v1, u2P2v2Zz) forms a weakly free solid S ′-cross

unless one of these events happens: either z = c and u2 belongs to a special segment

of S ′, or v1 = c and u3 belongs to a special segment of S ′. Note that neither of

these events happens by property (iii) in Definition 2.1.1. This completes the proof

of Claim 1.

Claim 2. If there exists an S-tripod then there exists a weakly free solid S-cross.

Let (P1, P2, P3) be an S-tripod based on Q. Let u1, v1 and u2, v2 and u3, v3 be

the ends of P1, P2, P3, respectively. Let u1, u2, v1 appear on Q in the order listed and

u3 ∈ V (Int(P1)) and v3 ∈ V (P2) \ {u2}. Assume that the S-tripod (P1, P2, P3) has

been chosen so that the sum of its legs is minimum.

Note that since a, b, c are branch vertices, {a, b, c} ∩ ((V (P1) ∪ V (P2) ∪ V (P3))

\{u1, v1, v2}) = ∅. Let X = (V (P1) ∪ V (u2P2v3) ∪ V (P3) ∪ V (u1Qv1)) \ {u1, v1, v3}.

The fact that (H, a, b, c) is internally 4-connected and |X| ≥ 2 implies that there exists

a path W from u ∈ X to z ∈ V (S)\(X∪{u1, v1, v3}). Note that by I-rerouting u1Qv1

through u1P1v1, we get another tripod with the same feet and legs as (P1, P2, P3).

So there exists symmetry between u1Qv1, P1 and u2P2v3, P3, respectively. By this
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symmetry, we may assume that u ∈ V (P1) ∪ V (P3) \ {u1, v1, v3}. Since C is the

only cycle in C containing attachments of B1, z ∈ V (C). Note that z 6∈ V (Q) and

z 6∈ V (v3P2v2) since otherwise there exists an S-tripod such that the sum of its legs

is smaller than the sum of the legs of (P1, P2, P3), contradicting with choice of the

S-tripod (P1, P2, P3). By symmetry assume that u1, u2, v1, z, v2 appear on C in the

order listed.

Now if z and u1 do not belong to the same segment then either (P2, u1P1uWz)

or (P2, u1P1u3P3uWz) forms a weakly free solid S-cross, respectively, unless u1 = c

and z belongs to a special segment, or z = c and u1 belongs to a special segment or

v2 = c and u2 belong to a special segment. Similarly to the argument presented in

proof Claim 1, the first two cases cause the existence of a weakly free solid S-cross,

thus Claim 2 holds. In the last case, by property (iii) of Definition 2.1.1, we can

see that (P2, u1P1u3PuWz, uP3v3) forms a free c-blocking S-cross. Thus (v) holds, a

contradiction.

Note that if z and u1 belong to the same segment then the same argument as

presented in proof of Claim 1 shows that there exists a weakly free solid S-cross, so

Claim 2 holds.

Now by applying Claim 1 and Claim 2, we may assume that there exists a weakly

free solid S-cross.

Let v be branch vertex of S, Q1, Q2 be two segments of S and C ∈ C be such that

V (Q1) ∪ V (Q2) ⊆ V (C) and Q1, Q2 have the vertex v in common. Let P1 and P2 be

the two disjoint S-paths introduced before with ends u1, v1 and u2, v2, respectively,

such that u1, u2 ∈ V (Q1), v1, v2 ∈ V (Q2) and u2, u1, v, v2, v1 appear on C in the

order listed. Assume the other ends of Q1 and Q2 are w1 and w2, respectively. Let

C1, C2 ∈ C be such that V (Q1) ⊆ V (C) ∩ V (C1) and V (Q2) ⊆ V (C) ∩ V (C2).

Claim 3. The set K = {v, v1, u2} is not a cut set in H .
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For proving Claim 3, assume K is a cut set. Since (H, a, b, c) is internally 4-

connected, for any separation (H1, H2) of H of order three, {a, b, c} 6⊆ V (H1) and

{a, b, c} 6⊆ V (H2). Since a, b, c are branch vertices of S and each has degree at least

three, (V (vQ1u2)∪V (vQ2v1))\{v, v1, u2} does not contain a, b or c. This contradicts

the fact that H is internally 4-connected. Hence, Claim 3 holds.

We consider two cases, either deg(v) = 3 or deg(v) ≥ 4.

If deg(v) = 3 then let S ′ be obtained from S by T -rerouting, i.e. by removing

the path Int(vQ1u2) and adding v2P2u2, and C′ be the c-disk system induced in S ′.

In this circumstance, V (P1) ∪ V (vQ1u2) contains an S ′-triad with center u1 and feet

v, u2, u1. Hence, (iii) holds, a contradiction.

Now, assume deg(v) ≥ 4. Suppose among all weakly free crosses (P ′
1, P

′
2) with

feet on Q1, Q2 or on segments obtained by a sequence of I-reroutings of some sub-

paths of Q1, Q2, the weakly free cross (P1, P2) is chosen so that |u2Q1w1| + |v1Q2w2|

is minimum. As Claim 3 implies, K is not a cut set. Therefore there exists a path P

from a vertex in x ∈ (V (vQ1u2)∪ V (vQ2v1)∪V (P1)∪V (P2)) \ {v, u2, v1} to a vertex

y ∈ V (S) \ (V (vQ1u2) ∪ V (vQ2v1) ∪ V (P1) ∪ V (P2)) such that P is disjoint from

V (P1)∪V (P2)∪V (vQ1u2)∪V (vQ2v1). By symmetry assume x ∈ V (vQ1u2)∪V (P1).

We claim that y 6∈ (V (u2Q1w1) ∪ V (v1Q2w2)) \ {v1, u2}. For proving the claim

note that if y ∈ V (v1Q2w2) \ {v1} then either x ∈ V (Int(vQ1u2)) or x ∈ V (P1) \ {v1}

which implies that either (xPy, P2), or (uP1xPy, P2) forms a weakly free cross such

that |u2Q1w1| + |v1Q2w2| > |u2Q1w1| + |yQ2w2|, contradicting the choice of (P1, P2).

If y ∈ V (u2Q2w1) \ {u2}, then either x ∈ V (P1) \ {u1, v1}, x ∈ V (vQ1u1) \ {v}, or

x ∈ V (u1Q1u2) \ {u1, u2}. In the first case (P1, v2P2xPy) form a weakly free S-cross

such that |u2Q1w1|+|v1Q2w2| > |yQ1w1|+|v1Q2w2|, a contradiction. In the remaining

two cases, let S ′ be obtained from S by I-rerouting xQ1y through xPy. It is not hard

two see that either (P1, v2P2u2Q1y) or (xQ1u1P1v1, v2P2u2Q1y) forms a weakly free

S ′-cross such that |u2Q1w1| + |v1Q2w2| > |yQ1w1| + |v1Q2w2|, a contradiction. This
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completes the proof of the claim.

Note that if y ∈ V (C) \ (V (Q1) ∪ V (Q2)), then we already know that either x ∈

V (Int(vQ1u2)) or x ∈ V (P1)\{v1}, which implies that either (P, P2) or (u1P1xPy, P2)

forms a free solid S-cross causing (iv) to hold, unless y = c andQ1 is a special segment.

In that case since Q1 is a special segment, c ∈ V (C1). Note that C1, C2 and C are

cycles, and v ∈ C ∩ C1 ∩ C2, thus by property (iv) in Definition 2.1.1, c 6∈ V (C2).

Let S ′ be obtained from S by X-rerouting, i.e. by replacing the paths vQ1u2, vQ2v1

by paths vQ2v2P2u2, vQ1u1P1v1, respectively, and C′ be the c-disk system induced

in S ′. It is easy to see that either x ∈ V (P1) ∪ V (vQ1u1) or x ∈ V (u1Q1u2), which

implies (xPc, v1Q2v2) or (u1Q1xPc, v1Q2v2) forms a solid S ′-cross, respectively since

c 6∈ V (C2) and c 6∈ V (Q1) ∪ V (Q2).

Therefore we assume y 6∈ V (C). If y 6∈ V (C1), then P is an S-jump, so (i) holds,

a contradiction. So assume that y ∈ V (C1), now either y 6∈ V (C2) or y ∈ V (C2).

If y 6∈ V (C2), then let S ′ be obtained from S by X-rerouting, i.e. by replacing the

paths vQ1u1, vQ2v2 by paths vQ2v2P2u2, vQ1u1P1v1, respectively, and C′ be the c-

disk system induced in S ′. Since y 6∈ V (C2) then V (u1Q1u2) ∪ V (P ) contains an

S ′-jump, so (i) holds, a contradiction. Therefore, we assume that y ∈ V (C2). We

claim that y and v belong to two different connected components of C1 ∩ C2. For

proving the claim, let Q ⊆ C1 ∩ C2 be the segment containing y, v. Note that also

Q1 ⊆ C1 ∩ C and Q2 ⊆ C2 ∩ C, so by property (ii) in Definition 2.1.1, deg(v) = 3,

a contradiction. Now the property (i) in Definition 2.1.1 implies that y = c, so (ii)

holds, a contradiction. This completes the proof of the lemma.

We say G′ is obtained from G by splitting v, if there exists v1, v2 ∈ V (G′) such

that v1 and v2 are not adjacent and G is isomorphic to the graph obtained from G′ by

identifying v1, v2 where v corresponds to the vertex obtained from identifying v1, v2.

Definition 3.0.15. Let a, b, c be three distinct vertices of multigraph G with two

parallel ac edges and two parallel bc edges such that these are the only parallel edges
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of G. Suppose a simple graph G′ is obtained from G by splitting the vertex c into

c1, c2 such that G∗ is a 3-connected planar graph and in the unique embedding of

G∗, the cycle J : c1, a, c2, b bounds a face. Let S∗ be a subdivision of G∗ such that

c1a, c2a, c1b, c2b are edges in S∗. Let F∗ be the set of cycles bounding a face in the

unique embedding of S∗. Let S be the subdivision of G obtained from S∗ by identifying

c1 and c2. We describe a c-disk system C for S obtained from F∗ as follows:

(i) if there exists F ∗ ∈ F∗ such that c1, c2 6∈ V (F ∗) then F ∗ ∈ C, or

(ii) if there exists F ∗ ∈ F∗ and i ∈ {1, 2} such that ci ∈ V (F ∗), c3−i 6∈ V (F ∗) then

F ∈ C where F is obtained from F ∗ by relabeling ci by c.

(iii) cycles Ca : c, a and Cb : c, b belong to C where Ca and Cb obtained by identifying

c1 and c2 in the cycle c1, a, c2, b of G∗.

We call such a c-disk system a planar c-disk system with the realizer graph S∗.

Note that in the above definition, we implicitly use the well known result of

Whitney [58] saying that a 3-connected planar graph has a unique planar embedding.

We say two vertices (v2, v1) are co-facial in the unique embedding of S∗ if there

exists a face F ∈ F∗ such that v1, v2 belong to the boundary of the face F . Let

(G, a, b, c) be a rooted multigraph with minimum degree three. Let (H, a, b, c) be

a rooted graph and (S, a, b, c) be a (G, a, b, c)-subdivision in (H, a, b, c) satisfying

condition (∗) in Theorem 2.2.1. Let C be a planar c-disk system of S with realizer

S∗. Let T : (P1, P2, P3) be an S-triad with feet x1, x2, x3. We say T is an essential

S-triad if c ∈ {x1, x2, x3}, say c = x1, and there exists a closed curve ψ passing

through c1, c2, x2, x3 and disjoint from S∗ except at c1, c2, x2, x3 such that ψ bounds

two closed disks D1, D2 in the plane and a ∈ D1, b ∈ D2, or equivalently there exists

k ∈ {2, 3} such that each pair of vertices (c1, xk), (xk, x5−k), (x5−k, c2) is co-facial in

the unique embedding of S∗.
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Note that any I, T - or X-rerouting which does not involve the vertex c of planar c-

disk system S, naturally extends to its realizer S∗. Similarly any I, T - or X-rerouting

of S∗ which does not involve vertices c1 and c2 naturally extends to its planar c-disk

system S.

Lemma 3.0.16. Let (G, a, b, c) be a rooted multigraph with minimum degree three

with two parallel ac edges and two parallel bc edges. Let (H, a, b, c) be an internally

4-connected rooted multigraph and (S, a, b, c) be a (G, a, b, c)-subdivision in (H, a, b, c)

satisfying condition (∗) in Theorem 2.2.1. Let C be a planar c-disk system of S with

realizer S∗. Moreover assume that a, b are not co-facial in C. Suppose H contains

an S-triad with feet x1, x2, x3. Then H has a G-subdivision S ′ obtained from S by

repeated I, T -reroutings and at most one triad exchange such that S ′, the c-disk system

C′ induced in S ′ satisfy one of the following conditions:

(i) there exists an S ′-jump, or

(ii) there exists an essential S ′-triad, or

(iii) there exists a solid free S ′-cross.

Proof. Let T : (P1, P2, P3) be an S-triad with feet x1, x2, x3 and center o. Through the

proof we use the same labeling for vertices of S and S∗ except for c and c1, c2 where

c1, c2 are the two vertices obtained by splitting of the vertex c. Assume C1, C2, C3

are the three cycles in C such that xi, xj belong to Ck for {i, j, k} = {1, 2, 3}. Note

that we can assume the Ci’s are chosen such that {Ca, Cb} ∩ {C1, C2, C3} = ∅ where

Ca : a, c, Cb : b, c.

Let F∗ be the set of facial cycles of S∗ and J : c1, a, c2, b be a facial cycle of

S∗ by Definition 3.0.15. Note that there exists a natural one to one correspondence

ϕ : F∗ \ J → C \ {Ca, Cb}, by relabeling ci to c, i = {1, 2}.

If T is essential then (ii) holds. So assume that T is not essential. Thus either

c 6∈ {x1, x2, x3} in which case let x∗1 = x1, or x1 = c and there exists a j ∈ {1, 2}
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such that cj, x2, x3 are pairwise co-facial in the unique embedding of S∗ in which case

let x∗1 = cj . Therefore x∗1, x2, x3 are pairwise co-facial in the unique embedding of

S∗. This implies that there exists a closed curve ψ passing through x∗1, x2, x3 and

disjoint from S∗ except at x∗1, x2, x3. The curve ϕ bounds two closed disks D1, D2 in

the sphere and the set {x∗1, x2, x3} is a cut set in S∗. By symmetry between c1, c2, we

consider two cases:

Case 1 c1, c2 ∈ D1.

Since there are two parallel edges between a, c and two parallel edges between

b, c in S and also the graph S∗ is a simple graph, ac1, ac2, bc1, bc2 are edges in S∗.

Thus {a, b, c1, c2} ⊆ D1. Therefore {x1, x2, x3} is a cut set in S. Let B be the set

of branch vertices of S∗. If |(D2 \ {x1, x2, x3}) ∩ B| ≥ 2 then it is easy to see that

there exists an internal 3-separation in (H, a, b, c), a contradiction. Therefore, we may

assume |(D2 \ {x1, x2, x3}) ∩ B| = 1. Let {v} = (D2 \ {x1, x2, x3}) ∩ B. Note that

v 6∈ {a, b, c1, c2} and the property (ii) in Definition 2.1.1 implies that deg(v) = 3 in S

and S∗.

Let Z1, Z2, Z3 be the three segments of (S, a, b, c), or equivalently of (S∗, a, b, c),

with one end at v and the other ends at v1, v2, v3, respectively. Assume xi ∈ Zi, i =

1, 2, 3. Suppose S and (P1, P2, P3) are chosen so that there is no (G, a, b, c)-subdivision

(S ′, a, b, c) obtained from (S, a, b, c) by a sequence of I, T -reroutings such that there

exists an (S ′, a, b, c)-triad with feet on Z1, Z2, Z3, where the sum of the lengths of

its legs is strictly smaller than |E(x1Z1v1)| + |E(x2Z2v2)| + |E(x3Z3v3)|. Let X =

(V (P1) ∪ V (P2) ∪ V (P3) ∪ V (vZ1x1) ∪ V (vZ2x2) ∪ V (vZ3x3)) \ {x1, x2, x3} and Y =

V (S) \ (X ∪ {x1, x2, x3}). Since (H, a, b, c) is internally 4-connected, there exists a

path P from x ∈ X to y ∈ Y disjoint from V (S) ∪ V (P1) ∪ V (P2) ∪ V (P3) except at

x, y.

Note that by the triad exchange operation, i.e. replacing vZ1x1, vZ2x2, vZ3x3 by
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P1, P2, P3, respectively, there is symmetry between vZ1x1, vZ2x2, vZ3x3 and P1, P2, P3.

So we may assume x ∈ P1∪P2∪P3. By symmetry between P1, P2, P3, we may assume

x ∈ P1 \ {x1}. If y and x2 do not belong to the same disk then P1 ∪P2 ∪P contains a

jump with ends at x2, y, so (i) holds. So assume there exists a disk C ∈ C such that

C contains x2, y. Note that it is easy to see that C 6= C2.

Now, by the triad exchange operation, i.e. replacing vZ1x1, vZ2x2, vZ3x3 by

P1, P2, P3, and by switching the labels of vZ1x1, vZ2x2, vZ3x3 by P1, P2, P3, respec-

tively, we can assume x ∈ vZ1x1 \ {x1}. Note that if y 6∈ C2 ∪ C3, then x and y are

not on the same disk, so (i) holds. Thus, by symmetry, we assume that y ∈ C2. Note

that x2 = v2 since otherwise the fact that C 6= C2, x2 ∈ Z2 \ {v2} would imply that

Z2 ⊆ C1 ∩ C3 ∩ C, a contradiction.

Note that the cross (P, P1 ∪ P3) is a free solid cross unless one of the following

happens: either y = c and Z1 is a special segment, or by symmetry between x1, x3,

x1 = c and Z3 is a special segment, or x1 = v1, x3 = v3 and there is a segment Z with

ends v1, v3 such that y ∈ Int(Z). Below, we study these three cases separately.

Case 1.1 y = c and Z1 is a special segment.

Since Z1 is a special segment {a, b} ∩ {v, v1} 6= ∅. Note that in this case v 6= a, v 6= b

since otherwise the fact that |(D2 \ {x1, x2, x3})∩B| = 1 and ac, bc are edges implies

that c ∈ {x1, x2, x3} contradicting the fact that y = c. So by symmetry assume that

v1 = a.

Since Z1 is a special segment, there exists j ∈ {1, 2} such that cj ∈ ϕ−1(C2) and

c3−j ∈ ϕ−1(C3) in the unique embedding of S∗. By symmetry, we can assume j = 1.

Note that C 6= C1 because otherwise ϕ−1(C) = ϕ−1(C1) implying that V (Z3) ∪

{c1} ⊆ ϕ−1(C1) ∩ ϕ
−1(C2) which contradicts the fact that ϕ−1(C1) and ϕ−1(C2) are

facial cycles in S∗. Similarly, C 6= C3 because otherwise c1 ∈ ϕ−1(C3) implying

V (Z1) ∪ {c1} ⊆ ϕ−1(C2) ∩ ϕ−1(C3). Therefore x2 = v2 since otherwise the path

x2Z2v2 belongs to C ∩C1 ∩C3, which contradicts the definition of c-disk system, see
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Definition 2.1.1.

Note that v2 6= b since otherwise the facts that c1ac2b and ϕ−1(C3) are facial

cycles in S∗ imply that the degree of c2 is two in S∗, a contradiction. Therefore,

C 6= Ca, C 6= Cb and this implies that ϕ−1(C) is well defined.

Note that by definition of S-triad x3 6∈ C3. If x3 6= v3 then the fact that c1ac2b is a

facial cycle and c1 ∈ ϕ−1(C2), c2 ∈ ϕ−1(C3) shows that (yPxP1o, P2, P3) is an essential

triad, so (ii) holds. So we may assume x3 = v3. Note that {v3, c} ⊆ V (C2), {v2, c} ⊆

V (C3) and {v2, c} ⊆ V (C). If there exists no C∗ ∈ C such that {c, v3, v2} ⊆ V (C∗)

then the fact that c1ac2b is a facial cycle and c1 ∈ ϕ−1(C2), c2 ∈ ϕ−1(C3) shows that

(yPxP1o, P2, P3) is an essential triad, so (ii) holds. Therefore, there exists C∗ ∈ C

such that {c, v3, v2} ⊆ V (C∗).

Since a ∈ ϕ−1(C3) ∩ ϕ
−1(C2) ∩ J implies that deg(a) = 3 in S and S∗. Therefore

a only belongs to Ca, C2, C3. This immediately shows that either x1 6= a implying

x1 only belongs to V (C2) ∩ V (C3), or x1 = a implying x1 only belongs to Ca, C2, C3.

Note that c 6∈ C1, so by property (i) of Definition 2.1.1 and the fact that {v2, v3} ⊆

V (C1)∩V (C∗), v2v3 ∈ E(G), or equivalently v2, v3 are ends of a segment in S, called

Q. Now, let S ′ be obtained from S by I-rerouting Q through v3P3oP2v2. It is easy

to see that P1 is an S ′-jump.

Case 1.2 By symmetry between x1, x3, x1 = c and Z3 is a special segment.

Since Z3 is a special segment c ∈ C1 ∩ C2. But this immediately shows that

c, x2, x1 ∈ C1, a contradiction with the definition of triad.

Case 1.3 x1 = v1, x3 = v3 and there is a segment Z with ends v1, v3 such that

y ∈ Int(Z).

Note that C 6= C1 since otherwise C would contain x1, x2, x3, a contradiction with

definition of an S-triad. Note that x2 = v2; otherwise the edges in x2Z2v2 appear in
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at least three cycles, a contradiction with Definition 2.1.1. Since y belongs to Int(Z),

the disk C contains v1, v3. Therefore, v1, v2, v3 belong to C which equivalently means

that x1, x2, x3 are in the same disk, contradiction with definition of an S-triad.

Case 2 c1 ∈ D1 and c2 ∈ D2.

Because ac1, ac2, bc1, bc2 are edges of S∗, a, b ⊆ {x∗1, x2, x3}. Suppose x2 = a, x3 =

b. Since c1 ∈ D1, c2 ∈ D2, we can infer that c 6= x1, equivalently x∗1 6= c1 and x∗1 6= c2.

The choice of C1 ∈ C shows that ϕ−1(C1) is a facial cycle in the unique embedding

of S∗. So there exists a path in ϕ−1(C1), called Q, connecting a to b. But it is easy

to see that the cycle J in S∗ separates x1 from Q in the unique embedding of S∗,

contradicting the fact that J is facial cycle by Definition 3.0.15.

Theorem 3.0.17. Let (G, a, b, c) be a rooted multigraph with minimum degree three

with two parallel ac edges and two parallel bc edges. Let (H, a, b, c) be an internally

4-connected rooted multigraph and (S, a, b, c) be a (G, a, b, c)-subdivision in (H, a, b, c)

satisfying condition (∗) in Theorem 2.2.1. Let C be a planar c-disk system of S with

realizer S∗. Moreover assume that a, b are not co-facial in C. Suppose H contains

an S-triad with feet x1, x2, x3. Then H has a G-subdivision S ′ obtained from S by

repeated I, T -reroutings and at most one triad exchange such that S ′ and the c-disk

system C′ induced in S ′ satisfy one of the following conditions:

(i) there exists an S ′-jump, or

(ii) there exists a degenerate S ′-cross, or

(iii) there exists a c-blocking S ′-cross, or

(iv) there exists a weakly free solid S ′-cross anchored at c around a vertex of degree

four, or

(v) there exists a free solid S ′-cross
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(vi) there exists a double facial S ′-cross, or

(vii) there exists a blocking interlaced S-fork of type I, or

(viii) there exists an essential S ′-triad, or

(ix) there exists an S ′-pyramid, or

(x) G is isomorphic to K4, or

(xi) A(S ′, H) is list colorable.

Proof. Theorem 2.2.10 implies one of the outcomes listed in the statement of The-

orem 2.2.10 holds. The fact that (H, a, b, c) is internally 4-connected, the result

of Lemma 3.0.11 and Lemma 3.0.12 imply that that (vi), (ix) and (viii) of Theo-

rem 2.2.10 do not hold. The rest of the proof easily follows from Lemma 3.0.14 and

Lemma 3.0.16.
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CHAPTER IV

OBSTRUCTIONS FOR c-, ac-, abc-PLANARITY

The proofs of the following two lemmas are trivial.

Lemma 4.0.18. Suppose (G, x1, x2, x3) is a rooted graph. Then (G, x1, x2, x3) is x1-

planar if and only if the graph (H, x1, x2, x3) obtained from G by adding the edges

x1x2, x1x3 is x1-planar.

Lemma 4.0.19. Let G be a 3-connected minor-minimal non-projective planar graph

and v be a vertex of degree three in G. Let v1, v2, v3 be the neighbors of v in G. Then

{v1, v2, v3} is an independent set in G.

Corollary 4.0.20. Let G be a 3-connected minor-minimal non-projective planar

graph with an internal 3-separation (G1, G2). Then |V (G1)|, |V (G2)| ≥ 5.

Here we present a proof of Theorem 1.8.2, mentioned in Section 1.8.

Proof of Theorem 1.8.2. For seeking a contradiction, assume (G1, a, b, c) and (G2, a, b, c)

are both a-planar. Let a1, b1, a2, b2 be four distinct points on the boundary of a disk

D, in the order listed. Let c 6= a1, c 6= a2 be a point on the chord connecting a1, a2,

called ℓ. We may assume the boundary of D is a circle and x1, x2 are antipodal

points, for x = a, b. Note that the chord ℓ divides the disk D into two closed disks

D1, D2 such that D1 ∩ D2 = ℓ and b1 ∈ D1, b2 ∈ D2. Since (G1, a, b, c) is a-planar,

there exists an embedding Σ of (G1, a, b, c) in D1 by splitting of the vertex a into a′

and a′′ such that Σ(a′) = a1,Σ(a′′) = a2,Σ(b) = b1 and Σ(c) = c. Similarly since

(G2, a, b, c) is a-planar, there exists an embedding Γ of (G2, a, b, c) in D2 by splitting

of the vertex a into ȧ and ä such that Σ(ȧ) = a1,Σ(ä) = a2,Σ(b) = b2 and Σ(c) = c.

Now, by identifying antipodal points on the boundary of D, we obtain an embedding
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of G in the projective plane. This contradicts the fact that G is a minor-minimal

non-projective planar graph, and it completes the proof of the theorem.

The following theorem is due to Robertson and Seymour [45].

Theorem 4.0.21 ([45]). Let H be an internally 3-connected graph and a, b, c be three

distinct vertices of H. If H has no planar embedding in which a, b, c are all incident

with the outer face, then H contains a double fork with feet on a, b, c.

Lemma 4.0.22. Let G be a 3-connected minor-minimal non-projective planar graph

with an internal 3-separation (G1, G2) such that V (G1)∩ V (G2) = {a, b, c}. Then G1

and G2 each contains a double fork with feet on a, b, c.

Proof. By symmetry, it suffices we show that (G1, a, b, c) contains a double fork with

feet on a, b, c. Note that the fact that G is 3-connected implies that (G1, a, b, c) is

3-connected. We claim that (G1, a, b, c) does not have a drawing in the disk such that

a, b, c are on the boundary of the disk. For proving the claim assume (G1, a, b, c) has

such a drawing in the disk, say Σ. Let G∗ be obtained from G by contracting all

edges in G1 except edges with one end in a, b or c and call the new vertex obtained

from this contraction operation v∗. Since G is 3-connected, deg(v∗) = 3 in G∗, and

{a, b, c} are the set of neighbors of v∗. Since G is minor minimal non-projective

planar, G∗ is projective planar. Let Σ∗ be such an embedding. Now it is easy to see

that by removing the vertex v∗ in Σ∗ and identifying the vertices a, b, c of G∗ in Σ∗

with the vertices a, b, c of G1 in Σ, we obtain an embedding of G in the projective

plane, a contradiction. Thus the assertion of the lemma follows from this claim and

Theorem 4.0.21.

The following lemma is trivial, but we use it frequently often in this paper. So for

more clarification, we state it here and we omit the proof.
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Lemma 4.0.23. Let G be a double fork with feet on a, b, c. Then (G, a, b, c) contains

Oi(α, β, 3) for some i ∈ {1, 8, 13} and {α, β} = {1, 2}, (See Figure 1.3, 1.4 and 1.5)

as a rooted subdivision, or (G, a, b, c) has a unique c-planar embedding.

From now on we will need to contract edges frequently, and to facilitate the

exposition, we introduce the following rules. We label the vertices of a graph S by a

combination of numbers in N∪{0} and letters. If m,n ∈ N∪{0} and mn ∈ E(S) the

graph obtained from S by contracting the edge mn has the same labeling as S except

the new vertex will get the label i = min{m,n}. If ix ∈ E(S) where x is a letter and

i ∈ N ∪ {0} is an edge, the graph obtained from S has the same labeling as S except

the label of the new vertex will be i. Finally, if xy ∈ E(S), where x, y are letters,

which holds rarely, we specify the label of the new vertex obtained by contracting the

edge xy by x where x has the lower alphabetical order compared to y.

4.1 Obstructions for c-planarity

Let (K2,3, 1, 2, 3), (K ′
2,3, 1, 2, 3), (K ′′

2,3, 1, 2, 3) be the rooted graphs shown in Figure 4.1.

If (G, a, b, c) contains one of K2,3(1, 2, 3), K ′
2,3(1, 2, 3), K ′′

2,3(1, 2, 3) as a rooted subdi-

vision, then we say the vertices corresponding to 4, 5 in (G, a, b, c) are the centers.

s

s

s

s

s

3

2

1

5

4

K2,3

s

ss

s

s

s

1

2

3

6

5

4

K ′
2,3

s s

s

s

s

s

s

1

3

2

6

7

5

4

K ′′
2,3

Figure 4.1: Rooted graphs (K2,3, 1, 2, 3), (K ′
2,3, 1, 2, 3), (K ′′

2,3, 1, 2, 3) with terminal ver-
tices 1, 2, 3 and centers 4, 5.

Lemma 4.1.1. Let (G, a′, b, c) be a rooted graph and (H, a, b, c) obtained from (G, a, b, c)

by adding the edge aa′.
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(i) If (G, a′, b, c) contains (O1, 1, 2, 3) as rooted subdivision then (H, a, b, c) contains

(O8, 1, 2, 3) as rooted subdivision;

(ii) If (G, a′, b, c) contains (O8, 1, 2, 3) as rooted subdivision then (H, a, b, c) contains

(O13, 1, 2, 3) as rooted minor;

(iii) If (G, a′, b, c) contains (O9, 1, 2, 3) as rooted subdivision then (H, a, b, c) contains

(O12, 1, 2, 3) as rooted minor;

(iv) If (G, a′, b, c) contains (O4, 1, 2, 3) as rooted subdivision then (H, a, b, c) contains

(O14, 1, 2, 3) as rooted minor;

(v) If (G, a′, b, c) contains (O3, 1, 2, 3), (O6, 1, 2, 3) or (O10, 1, 2, 3) as rooted subdi-

vision then (H, a, b, c) contains (O5, 1, 2, 3) as rooted minor.

Lemma 4.1.2. Let (G, a, b′, c) be a graph isomorphic to O1(1, 2, 3), (O2, 1, 2, 3),

O6(α, β, 3), or O7(1, 2, 3) where {α, β} = {1, 2}. Let (G, a, b, c) be obtained from

(G, a, b′, c) by adding the edge bb′, then (G, a, b, c) contains either (O2, 1, 2, 3) or

O5(1, 2, 3) as a rooted minor or O3(1, 2, 3), O4(1, 2, 3), O8(1, 2, 3) as a rooted sub-

division where a, b, c correspond to 1, 2, 3.

Lemma 4.1.3. Let (G, a, b, c) be an internally 4-connected rooted graph. Suppose

(G, a, b, c) is not a c-planar rooted graph, then (G, a, b, c) contains Oi(α, β, 3) for some

i ∈ {1, 3, 4, 6, 7, 8, 9, 10} as a rooted subdivision or (G, a, b, c) contains Oj(α, β, 3)

for some j ∈ {2, 5, 12, 13, 14, 15, 18, 25}, or O5(α, 3, β), O25(3, α, β) as a rooted

minor, where {α, β} = {1, 2}. See Figure 1.3 and 1.4 and 1.5.

Proof. Let the multigraph H be obtained from (G, a, b, c) by adding two parallel ac

edges and two parallel bc edges and the edge ab, if they do not exist. Note that there

is a symmetry between 1 and 2 so in the whole proof we use this symmetry implicitly

for reducing case analysis. Because (H, a, b, c) is not c-planar and H is internally

3-connected, Theorem 4.0.21 implies that (H, a, b, c) contains either, (K2,3, α, β, 3),
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(K ′
2,3, α, β, 3), (K ′

2,3, 1, 3, 2) or (K ′′
2,3, α, β, 3) as a rooted subdivision. Note that if

(H, a, b, c) contains (K ′
2,3, 1, 3, 2) then it also contain (O1, α, β, 3) as a rooted minor,

this immediately implies that (G, a, b, c) contains (O1, α, β, 3) as a rooted minor as

stated in the statement of lemma.

Now we consider three major cases:

Case 1 (H, a, b, c) contains (K2,3, 1, 2, 3) as a rooted subdivision.

Let J be the multigraph obtained from (K2,3, 1, 2, 3) by adding the two parallel

13 edges and two parallel 23 edges. Let C = {134, 135, 342, 352, 1425, 313, 323}

be a double cycle cover for J . Note that J is isomorphic to the graph presented in

Figure 2.1 where 1, 2, 3 correspond to a, b, c, respectively. It is easy to see that C is a 3-

disk system, and (H, a, b, c) contains a (J, 1, 2, 3)-subdivision, called S, as a subgraph.

It is easy to see that H, J, S, C satisfy conditions of Theorem 3.0.17. So one of the

outcomes of Theorem 3.0.17 holds. Obviously, (xi) of Theorem 3.0.17 does not hold.

Since J is not isomorphic to K4, so (x) of Theorem 3.0.17 do not hold. By applying

Lemma 2.1.3, we can see that (ix) of Theorem 3.0.17 does not hold. Moreover, since

there is no special segment in S, (ii), (iii), (vi) and (vii) of Theorem 3.0.17 do not

hold. Now, we are going to analyze the other possible outcomes, i.e. (i), (iv), (v) and

(viii) of Theorem 3.0.17.

Case 1.1 The outcome (i) of Theorem 3.0.17 holds, i.e. there exists an S-jump.

By symmetry between 4, 5, we may assume that there exists a path P from w ∈

seg(3, 4) to z ∈ seg(1, 5] ∪ seg(2, 5] ∪ seg(3, 5). If z = 5 then (H, a, b, c) contains

(O1, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6)→֒(4, 5, w). If z ∈ seg(1, 5)

then (H, a, b, c) contains (O1, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6)

→֒(4, z, w). If z ∈ seg(3, 5) then (H, a, b, c) contains (O1, 1, 2, 3) as a rooted subdivi-

sion with signature (4, 5, 6) →֒(4, 5, z).

Case 1.2 The outcome (iv) of Theorem 3.0.17 holds, i.e. there exists weakly free
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S-cross anchored at c.

Let (P1, P2) be an S-cross with feet on u1, 6, 7, v2 where u1, 7 ∈ seg[2, 5] and v2, 6 ∈

seg[2, 4]. We claim that (H, a, b, c) contains (O5, 1, 3, 2) as a rooted minor. For proving

the claim it is enough to show that (H, a, b, c) contains (O5, 1, 3, 2) as a rooted minor,

when u1 = 5, v2 = 4. In which case (H, a, b, c) contains (O5, 1, 3, 2) as a rooted minor

with signature (4, 5, 6, 7)→֒(6, 7, 4, 5) as a rooted minor.

Case 1.3 The outcome (v) of Theorem 3.0.17 holds, i.e. there exists a free solid

S-cross.

We are going to show that either (H, a, b, c) contains (O2, 1, 2, 3) a rooted minor, or it

contains (O1, 1, 2, 3), (O6, 1, 2, 3) or (O7, 1, 2, 3) as a rooted subdivision. Let (P1, P2)

be the free cross with feet u, w, v, z.

Note that the feet of the cross are on the disk 1425. We may assume without

loss of generality u ∈ seg[2, 4) ∪ seg[2, 5), v ∈ seg[1, 4] ∪ seg[1, 5] and w ∈ seg(1, 5] ∪

seg(2, 5], z ∈ seg[1, 4] ∪ seg[2, 4]. Now if u = 2, v = 1, w = 4, z = 5 and P1 is

an edge then (H, a, b, c) contains (O7, 1, 2, 3) as a rooted subdivision with signature

(4, 5)→֒(4, 5). If P1 is not an edge, there exists a path P from x ∈ Int(P1) to y ∈ S.

If y does not belong to the disk 1425, then (H, a, b, c) contains (O2, 1, 2, 3) as a rooted

minor with signature (4, 5, 6)→֒(4, 5, x). If y belongs to the disk 1425 then there

exists a path P ′ ⊂ P1 ∪P such that (P ′, P2) forms a free cross, unless y = 4 in which

case it is easy to see that (H, a, b, c) contains (O1, 1, 2, 3) as a rooted subdivision

with signature (4, 5, 6)→֒(x, w, 4). Note that the rest of case analysis will investigate

possible outcomes of the free cross (P ′, P2)

Now by symmetry we consider two main possibilities: either u 6= 2 or w 6= 5. In the

first possibility, assume that u 6= 2. Without loss of generality, we may assume that

u ∈ seg(2, 4). Now if z ∈ seg(2, 4] then (H, a, b, c) contains (O1, 1, 2, 3) as a rooted

subdivision with signature (4, 5, 6)→֒(u, w, z), and if z ∈ seg[1, 4] then (H, a, b, c)

contains (O1, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6)→֒(u, w, 4).
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In the second possibility, assume that w 6= 5 and u = 2. Now either v = 1

or v 6= 1. We start by analyzing the case v 6= 1. If v ∈ seg(1, 5) then (H, a, b, c)

contains (O1, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6)→֒(v, w, 5). If

v ∈ seg(1, 4) and z ∈ (2, 4], (H, a, b, c) contains (O1, 1, 2, 3) as a rooted subdivision

with (4, 5, 6)→֒(v, w, 4). Finally, if v ∈ seg(1, 4) and z ∈ (1, 4) then (H, a, b, c) contains

(O1, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6)→֒(v, w, z).

Thus we can assume v = 1. If P1 is not a path then similarly as the argument pre-

sented above either (H, a, b, c) contains (O2, 1, 2, 3) as a rooted minor with signature

(4, 5, 6)→֒(4, 5, x) or it contains (O1, 1, 2, 3) as a rooted subdivision with signature

(4, 5, 6)→֒(x, w, 4), or we get a free cross (P ′, P2) where the possible outcomes were

already investigated above. Therefore P1 is an edge. If z ∈ seg[4, 2) then (H, a, b, c)

contains (O6, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6)→֒(4, 5, w). Fi-

nally, if z ∈ seg(4, 1) then similarly as before (H, a, b, c) contains (O6, 1, 2, 3) as a

rooted subdivision with signature (4, 5, 6)→֒(z, 5, w).

Case 1.4 The outcome (viii) of Theorem 3.0.17 holds, i.e. there exists an essential

S-triad

Let (P1, P2, P3) be an essential triad with center 0 and feet on v1, v2, 3, respectively.

Note that v1, v2 ∈ seg(2, 4) ∪ seg(1, 4) ∪ seg(2, 5) ∪ seg(1, 5) and there is a symmetry

between 1, 4, v1 and 2, 5, v2, respectively. By considering these symmetries, we analyze

the following cases: in the first possibility, v1 ∈ seg[2, 4), v2 ∈ seg[1, 5) in which case

(H, a, b, c) contains (O2, 1, 2, 3) as a rooted minor with signature (4, 5, 6)→֒(4, 5, 0). In

the second possibility, v1 ∈ seg(2, 4], v2 ∈ seg(2, 5] then (H, a, b, c) contains (O1, 1, 2, 3)

as a rooted subdivision with signature (4, 5, 6)→֒(v1, v2, 0).

Case 2 (H, a, b, c) contains (K ′
2,3, 1, 2, 3) as a rooted subdivision.

Let J be the multigraph obtained from (K ′
2,3, 1, 2, 3) by adding the two parallel 13

edges and two parallel 23 edges. Let C = {134, 135, 3462, 3562, 1465, 313, 323} be a

double cycle.
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It is easy to see that C is a 3-disk system, and (H, a, b, c) contains a (J, 1, 2, 3)-

subdivision, called S, as a subgraph. It is easy to see that H, J, S, C satisfy conditions

of Theorem 3.0.17. So one of the outcomes of Theorem 3.0.17 holds. Obviously,

(xi) of Theorem 3.0.17 does not hold. Since J is not isomorphic to K4, so (x) of

Theorem 3.0.17 does not hold. By applying Lemma 2.1.3, we can see that (ix) of

Theorem 3.0.17 does not hold. Now, we are going to analyze the other outcomes, i.e.,

(i), (iv), (v), (vi), (vii) and (viii) of Theorem 3.0.17.

Case 2.1 The outcome (i) of Theorem 3.0.17 holds, i.e. there exists an S-jump.

Let P be an S-jump with ends w, z. If w ∈ seg(3, 4) ∪ seg(3, 5) and z ∈ seg(1, 5] ∪

seg(1, 4]∪seg[4, 6)∪seg[5, 6) then by the analysis presented in Case 1.1 and Lemma 4.1.1(i),

(H, a, b, c) contains (O8, 1, 2, 3) as a rooted subdivision. So we may assume that

w ∈ seg[2, 6) and z ∈ seg[1, 4) ∪ seg[1, 5). We consider two major possibilities. First,

by symmetry assume that z ∈ seg(1, 5), in which if w ∈ seg(2, 6) then (H, a, b, c)

contains (O8, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6, 7)→֒(z, 6, 5, w),

and if w = 2 then it contains (O10, 1, 2, 3) as a rooted subdivision with signature

(4, 5, 6, 7)→֒(z, 4, 6, 5).

In the second possibility, assume that z = 1. If w ∈ seg(2, 6) then (H, a, b, c) con-

tains (O3, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6, 7)→֒(4, 5, 6, w). Thus,

assume that w = 2. If P is an edge then (H, a, b, c) contains (O6, 1, 2, 3) as a rooted

subdivision with signature (4, 5, 6)→֒(4, 5, 6). If P is not an edge then there exists a

path P ′ from x ∈ Int(P ) to y ∈ S. If y ∈ seg[3, 4) ∪ seg[3, 5) then we get (O2, 1, 2, 3)

as a rooted minor with signature (4, 5, 6)→֒(4, 5, x). If y ∈ seg[5, 6) ∪ seg[4, 6), by

symmetry say y ∈ seg[4, 6) then (H, a, b, c) contains (O10, 1, 2, 3) as a rooted subdivi-

sion with signature (4, 5, 6, 7)→֒(x, 5, y, 6). Finally, if y = 6 then (H, a, b, c) contains

(O3, 1, 2, 3) as rooted subdivision with signature (4, 5, 6, 7)→֒(4, 5, 6, x).

Thus to summarize, (H, a, b, c) contains (Oi, 1, 2, 3) for some i ∈ {3, 6, 8, 10} as

a rooted subdivision, or it contains (O2, 1, 2, 3) as a rooted minor.
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Case 2.2 The outcome (iv) of Theorem 3.0.17 holds, i.e. there exists weakly free

S-cross anchored at c.

This case is similar to Case 1.2, so (H, a, b, c) contains (O5, 1, 3, 2) as a rooted

minor.

Case 2.3 The outcome (ii) of Theorem 3.0.17 holds, i.e. there exists a degenerate

S-cross.

Let (P1, P2, P ) be the degenerate S-cross where 3, u2, v1, v2 are feet of the S-cross

(P1, P2), 2, v2, v1, 6 appear on seg[2, 6] in the order listed, and u2 ∈ seg(3, 4]∪seg[4, 6).

Assume 7 ∈ V (Int(P1)) be the other end of the path P . If v1 ∈ seg(2, 6) then we

claim that (H, a, b, c) contains (O5, 1, 2, 3) as a rooted minor. For proving the claim

it is enough to show that (H, a, b, c) contains (O5, 1, 2, 3) as a rooted minor, when

u2 = 4, v2 = 2. In which case it is easy to see that (H, a, b, c) contains (O5, 1, 2, 3) as

a rooted minor with signature (4, 5, 6, 7)→֒(6, 7, v1, 4).

So we assume that v1 = 6. Now either v2 = 2 or v2 ∈ seg(2, 6). Then it is easy to

see that (H, a, b, c) contains either (O10, 1, 2, 3) or (O8, 1, 2, 3) as a rooted subdivision

with signature (4, 5, 6, 7)→֒(u2, 5, 6, 7) or (4, 5, 6, 7)→֒(u2, 6, v2, 7), respectively.

Thus to summarize, (H, a, b, c) contains either (O8, 1, 2, 3), (O10, 1, 2, 3) as a rooted

subdivision, or it contains (O5, 1, 2, 3) as a rooted minor.

Case 2.4 The outcome (iii) of Theorem 3.0.17 holds, i.e. there exists a 3-blocking

S-cross.

Let (P1, P2, P3) be a connected cross with feet on 3, x, y, z and connection 7, 8 where

7 ∈ Int(P1) and 8 ∈ Int(P2). Without loss of generality we may assume, x ∈

seg[2, 6), y ∈ seg(2, 6] and z ∈ seg(3, 5]∪ seg[5, 6). We claim that (H, a, b, c) contains

(O5, 1, 3, 2) as a rooted minor. For proving the claim it is enough to show that

(H, a, b, c) contains (O5, 1, 3, 2) as a rooted minor, when x = 2. In which case it

is easy to see that (H, a, b, c) contains (O5, 1, 3, 2) as a rooted minor with signature
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(4, 5, 6, 7)→֒(y, 8, 7, z).

Case 2.5 The outcome (v) of Theorem 3.0.17 holds, i.e. there exists a free solid

S ′-cross.

Let (P1, P2) be a free cross with feet u, w, v, z. By considering the symmetry, we

consider two possibilities: either the feet of the free cross are on the disk 1465, or

they are on the disk 3562.

In the first possibility, it is easy to see that by applying Lemma 4.1.2 and the

result of Case 1.3 above, (H, a, b, c) contains either (O2, 1, 2, 3) or (O5, 1, 2, 3) as a

rooted minor or (O3, 1, 2, 3) or (O4, 1, 2, 3) as a rooted subdivision.

Now we investigate the second possibility, i.e. u, w, v, z belong to the disk 3562.

Since the cross is solid and free, we may assume that u ∈ seg(3, 5), v ∈ seg(5, 6] ∪

seg(2, 6], w ∈ seg(3, 5] ∪ seg[5, 6) and z ∈ seg[2, 6).

If v ∈ seg(2, 6) then since we are going to show that (H, a, b, c) contains (O5, 1, 2, 3)

as a rooted minor, we can assume that w = 5 and z = 2. In which case it is

easy to see that (H, a, b, c) contains (O5, 1, 2, 3) as a rooted minor with signature

(4, 5, 6, 7)→֒(6, u, v, 5). If w ∈ seg(3, 5) then since we are going to show that (H, a, b, c)

contains (O18, 1, 2, 3) as a rooted minor, we can assume that v = 6 and z = 2. In

which case it is easy to see that (H, a, b, c) contains (O18, 1, 2, 3) as a rooted minor

with signature (4, 5, 6, 7, 8)→֒(6, w, 4, 5, u).

Thus, we assume that v ∈ seg(5, 6] and w ∈ seg[5, 6). First assume that v = 6, in

which case if w ∈ seg(5, 6) then (H, a, b, c) contains (O8, 1, 2, 3) as a rooted subdivision

with signature (4, 5, 6, 7)→֒(5, 6, u, w), and if w = 5, z = 2 then (H, a, b, c) contains

(O10, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6, 7)→֒(4, 5, u, 6), and finally,

if w = 5, z ∈ seg(2, 6) then (H, a, b, c) contains (O8, 1, 2, 3) as a rooted subdivision

with signature (4, 5, 6, 7)→֒(5, 6, u, z)

Now assume that v ∈ seg(5, 6), in which case if z ∈ seg(2, 6) then (H, a, b, c)

contains (O8, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6, 7)→֒(5, 6, u, z),
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and if z = 2, w = 5 then (H, a, b, c) contains (O10, 1, 2, 3) as a rooted subdivision with

signature (4, 5, 6, 7)→֒(4, 5, u, 6), and finally, if z = 2, w ∈ seg(5, 6) then (H, a, b, c)

contains (O8, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6, 7)→֒(5, v, u, w).

Thus to summarize the whole case analysis of Case 2.5, (H, a, b, c) contains (Oi, 1, 2, 3)

for some i ∈ {3, 4, 8, 10} as a rooted subdivision, or it contains (Oi, 1, 2, 3) for some

i ∈ {2, 5, 18} as a rooted minor.

Case 2.6 The outcome (vi) of Theorem 3.0.17 holds, i.e. there exists a double facial

S ′-cross.

Let (P, P1, P2) be the double facial S-cross where P has an end at 3 and the other at

u ∈ seg[2, 6], P1 has one end at u1 ∈ seg(3, 5]∪seg[5, 6) and the other at v1 ∈ seg[2, 6),

P2 has one end at u2 ∈ seg[4, 3)∪ seg[4, 6) and the other at v2 ∈ seg[2, 6). If u ∈ (2, 6)

then we claim that (H, a, b, c) contains (O15, 1, 2, 3) as a rooted minor. For proving the

claim it is enough to show that (H, a, b, c) contains (O15, 1, 2, 3) as a rooted minor,

when v1 = v2 = 2, u1 = 5, u2 = 4. In which case it is easy to see that (H, a, b, c)

contains (O15, 1, 2, 3) as a rooted minor with signature (4, 5, 6, 7)→֒(5, u, 6, 4).

So we may assume that u = 6. Now we claim that if u1 ∈ seg(3, 5) or u2 ∈ seg(3, 4)

then (H, a, b, c) contains (O2, 1, 2, 3) as a rooted minor. For proving the claim, by

symmetry assume that u1 ∈ seg(3, 5). Now it is enough to show that (H, a, b, c)

contains (O2, 1, 2, 3) as a rooted minor, when v1 = v2 = 2, u2 = 4. In which case it

is easy to see that (H, a, b, c) contains (O2, 1, 2, 3) as a rooted minor with signature

(4, 5, 6)→֒(4, 6, u1) as a rooted minor.

Thus we assume that u1 ∈ seg[5, 6] and u2 ∈ seg[4, 6].

Now if v1, v2 ∈ seg(2, 6) such that 2, v1, v2, 6 appear on seg[2, 6] in the order

listed then (H, a, b, c) contains (O8, 1, 2, 3) as a rooted subdivision with signature

(4, 5, 6, 7)→֒(u2, u1, 6, v1). So we may assume by symmetry that v1 = 2 and v2 ∈

seg[2, 6].

Now if v2 ∈ seg(2, 6) then (H, a, b, c) contains (O10, 1, 2, 3) as a rooted subdivision
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with signature (4, 5, 6, 7)→֒(v2, u2, u1, 6). Thus we can assume v1 = v2 = 2. In which

case if u2 = 4 and u1 = 5 then (H, a, b, c) contains (O9, 1, 2, 3) as a rooted subdivision

with signature (4, 5, 6)→֒(4, 5, 6). So by symmetry assume that u1 ∈ seg(5, 6). It is

easy to see that (H, 1, 2, 3) contains (O10, a, b, c) as a rooted subdivision with signature

(4, 5, 6, 7)→֒(u2, 5, u1, 6).

Thus to summarize, (H, 1, 2, 3) contains (Oi, 1, 2, 3) for some i ∈ {8, 9, 10} as a

rooted subdivision, or it contains (O2, 1, 2, 3) or (O15, 1, 2, 3) as a rooted minor.

Case 2.7 The outcome (vii) of Theorem 3.0.17 holds, i.e. there exists a blocking

interlaced S-fork of type I.

Without loss of generality we may assume that there exist an S-fork (P1, P2, P3) with

feet on 3, u, v and center o where 2, u, v, 6 appear on seg[2, 6] in the order listed, an S-

path P disjoint from P1, P2, P3 except at 3 connecting 3 to w where u, w, v appear on

seg[2, 6] in the order listed, and an S-path R disjoint from P, P1, P2, P3 except maybe

at u between v′ ∈ seg(3, 5]∪seg[5, 6) to u′ where u′, u, 2 appear on seg(2, 6) in the order

listed. We claim that (H, a, b, c) contains (O15, 1, 2, 3) as a rooted minor. For proving

the claim it is enough to show that (H, a, b, c) contains (O15, 1, 2, 3) as a rooted minor,

when u = 2, v = 6, v′ = 5 and u′ = 2. In which case it is easy to see that (H, a, b, c)

contains (O15, 1, 2, 3) as a rooted minor with signature (4, 5, 6, 7)→֒(o, w, 6, 5) as a

rooted minor.

Case 2.8 The outcome (viii) of Theorem 3.0.17 holds, i.e. there exists an essential

S ′-triad with one feet on c.

Note that this case is similar to case 1.4 except the fact that K2,3 is replaced by K ′
2,3.

This easily implies that (H, a, b, c) either contains (O2, 1, 2, 3) as a rooted minor or

(O8, 1, 2, 3) as a rooted subdivision.

Case 3 (H, a, b, c) contains (K ′′
2,3, 1, 2, 3) as a rooted subdivision.

Let J be the multigraph obtained from (K ′′
2,3, 1, 2, 3) by adding the two parallel
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13 edges and two parallel 23 edges. Let C = {1346, 1356, 3472, 3572, 4567, 313,

323} be a double cycle cover for J . It is easy to see that C is a 3-disk system, and

(H, a, b, c) contains a (J, 1, 2, 3)-subdivision, called S, as a subgraph. It is easy to

see that H, J, S, C satisfy conditions of Theorem 3.0.17. Similarly to Case 2, the only

possible outcomes are (i), (v), (vi), (vii) and (viii) of Theorem 3.0.17.

Case 3.1 The outcome (i) of Theorem 3.0.17 holds, i.e. there exists an S-jump.

Let P be an S-jump with ends w, z. If w ∈ seg(3, 4) ∪ seg(3, 5) and z ∈ seg(1, 5] ∪

seg(1, 4]∪seg[4, 6)∪seg[5, 6) or if w ∈ seg[4, 6]∪seg[6, 5] and z ∈ seg[2, 7)∪seg[1, 6) then

as the summary of Case 3.1 and Lemma 4.1.1 imply (H, a, b, c) contains (O2, 1, 2, 3),

(O5, 1, 2, 3), (O13, 1, 2, 3) as a rooted minor. So by symmetry, we may assume that

w ∈ seg[1, 6] and z ∈ seg[2, 7] ∪ seg[1, 5). We consider two major possibilities. First,

by symmetry assume that z ∈ seg(2, 7), then it is easy to see that by contracting

the edge 7z, and 1w, if w 6= 1 the rooted graph (H, a, b, c) contains (O5, 2, 1, 3) with

signature (4, 5, 6, 7)→֒(4, 5, 6, 7) as a rooted minor.

In the second possibility, assume w = 1, z = 2. If P is an edge then (H, a, b, c)

contains (O25, 3, 2, 1) with signature (4, 5, 6, 7)→֒(4, 5, 6, 7) as a rooted minor. If P

is not an edge then the fact that (H, a, b, c) is internally 4-connected implies that

there exists a path P ′ from x ∈ Int(P ) to y ∈ S. If y ∈ seg[3, 4) ∪ seg[3, 5) then

(H, a, b, c) contains O2 with signature (4, 5, 6)→֒(4, 5, x) as a rooted minor. If y ∈

seg[4, 6) ∪ seg[5, 6) ∪ seg[4, 7] ∪ seg[5, 7], by symmetry say y ∈ seg[4, 7]. Since we are

going to show that (H, a, b, c) contains either (O5, 2, 1, 3) or (O18, 1, 2, 3) as a rooted

minor, we may assume either y = 4 or y = 7. If y = 4 then (H, a, b, c) contains

(O18, 1, 2, 3) with signature (4, 5, 6, 7, 8)→֒(4, 5, x, 6, z) as a rooted minor. If y = 7

then (H, a, b, c) contains (O5, 2, 1, 3) with signature (4, 5, 6, 7)→֒(4, 5, 6, 7) as a rooted

minor.

Case 3.2 The outcome (ii) of Theorem 3.0.17 holds, i.e. there exists a degenerate

S-cross.
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As the summary of Case 2.3 and Lemma 4.1.1 imply (H, a, b, c) contains (O5, 1, 2, 3)

or (O13, 1, 2, 3) as a rooted subdivision.

Case 3.3 The outcome (iii) of Theorem 3.0.17 holds, i.e. there exists a 3-blocking

S-cross.

As the analysis of Case 2.4 shows (H, a, b, c) contains (O5, 1, 3, 2) as a rooted minor.

Case 3.4 The outcome (v) of Theorem 3.0.17 holds, i.e. there exists a free solid

S ′-cross.

As the summary of Case 2.5 and Lemma 4.1.1 imply (H, a, b, c) contains (Oi, 1, 2, 3)

for some i ∈ {2, 5, 13, 14, 18} as a rooted minor.

Case 3.5 The outcome (vi) of Theorem 3.0.17 holds, i.e. there exists a double facial

S ′-cross.

As the summary of Case 2.6 and Lemma 4.1.1 imply (H, a, b, c) contains (Oi, 1, 2, 3)

for some i ∈ {2, 5, 12, 13, 15} as a rooted minor.

Case 3.6 The outcome (vii) of Theorem 3.0.17 holds, i.e. there exists a blocking

interlaced S-fork of type I.

As the analysis of Case 2.7 shows (H, a, b, c) contains (O15, 1, 2, 3) as a rooted minor.

Case 3.7 The outcome (viii) of Theorem 3.0.17 holds, i.e. there exists an essential

S ′-triad with one feet on c.

As the summary of Case 2.8 and Lemma 4.1.1 imply (H, a, b, c) contains (O2, 1, 2, 3)

or (O13, 1, 2, 3) as a rooted minor.

Theorem 4.1.4. (i) The rooted graphs Oi(1, 2, 3), 1 ≤ i ≤ 7 are minor minimal

with respect to the non-3-planarity property.

(ii) If (G, a, b, c) is an internally 4-connected not c-planar rooted graph then (G, a, b, c)

contains Oi(1, 2, 3) for some i ∈ {1, 3, 4, 6, 7} as a rooted subdivision or

(G, a, b, c) contains O2(1, 2, 3), O5(1, 2, 3) as a rooted minor. See Figure 1.3.
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Proof. For proving (i), note that by the proof of Lemma 4.1.3 and the statement of

Lemma 4.0.23, the rooted graphs Oi(1, 2, 3), 1 ≤ i ≤ 7 are not c-planar. We leave

the proof the fact that Oi(1, 2, 3), 1 ≤ i ≤ 7 are minor minimal with respect to not

c-planarity to the reader.

For proving (ii), first we claim that if any of the graphs (O8, 1, 2, 3), (O9, 1, 2, 3),

(O10, 1, 2, 3), (O12, 1, 2, 3), (O13, 1, 2, 3), (O14, 1, 2, 3), (O15, 1, 2, 3), (O18, 1, 2, 3) or

(O25, 1, 2, 3) is not z-planar where {x, y, z} ∈ {1, 2, 3}, then they contain either

Oi(1, 2, 3) for some i ∈ {1, 3, 4, 6}.

The rooted graph (O8, 1, 2, 3) is not 23-planar and it contains (O1, 1, 2, 3) as a

rooted subdivision with signature (4, 5, 6)→֒(4, 5, 6). The rooted graph (O9, 1, 2, 3)

is not 23-planar and it contains (O1, 1, 2, 3) as a rooted subdivision with signature

(4, 5, 6)→֒(4, 5, 6). The rooted graph (O10, 1, 2, 3) is not 23-planar and it contains

(O1, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6)→֒(4, 6, 7). The rooted

graph (O12, 1, 2, 3) is not 123-planar and it contains (O1, 3, 2, 1) as a rooted subdi-

vision with signature (4, 5, 6)→֒(4, 5, 6) and (O4, 1, 2, 3) as a rooted subdivision with

signature (4, 5, 6)→֒(4, 5, 6). The rooted graph (O13, 1, 2, 3) is not 123-planar and it

contains (O1, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6)→֒(4, 5, 6). The

rooted graph (O15, 1, 2, 3) is not 123-planar and it contains (O1, 3, 2, 1) as a rooted

subdivision with signature (4, 5, 6)→֒(4, 5, 6) and (O3, 2, 1, 3) as a rooted subdivision

with signature (4, 5, 6, 7)→֒(4, 5, 6, 7). The rooted graph (O18, 1, 2, 3) is not 123-planar

and it contains (O1, 3, 2, 1) as a rooted subdivision with signature (4, 5, 6)→֒(6, 7, 4)

and (O1, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6)→֒(4, 5, 7). The rooted

graph (O25, 1, 2, 3) is not 123-planar and it contains (O1, 1, 2, 3) as a rooted subdivi-

sion with signature (4, 5, 6)→֒(4, 5, 6) and (O6, 3, 2, 1) as a rooted minor with signature

(4, 5, 6)→֒(4, 5, 6). This completes the proof of the claim. Now the proof of (ii) follows

from Lemma 4.1.3 and the above claim.

Lemma 4.1.5. Let (G, a, b, c) be a 3-connected rooted graph. Let G = (G1, G2) be
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an internal 3-separation such that V (G1) ∩ V (G2) = {a′, b′, c}, {a, b, c} ⊆ V (G2) and

E(G1) = E(G[V (G1)]). Moreover assume that G1 is isomorphic to K2,3. If (G, a, b, c)

is not c-planar then (G, a, b, c) contains either (O3, 1, 2, 3) or (O6, 1, 2, 3) as a rooted

subdivision, see Figure 1.3, or it contains (Oi, α, β, 3) for some i ∈ {2, 5, 12, 15}, or

(O5, 3, α, β), (O5, α, 3, β) or (O25, 3, α, β) as a rooted minor, where α, β = {1, 2}. See

Figure 1.5.

Proof. The 3-connectivity of (G, a, b, c) implies that there exist two disjoint paths

Pa, Pb in H connecting a, b to a′, b′, respectively. It is trivial that {a′, b′, c} is a vertex

cut in H . By symmetry between a and b, we may assume that b 6= b′. Now we

consider two major cases, a = a′ and a 6= a′.

Let the multigraph H be obtained from (G, a, b, c) by adding the two parallel ac

edges and two parallel bc edges, if they do not exist.

Case 1 a = a′.

Let J be the multigraph obtained from K ′
2,3 by adding the two parallel 13 edges

and two parallel 23 edges where 1, 2, 3 are terminal, 4, 5 are centers and 6 is the

only neighbor of 2. Let C = {135, 134, 3562, 1465, 3462, 131, 232} be a double

cycle cover for J . It is easy to see that C is a 3-disk system, and H contains a J-

subdivision, called S, as a subgraph where a, b, c correspond to 1, 2, 3, respectively.

Note that H, J, S, C satisfy the hypothesis of Theorem 2.2.10, so one of the outcomes

listed in the statement of Theorem 2.2.10 holds. Note that since {1, 3, 6} is a vertex

cut in H and E(G1) = E(G[V (G1)]), the outcomes (ii), (iv), (v), (vi), (vii) or (x)

of Theorem 2.2.10 do not hold. By applying Lemma 2.1.3, we can see that (xi) of

Theorem 2.2.10 does not hold. Since J is not isomorphic toK4, (xii) of Theorem 2.2.10

does not hold. Finally since G is not 3-planar, (xiii) of Theorem 2.2.10 does not hold.

So either (i), (iii), (viii) or (ix) holds.

If (i) of Theorem 2.2.10 holds, then H contains a path P from 1 to z ∈ seg[2, 6].
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If z ∈ seg(2, 6] then H contains O3(1, 2, 3) as a rooted subdivision with signature

(4, 5, 6, 7)→֒(4, 5, 6, 7). If z = 2 in which case either P is an edge or V (Int(P )) 6= ∅.

If P is an edge then H contains O6(1, 2, 3) with signature (4, 5, 6)→֒(4, 5, 6) as a

rooted minor, and if V (Int(P )) 6= ∅ then the fact that H is 3-connected and {1, 3, 6}

is a vertex cut in G1 implies that there exists a path R from u ∈ V (Int(P )) to

v ∈ (P2 ∪ {3}) \ {1, 2}. So if v = 3 then it is easy to see that H contains (O2, 1, 2, 3)

as a rooted minor with signature (4, 5, 6)→֒(4, 5, u). Finally, if v ∈ V (P2) \ {2} then

similarly as before H contains (O3, 1, 2, 3) as a rooted subdivision.

If (iii) of Theorem 2.2.10 holds then there exist t1, w, t2 ∈ V (Pb), where 2, t1, w, t2, 6

appear on Pb in the order listed, such that there exists a 3-blocking cross (P1, P2, P3)

with feet on 3, t1, w, t2 and connections 7, 8 where 7 ∈ P1 and 8 ∈ P2. We assume

that t1 = 2 and t2 = 6 since in the rest of the proof, we show that H contains some

rooted graph as a rooted minor. Now, it is easy to see that by contracting the edge

56, H contains (O5, 1, 3, 2) as a rooted minor with signature (4, 5, 6, 7)→֒(8, w, 7, 6).

If (viii) of Theorem 2.2.10 holds then there exist t1, w, t2 ∈ V (Pb) where 2, t1, w, t2, 6

appear on Pb in the order listed, such that there exist a double fork with centers 7 and

8 and feet 3, t1, t2 and an S-path from 3 to w. It is not hard to see that H contains

(O2, 1, 2, 3) as a rooted minor with signature (4, 5, 6)→֒(3, 7, 8).

If (ix) of Theorem 2.2.10 holds then there exist t1, t2 ∈ V (Pb) such that there

exists a double connected fork (P1, P2, P3;Q1, Q2, Q3) with centers 7 and 8 and feet

3, t1, t2 and connections w1, w2. We may assume 2, t1, t2, 6 appear on Pb in the order

listed. We assume that t1 = 2 and t2 = 6 since in the rest of the proof we show that H

contains some rooted graph as a rooted minor. Since the double fork is connected, we

consider two cases either w1 = w2, or w1 6= w2. In the first case, note that w1 6∈ {7, 8}.

If w1 ∈ P1∩Q1 then it is easy to see that H contains (O5, 1, 3, 2) as a rooted minor by

contracting the edge 46 with signatures (4, 5, 6, 7)→֒(7, 8, w1, 4). If w1 ∈ P2 ∩Q2 then

H contains (O15, 2, 1, 3) as a rooted minor by contracting the edge 46 with signature
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(4, 5, 6, 7)→֒(7, 8, w1, 4). If w1 ∈ P3 ∩ Q3 then H contains (O15, 1, 2, 3) as a rooted

subdivision with signature (4, 5, 6, 7)→֒(7, 8, w1, 6). In the second case, i.e. w1 6= w2,

if w1 6= 7 then contract the edge 7w1 and label the new vertex by 7 and also if w2 6= 8

then contract the edge 8w2 and relabel the new vertex by 8. Now by contracting

the edge 46, it is not hard to see that H contains O12(1, 2, 3) as a rooted minor with

signature (4, 5, 6)→֒(7, 8, 4).

Case 2 a 6= a′

Let J be the multigraph obtained from K ′′
2,3 by adding the two parallel 13 edges

and two parallel 23 edges where 1, 2, 3 are terminal, 4, 5 are centers, 6 is the only

neighbor of 1 and 7 is the only neighbor of 2. Let C = {1643, 1653, 4657, 3472, 3572,

131, 232} be a double cycle cover for J . It is easy to see that C is a 3-disk system,

and H contains a J-subdivision, called S, as a subgraph. Since we are proving (i),

we can assume 1′ = 6 and 2′ = 7. Note that H, J, S, C satisfy the hypothesis of

Theorem 2.2.10, so one of the outcomes listed in the statement of Theorem 2.2.10

holds. Note that similarly as the case where 1 = 1′, since {1, 3, 6} is a vertex in H

and E(G′
1) = E(G1[V (G′

1)]), outcomes (ii), (iv), (v), (vi), (vii), (xii), (xiii) or (x) of

Theorem 2.2.10 do not hold. So either (i), (iii), (viii), (ix) holds.

If (i) of Theorem 2.2.10 holds then by symmetry between 1 and 2, we may assume

there is a path P from w ∈ seg[1, 6) to z ∈ seg[2, 7]. We assume that w = 1 since

in the rest of the proof we show that H contains some graph as a rooted minor. If

z ∈ seg(2, 7] then by contracting the edge z7, if it exists, H contains (O5, 2, 1, 3) as

a rooted minor with signature (4, 5, 6, 7)→֒(4, 5, 6, 7). If z = 2 then either P is an

edge or V (Int(P )) 6= ∅. If P is an edge then H contains (O25, 3, 2, 1) with signature

(4, 5, 6, 7)→֒(4, 5, 6, 7) as a rooted minor, and if V (Int(P )) 6= ∅ then the fact that H

is 3-connected and {1, 3, 6} is a cut set in G implies that there exists a path R from

u ∈ V (Int(P )) to v ∈ (P2∪P1∪{3})\{1, 2}. So if v = 3 then it is easy to see that H
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contains O2 as a rooted minor with signature (4, 5, 6)→֒(4, 5, u). If v ∈ V (P2) \ {2}

then similarly as before H contains (O5, 1, 2, 3) or (O5, 2, 1, 3) as a rooted minor.

By symmetry between a and b, if (iii), (viii), (ix) of Theorem 2.2.10 holds then

a similar argument presented for the case a = a′ shows that H contains either

(O2, 1, 2, 3), (O5, 1, 3, 2), (O12, 1, 2, 3) or (O15, 2, 1, 3) as a rooted minor.

By combining the result of the cases a = a′ and a 6= a′, we can see that (G1, a, b, c)

contains either O3(1, 2, 3) or O6(1, 2, 3) as a rooted subdivision or it contains either

(O2, 1, 2, 3), (O5, 2, 1, 3), (O5, 2, 1, 3), (O5, 1, 2, 3), (O12, 1, 2, 3), (O15, 2, 1, 3), (O15, 1, 2, 3)

or (O25, 3, 2, 1) as a rooted minor.

Lemma 4.1.6. Let (G, a, b, c) be a 3-connected rooted graph. If (G, a, b, c) is minor

minimal not c-planar then (G, a, b, c) contains Oi(α, β, 3) for some i ∈ {1, 3, 4, 6, 8}

as a rooted subdivision, see Figure 1.3, or (G, a, b, c) contains (Oj , α, β, 3) for some

j ∈ {2, 5, 12, 13, 15}, or (O5, 3, α, β), (O5, α, 3, β) or (O25, 3, α, β) as a rooted minor,

where α, β = {1, 2}. See Figure 1.5.

Proof. We consider two cases, either (G, a, b, c) is internally 4-connected or it is not

internally 4-connected. If (G, a, b, c) is internally 4-connected then by Theorem 4.1.4,

G contains either Oi(1, 2, 3) for some i ∈ {1,, 3, 4, 6, 7} as a rooted subdivision or

O2, O5 as a rooted minor.

So assume that (G, a, b, c) is not internally 4-connected. Let G = (G1, G2) be an

internal 3-separation in G such that V (G1)∩V (G2) = {a′, b′, c′} and {a, b, c} ⊂ V (G1)

and the number of vertices ofG1 is as small as possible. SinceH is 3-connected we may

assume there exist three disjoint paths Pa, Pb, Pc in G1 connecting a, b, c to a′, b′, c′,

respectively. We claim that (G1, a
′, b′, c′) does not have a drawing on the disk such

that a′, b′, c′ are on the boundary of the disk. For proving the claim assume G1 has

such a drawing on the disk. Let G∗ be obtained from G by contracting all edges in G1

except edges with one ends at a′, b′ or c′ and calling the new vertex v∗. It is easy to see
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that deg(v∗) = 3 in G∗. Since (G, a, b, c) is minor minimal not c-planar, (G∗, a, b, c)

has a c-planar drawing. It is not hard to see that this drawing can be extended to a

c-planar embedding of (G, a, b, c). This proves the claim. Now we want to show that

G1 contains a double fork on a′, b′, c′. First, note that the graph G∗
1 obtained from G1

by adding the edges a′b′, a′c′, b′c′ is 3-connected and it does not have an embedding in

the disk such that a′, b′, c′ are on the boundary of the disk. Thus as Theorem 4.0.21

implies, G∗
1 contains a double fork with feet on a′, b′, c′. This immediately shows that

G1 contains a double fork with feet on a′, b′, c′.

If c 6= c′ then by symmetry either a = a′, b = b′ or a 6= a′, b = b′ or a 6= a′, b 6= b′

which implies that (G, a, b, c) contains either (O1, 1, 2, 3) or (O8, 1, 2, 3) as a rooted

subdivision or (G, a, b, c) contains (O13, 1, 2, 3) as a rooted minor. So from now on,

we may assume c = c′.

Now we consider two main cases, either (G1, a
′, b′, c′) is c-planar, or it is not c-

planar.

• (G1, a
′, b′, c) is c-planar.

Note that since (G, a, b, c) is minor minimal not c-planar and {a′, b′, c} is a ver-

tex cut, G1 is isomorphic to K2,3 where a′, b′, c are terminals. Now by applying

Lemma 4.1.5, (G, a, b, c) contains either (O3, 1, 2, 3) or (O6, 1, 2, 3) as a rooted subdi-

vision, or (G, a, b, c) contains (Oi, α, β, 3) for some i ∈ {2, 5, 12, 15}, or (O5, 3, α, β),

(O5, α, 3, β) (O25, 3, α, β) as a rooted minor, where α, β = {1, 2}.

• (G1, a
′, b′, c) is not c-planar.

By symmetry we consider two cases either a = a′ and b 6= b′ or a 6= a′ and b 6= b′.

If a = a′ and b 6= b′ then since (G, a, b, c) is minor minimal not c-planar, edges in

the path Pb are not contractible, i.e. there is an edge between b′c or b′a in (G1, a, b
′, c).

By Theorem 4.1.4, (G1, a, b
′, c) contains either (O6, 1, 2, 3) or (O7, 1, 2, 3) as a rooted

subdivision where a, b, c correspond to x, y, 3, respectively, {x, y} = {1, 2}. It is easy
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to see that if (G1, a, b
′, c) contains (O6, 1, 2, 3) as a rooted subdivision then (G, a, b, c)

contains (O3, 1, 2, 3) as a rooted subdivision if (G1, a, b
′, c) contains (O6, 1, 2, 3) as

a rooted subdivision then (G, a, b, c) contains (O5, 1, 2, 3) as a rooted minor. If

(G1, a, b
′, c) contains (O7, 1, 2, 3) (Note that there is a symmetry between 1, 2) as

a rooted subdivision then (G, a, b, c) contains (O4, 1, 2, 3) as a rooted subdivision.

Now suppose a 6= a′ and b 6= b′. Note that a′b, ab′ 6∈ E(G) because {a′, b′, c} is a

vertex cut in G, and (G, a, b, c) is minor minimal not c-planar and (G1, a
′, b′, c) is not

c-planar. The fact that (G, a, b, c) is minor minimal not c-planar implies that edges

in the path Pa or Pb are not contractible, i.e. there is an edge between a′c or b′c in

(G1, a, b
′, c). By Theorem 4.1.4, this does not hold. This completes the proof of the

lemma.

Here we present proof of Theorem 1.8.3, mentioned in Section 1.8.

Proof of Theorem 1.8.3. The proof of Theorem 1.8.3 follows from the proof of Theo-

rem 4.1.4 and Lemma 4.1.6.

4.2 Obstructions for ac-planarity

Lemma 4.2.1. Let (G, a, b, c) be a rooted graph and (H, a, b, c) be obtained from

(G, a, b, c) by adding the edge ab. If (G, a, b, c) contains (Oi, 3, 2, 1) for some i ∈

{3, 4, 6, 8, 9, 10} as a rooted subdivision, then (H, a, b, c) contains (O24, 1, 2, 3),

(O23, 3, 2, 1), (O26, 2, 1, 3), (O25, 1, 2, 3), (O28, 2, 1, 3) or (O27, 1, 2, 3) as a rooted mi-

nor, respectively.

Lemma 4.2.2. Let (G, a, b, c) be an internally 4-connected rooted graph. If (G, a, b, c)

is minor minimal not ac-planar rooted graph then G contains (Oi, β, 1, γ) for some

i ∈ {3, 4, 6, 8, 9, 10,11}, {β, γ} = {2, 3} as a rooted subdivision or G contains

(Oj , β, 1, γ) for some j ∈ {2, 5, 12, 13, 15, 16, 24, 26, 28}, {β, γ} = {2, 3} or

(Ok, α, 2, γ) for some k ∈ {5, 12, 15, 16, 17, 18, 19, 23, 24, 25, 27}, {α, γ} = {1, 3},

or (O5, 2, 3, 1) as a rooted minor. See Figure 1.4 and 1.5.
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Proof. Our proof strategy is that in the first step, we determine the lists LS,LM of

rooted graphs such that the rooted (G, a, b, c) must contain a member of these lists as

a rooted subdivision or minor, respectively, for not being c-planar. Then, by assuming

that (G, a, b, c) contains one of the rooted graph in LS as a rooted subdivision, we

find the graphs listed in statement of the theorem such that (G, a, b, c) must contain

as a rooted subdivision or rooted minor for not being ac-planar. In formally speaking,

first we prevent c-planarity and then a-planarity.

The analysis presented in Theorem 4.1.4 shows that LS = {Oi(α, β, 3) : i =

1, 3, 4, 6, 7 and {α, β} = {1, 2}} and LM = {Oi(α, β, 3) : i = 2, 5 and {α, β} =

{1, 2}}. This completes the first step.

Let the multigraph H be obtained from (G, a, b, c) by adding two parallel ac edges

and two parallel ab edges, if they do not exists.

Now we consider the following five cases:

Case 1 (G, a, b, c) contains (O1, 1, 2, 3) or (O1, 2, 1, 3) as a rooted subdivision.

Because of the symmetry assume that (G, a, b, c) contains (O1, 1, 2, 3) as a rooted

subdivision. Note that in this case (H, a, b, c) contains (K ′
2,3, 3, 1, 2). The similar

case analysis presented in Case 2 of Lemma 4.1.3 where 1, 2, 3 play roles of 3, 1, 2,

respectively, shows that (H, a, b, c) contains Oi(3, 1, 2) for some i ∈ {3, 4, 6, 8, 9, 10}

as a rooted subdivision where a, b, c correspond to 3, 1, 2, respectively, or (H, a, b, c)

contains O2(3, 1, 2), (O5, 3, 1, 2), (O15, 3, 1, 2) or (O5, 3, 2, 1) as a rooted minor.

Case 2 (G, a, b, c) contains (O3, 1, 2, 3) or (O3, 2, 1, 3) as a rooted subdivision.

If (G, a, b, c) contains (O3, 2, 1, 3) as a rooted subdivision then there is nothing to

prove. So we assume that (G, a, b, c) contains (O3, 1, 2, 3) as a rooted subdivision.

Note that in this case (H, a, b, c) contains (K ′
2,3, 1, 2, 3) as a rooted minor. Moreover

there exists a path Q from 1 to vertex 7 ∈ seg(2, 6). the analysis of this case is similar
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to Case 2 in Lemma 4.1.3 where roles of 1 and 3 are switched, but because of the

existence of the path Q, we prefer to go through the analysis separately.

Let J be the multigraph obtained from (K ′
2,3, 1, 2, 3) by adding the two parallel

13 edges and two parallel 21 edges. Let C = {134, 135, 1462, 1562, 3465, 131,

121} be a double cycle cover for J . It is easy to see that C is a 1-disk system, and

(H, a, b, c) contains a (J, 1, 2, 3)-subdivision, called S, as a subgraph. It is easy to

see that H, J, S, C satisfy conditions of Theorem 3.0.17. So one of the outcomes of

Theorem 3.0.17 holds. Similarly to Case 2 in Lemma 4.1.3, (xi), (x), (ix) and (iv) of

Theorem 3.0.17 do not hold. Now, we are going to analyze the other outcomes, i.e.,

(i), (ii), (iii), (v), (vi), (vii) and (viii) of Theorem 3.0.17.

Case 2.1 The outcome (i) of Theorem 3.0.17 holds, i.e. there exists an S-jump.

Let P be an S-jump with ends w, z where w ∈ seg(1, 4) ∪ seg(1, 5) ∪ seg[2, 6) and

z ∈ seg(3, 5] ∪ seg(3, 4] ∪ seg[4, 6) ∪ seg[5, 6).

We consider two possibilities. First, assume that w ∈ seg(1, 5) and z ∈ seg(1, 4]∪

seg(3, 4]∪ seg[4, 6). If P ∩Q 6= ∅, let x ∈ P ∩Q and we claim that (H, a, b, c) contains

(O5, 1, 2, 3) as a rooted minor. For proving the claim, it is enough to assume that

z = 4. Now by contracting the edge 27, it is easy to see that (H, a, b, c) contains

(O5, 1, 2, 3) as a rooted minor with signature (4, 5, 6, 7)→֒(4, 5, 6, x). So P ∩ Q = ∅.

Similarly as before, by assuming z = 4, it is easy to see that (H, a, b, c) contains

(O5, 2, 1, 3) as a minor with signature (4, 5, 6, 7)→֒(4, 5, w, 6).

In the second possibility assume that w ∈ seg[2, 6) and z ∈ seg[3, 4). If P ∩Q 6= ∅

then let x ∈ P ∩ Q. It is easy to see that (H, a, b, c) contains (O2, 1, 2, 3) as a

rooted minor with signature (4, 5, 6)→֒(4, 5, x). Therefore, assume that P ∩ Q = ∅.

If w 6= 2 then because we are going to show that (H, a, b, c) contains (O15, 2, 1, 3)

as a rooted minor, we can assume that w = 7 and z = 3. In which case (H, a, b, c)

contains (O15, 2, 1, 3) as a rooted minor with signature (4, 5, 6, 7)→֒(4, 5, 6, 7). So

assume that w = 2. If z = 3 and P is an edge (H, a, b, c) contains (O24, 3, 1, 2)
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with signature (4, 5, 6, 7)→֒(4, 5, 6, 7). If P is not an edge then because (H, a, b, c)

is 3-connected, we infer that there exists a path P ′ from u ∈ Int(P ) to v ∈ S.

Note that if P ′ ∩ Q 6= ∅ and t ∈ P ′ ∩ Q then by contracting the edge ut, (H, a, b, c)

contains (O2, 1, 2, 3) as a rooted minor with signature (4, 5, 6)→֒(4, 5, t). Thus, we

assume that P ′ ∩ Q = ∅. If v ∈ seg(2, 6) then P ∪ P ′ contains a jump, which

was already analyzed. If v = 6 then (H, a, b, c) contains (O19, 1, 2, 3) as a rooted

minor with signature (4, 5, 6, 7, 8)→֒(4, 5, 6, 7, u). Now, we assume that v = 4 and

by contracting the edge 46, (H, a, b, c) contains (O16, 3, 2, 1) as a rooted minor with

signature (4, 5, 6, 7)→֒(u, 5, 4, 7).

Case 2.2 The outcome (ii) of Theorem 3.0.17 holds, i.e. there exists a degenerate

S-cross.

Let (P1, P2, P ) be the degenerate S-cross where 1, u2, v1, v2 are feet of the S-cross

(P1, P2), 2, v2, v1, 6 appear on seg[2, 6] in the order listed, and u2 ∈ seg(1, 4]∪seg[4, 6), v1 ∈

seg(2, 6]∪ seg(4, 6], v2 ∈ seg[2, 6). Let 8 ∈ V (Int(P1)) be the other end of the path P .

If v1 ∈ seg(2, 6) then we are going to show that (H, a, b, c) contains (O5, 2, 3, 1) as

a rooted minor. To show this, let v2 = 2, u2 = 4, then it is easy to see that by con-

tracting the edge 56, (H, a, b, c) contains (O5, 2, 3, 1) as a rooted minor with signature

(4, 5, 6, 7)→֒(4, v1, 8, 5). Therefore, we can assume that v1 ∈ seg(4, 6]. Now, we are go-

ing to show that (H, a, b, c) contains O5 or (O17, 1, 2, 3) as a rooted minor. For showing

this, we assume that v1 = 6, v2 = 2, u2 = 4. If (P1 ∪ P2 ∪ P ) ∩Q = ∅ then (H, a, b, c)

contains (O17, 1, 2, 3) as a rooted minor with signature (4, 5, 6, 7, 8)→֒(7, 8, 5, 4, 6). If

P1 ∩ P2 ∩ Q 6= ∅, then P1 ∪ P2 ∪ Q contains a connected cross, thus as Case 2.3

in the proof of this lemma implies, (H, a, b, c) contains (O5, 2, 3, 1) as a rooted mi-

nor. If Q ∩ P2 6= ∅, let 9 ∈ P2 ∩ Q then by contracting the edge 79, (H, a, b, c)

contains (O17, 1, 2, 3) as a rooted minor with signature (4, 5, 6, 7, 8)→֒(7, 8, 5, 4, 6). If

Q ∩ P1 6= ∅ or Q ∩ P 6= ∅, we can assume that 8 ∈ Q ∩ (P1 ∪ P ) then by contract-

ing the edge 56, (H, a, b, c) contains (O5, 2, 3, 1) as a rooted minor with signature
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(4, 5, 6, 7)→֒(4, 7, 8, 5).

Case 2.3 The outcome (iii) of Theorem 3.0.17 holds, i.e. there exists a 1-blocking

S-cross.

This case is similar to Case 2.4 in the proof of Lemma 4.1.3 by switching the role of

a and c, so (H, a, b, c) contains (O5, 2, 3, 1) as a rooted minor.

Case 2.4 The outcome (v) of Theorem 3.0.17 holds, i.e. there exists a free solid

S ′-cross.

Let (P1, P2) be the free cross with feet u, w, v, z. By considering the symmetry, we

consider two possibilities: either the feet of the free cross are on the disk 3465, or

they are on the disk 1562.

In the first possibility, i.e. u, w, v, z belong to the disk 3465, Since we are going

to show that (H, a, b, c) contains either (O2, 1, 2, 3), (O12, 2, 1, 3) or (O13, 1, 2, 3) as a

rooted minor, we assume that u = 5, w = 3, v = 4, z = 6. If (P1 ∪ P2) ∩ Q = ∅ then

(H, a, b, c) contains (O12, 2, 1, 3) as a rooted minor with signature (4, 5, 6)→֒(4, 5, 6).

If P2 ∩Q 6= ∅ then let x ∈ V (P2∩Q), in which case (H, a, b, c) contains (O2, 1, 2, 3) as

a rooted minor with signature (4, 5, 6)→֒(4, 5, x). So finally assume that P2 ∩Q = ∅,

P1 ∩Q 6= ∅ then let x ∈ V (P1 ∩Q), in which case (H, a, b, c) contains (O13, 1, 2, 3) as

a rooted minor with signature (4, 5, 6, 7, 8)→֒(6, x, 5, 7, 4).

In the second possibility, i.e. u, w, v, z belong to the disk 1562, since the cross

is solid and free, we may assume that u ∈ seg(1, 5), v ∈ seg(5, 6] ∪ seg(2, 6], w ∈

seg(1, 5] ∪ seg[5, 6) and z ∈ seg[2, 6). Let we assume 8 = u ∈ seg(1, 5). If v ∈

seg(2, 6), or w ∈ seg(1, 5) then the same argument presented in Case 2.5 in the proof

of Lemma 4.1.3 where the roles of a and c are switched shows that (H, a, b, c) contains

(O5, 3, 2, 1) or (O18, 3, 2, 1) as a rooted minor, respectively. So we may assume that

v ∈ seg(5, 6] and w ∈ seg[5, 6). Because we are going to show that (H, a, b, c) contains

either (O2, 1, 2, 3), (O5, 2, 3, 1) or (O17, 1, 2, 3) as a rooted minor, we can assume that

v = 6, w = 5 and z = 2. If (P1 ∪ P2) ∩ Q = ∅ then (H, a, b, c) contains (O17, 1, 2, 3)
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as a rooted minor with signature (4, 5, 6, 7, 8)→֒(7, 8, 4, 5, 6). If P1 ∩ Q 6= ∅ then let

x ∈ P1∩Q, it is easy to see that by contracting the edges 58 and 46, (H, a, b, c) contains

(O5, 2, 3, 1) as a rooted minor with signature (4, 5, 6, 7)→֒(x, 5, 8, 4). If P2 ∩ Q 6= ∅

then let x ∈ P2∩Q, it is easy to see that by contracting the edges 28 and 26, (H, a, b, c)

contains (O2, 1, 2, 3) as a rooted minor with signature (4, 5, 6)→֒(8, 4, x). Finally, if

P1∩P2∩Q 6= ∅ then P1∪P2∪Q contains a 1-blocking connected cross, so as Case 2.3

in this lemma implies, (H, a, b, c) contains (O5, 2, 3, 1) as a rooted minor.

Case 2.5 The outcome (vi) of Theorem 3.0.17 holds, i.e. there exists a double facial

S ′-cross.

Let (P, P1, P2) be the double facial S-cross where P has an end at 1 and the other

end at u ∈ seg[2, 6], P1 has one end at u1 ∈ seg(1, 5] ∪ seg[5, 6) and the other end at

v1 ∈ seg[2, 6), P2 has one end at u2 ∈ seg(1, 4] ∪ seg[4, 6) and the other end at v2 ∈

seg[2, 6). Because we are going to show that (H, a, b, c) contains either (O2, 1, 2, 3),

(O5, 3, 1, 2) or (O15, 3, 2, 1) as a rooted minor, by possibly switching the role of P

and Q, we can assume that u = 6, v1 = v2 = 2, u1 = 5 and u2 = 4. If (P1 ∪ P2 ∪

P ) ∩ Q = ∅ then (H, a, b, c) contains (O15, 3, 2, 1) as a rooted minor with signature

(4, 5, 6, 7)→֒(4, 7, 6, 5). If (P1 ∪ P2) ∩ Q 6= ∅ and P ∩ Q 6= ∅ then by symmetry

between P1, P2, assume that P1 ∩ Q 6= ∅ and P ∩ Q 6= ∅ in which case P1 ∪ P ∪ Q

contains a 1-blocking cross, so by Case 2.3, (H, a, b, c) contains (O5, 2, 3, 1) as a rooted

minor. Therefore by symmetry between P1, P2, either P1 ∩ Q = ∅ or P ∩ Q = ∅. If

P ∩ Q = ∅ and x ∈ P1 ∩ Q then by contracting the edge 27, (H, a, b, c) contains

(O2, 1, 2, 3) as a rooted minor with signature (4, 5, 6)→֒(5, 6, x). Finally, if P1∩Q = ∅

and x ∈ P ∩Q then (H, a, b, c) contains (O15, 3, 2, 1) as a rooted minor with signature

(4, 5, 6, 7)→֒(4, 7, 6, 5).

Case 2.6 The outcome (vii) of Theorem 3.0.17 holds, i.e. there exists a blocking

interlaced S-fork of type I.

This case is similar to Case 2.7 in the proof of Lemma 4.1.3 where roles of a and c
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are switched, so (H, a, b, c) contains (O15, 3, 2, 1) as a rooted minor.

Case 2.7 The outcome (viii) of Theorem 3.0.17 holds, i.e. there exists an essential

S ′-triad with one feet on c.

Let (P1, P2, P3) be an essential triad with center 8 and feet on v1, v2, 1, respectively.

Note that v1, v2 ∈ seg(2, 4) ∪ seg(3, 4) ∪ seg(2, 5) ∪ seg(3, 5) and there is a symmetry

between 1, 4, v1 and 2, 5, v2, respectively. By considering these symmetries, we analyze

the following two possible outcomes: First, if v1 ∈ seg[2, 4), v2 ∈ seg[3, 4) in which case

(H, a, b, c) contains (O2, 1, 2, 3) as a rooted minor with signature (4, 5, 6)→֒(4, 5, 8).

Second, if v1 ∈ seg(1, 4], v2 ∈ seg(1, 5] since we are going to show that either

(H, a, b, c) contains (O5, 2, 1, 3) or (O13, 1, 2, 3), we assume that v1 = 4, v2 = 5. If

(P1 ∪ P2 ∪ P3) ∩ Q = ∅ then (H, a, b, c) contains (O5, 2, 1, 3) as a rooted minor with

signature (4, 5, 6, 7)→֒(4, 5, 6, 7). If (P1 ∪ P2 ∪ P3) ∩ Q 6= ∅ then since we are going

to show that (H, a, b, c) contains (O13, 1, 2, 3) as a rooted minor, we can assume that

8 ∈ V (Q), in which case the signature (4, 5, 6, 7, 8)→֒(6, 8, 5, 7, 4) is the proof of the

claim.

Case 3 (G, a, b, c) contains (O4, 1, 2, 3) or (O4, 2, 1, 3) as a rooted subdivision.

If (G, a, b, c) contains (O4, 2, 1, 3) as a rooted subdivision then there is nothing to

prove. So we assume that (G, a, b, c) contains (O4, 1, 2, 3) as a rooted subdivision. Let

(K∗
2,3, 1, 2, 3) be a rooted graph obtained from (K ′

2,3, 1, 2, 3) by adding the edge 45.

Note that in this case (H, a, b, c) contains (K∗
2,3, 1, 2, 3) as a rooted minor. Moreover

there exists a path Q from 1 to vertex 6 in (H, a, b, c).

Let J be the multigraph obtained from (K∗
2,3, 1, 2, 3) by adding the two parallel

13 edges and two parallel 21 edges . Let C = {134, 135, 1462, 1562, 345, 456, 131,

121} be a double cycle cover for J . It is easy to see that C is a 1-disk system, and

(H, a, b, c) contains a (J, 1, 2, 3)-subdivision, called S, as a subgraph. It is easy to

see that H, J, S, C satisfy conditions of Theorem 3.0.17. So one of the outcomes of
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Theorem 3.0.17 holds. Similarly to Case 2 in Lemma 4.1.3, (xi), (x), (ix) and (iv) of

Theorem 3.0.17 do not hold. Moreover (viii) of Theorem 3.0.17 does not hold. Now,

we are going to analyze the other outcomes, i.e., (i), (ii), (iii), (v), (vi) and (vii) of

Theorem 3.0.17.

Case 3.1 The outcome (i) of Theorem 3.0.17 holds, i.e. there exists an S-jump.

Let P be an S-jump with ends w, z, where w ∈ seg(1, 4) ∪ seg(1, 5) ∪ seg[2, 6] and

z ∈ seg(3, 5]∪ seg(3, 4]∪ seg[4, 6)∪ seg[5, 6)∪ seg(5, 4). We consider two possibilities.

First assume that w ∈ seg(1, 5) and z ∈ seg(1, 4]∪seg(3, 4]∪seg[4, 6)∪seg(4, 5). If

w = 1 and z ∈ seg(4, 5), in which case either P ∩Q = ∅ implying (H, a, b, c) contains

(O5, 2, 1, 3) as a rooted minor with signature (4, 5, 6, 7)→֒(4, 5, z, 6), or P ∩ Q 6= ∅

implying (H, a, b, c) contains (O15, 3, 1, 2) as a rooted minor by contracting the edge 26

and with signature (4, 5, 6, 7)→֒(5, x, z, 4) where x ∈ P ∩Q. If w ∈ seg(1, 5) then since

we are going to show that (H, a, b, c) contains either (O5, 2, 1, 3) or (O13, 1, 2, 3) as a

rooted minor, we may assume that z = 4. Now, either P ∩Q = ∅ implying (H, a, b, c)

contains (O5, 2, 1, 3) as a rooted minor with signature (4, 5, 6, 7)→֒(4, 5, w, 6), or P ∩

Q 6= ∅ implying (H, a, b, c) contains (O13, 1, 2, 3) as a rooted minor with signature

(4, 5, 6, 7, 8)→֒(5, x, w, 6, 4) where x ∈ P ∩Q.

In the second possibility assume that w ∈ seg[2, 6] and z ∈ seg[3, 4) ∪ seg(4, 5).

If z ∈ seg(4, 5) then since we are going to show that (H, a, b, c) contains either

(O5, 1, 2, 3) or (O13, 1, 2, 3) as a rooted minor, we may assume that w = 2. Now,

either P ∩Q = ∅ implying (H, a, b, c) contains (O5, 1, 2, 3) as a rooted minor with sig-

nature (4, 5, 6, 7)→֒(4, 5, z, 6), or P ∩Q 6= ∅ implying (H, a, b, c) contains (O13, 1, 2, 3)

as a rooted minor with signature (4, 5, 6, 7, 8)→֒(6, z, 4, x, 5), where x ∈ P ∩Q.

Thus by symmetry between 4, 5 assume that z ∈ seg[3, 4). If z ∈ seg(3, 4) then

since we are going to show that (H, a, b, c) contains either (O2, 1, 2, 3) or (O16, 3, 1, 2)

as a rooted minor, we may assume that w = 2. Now, either P ∩ Q = ∅, implying

(H, a, b, c) contains (O16, 3, 1, 2) as a rooted minor with signature (4, 5, 6, 7)→֒(z, 6, 4, 5),
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or P ∩Q 6= ∅, implying (H, a, b, c) contains (O2, 1, 2, 3) as a rooted minor with signa-

ture (4, 5, 6)→֒(4, 5, x) where x ∈ P ∩Q.

So assume that z = 3 and, w = 6 or 2. If w = 6 then either P ∩ Q = ∅ implying

(H, a, b, c) contains (O12, 2, 1, 3) as a rooted minor with signature (4, 5, 6)→֒(4, 5, 6), or

P ∩Q 6= ∅ implying (H, a, b, c) contains (O2, 1, 2, 3) as a rooted minor with signature

(4, 5, 6)→֒(4, 5, x) where x ∈ P∩Q. If w = 2 and P is an edge then (H, a, b, c) contains

(O23, 1, 2, 3) as a rooted minor with signature (4, 5, 6)→֒(4, 5, 6). If P is not an edge

then either P ∩Q 6= ∅ implying (H, a, b, c) contains (O2, 1, 2, 3) as a rooted minor with

signature (4, 5, 6)→֒(4, 5, x) where x ∈ P∩Q, there exists a path P ′ from x ∈ Int(P ) to

y ∈ S∪Q. Note that if y ∈ Q∪seg[2, 6]∪seg[4, 6]∪seg[5, 6]∪seg[4, 5]∪seg[3, 4]∪seg[3, 5]

then in the above case analysis possible outcomes have already been investigated, and

if y ∈ seg[1, 4] ∪ seg[1, 5] then (H, a, b, c) contains (O2, 1, 2, 3) as a rooted minor with

signature (4, 5, 6)→֒(4, 5, x).

Case 3.2 The outcome (ii) of Theorem 3.0.17 holds, i.e. there exists a degenerate

S-cross.

Let (P1, P2, P ) be the degenerate S-cross where 1, u2, v1, v2 are feet of the S-cross and

2, v2, v1, 6 appear on seg[2, 6] in the order listed. Assume u2 ∈ seg(1, 4]∪seg[4, 6), v1 ∈

seg(2, 6]∪seg(4, 6], v2 ∈ seg[2, 6). Assume 8 ∈ V (Int(P1)) is the other end of the path

P .

Because we are going to show that (H, a, b, c) contains (O5, 2, 3, 1) as a rooted

minor, we assume that v1 = 6, u2 = 4, v2 = 2. It is easy to see that (H, a, b, c)

contains (O5, 2, 3, 1) as a rooted minor with signature (4, 5, 6, 7)→֒(4, 6, 7, 5).

Case 3.3 The outcome (iii) of Theorem 3.0.17 holds, i.e. there exists a 1-blocking

S-cross.

This case is similar to Case 2.4 in the proof of Lemma 4.1.3 where the roles of a and

c are switched, so (H, a, b, c) contains (O5, 2, 3, 1) as a rooted minor.

Case 3.4 The outcome (v) of Theorem 3.0.17 holds, i.e. there exists a free solid
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S ′-cross.

Let (P1, P2) be the free solid S-cross with feet u, w, v, z. We consider three possibili-

ties: either the feet of the free cross are on the disk 1426, 345 or 456.

In the first possibility, i.e. u, w, v, z belong to the disk 1462, since (P1, P2) is a

free solid S-cross and we are going to show that (H, a, b, c) contains (O5, 2, 3, 1) as

a rooted minor. We may assume that u ∈ seg(1, 4), v = 6, w = 4 and z = 2. It

is easy to see that (H, a, b, c) contains (O5, 2, 3, 1) as a rooted minor with signature

(4, 5, 6, 7)→֒(4, 6, u, 5).

In the second possibility, i.e. u, w, v, z belong to the disk 345. We are going to

show that (H, a, b, c) contains (O5, 2, 1, 3) as a rooted minor. We assume either u =

3, v ∈ seg(4, 5), w = 5, z ∈ seg(3, 4), or u = 4, v ∈ seg(3, 5), w = 5, z ∈ seg(3, 4) which

both imply that (H, a, b, c) contains (O5, 2, 1, 3) as a rooted minor with signature

(4, 5, 6, 7)→֒(v, z, 5, 4)

In the third possibility, i.e. u, w, v, z belong to the disk 456. We are going to

show that (H, a, b, c) contains (O13, 1, 2, 3) as a rooted minor. We assume either

u = 4, v ∈ seg(5, 6), w = 6, z ∈ seg(4, 5), or u = 5, v ∈ seg(4, 6), w = 4, z ∈ seg(5, 6)

which implies that (H, a, b, c) contains (O13, 1, 2, 3) as a rooted minor with signature

(4, 5, 6, 7, 8)→֒(v, z, 5, 6, 4)

Case 3.5 The outcome (vi) of Theorem 3.0.17 holds, i.e. there exists a double facial

S ′-cross.

Let (P, P1, P2) be the double facial S-cross, where P has an end at 1 and the other

end at u ∈ seg[2, 6], P1 has one end at u1 ∈ seg(1, 5] ∪ seg[5, 6) and the other end

at v1 ∈ seg[2, 6), P2 has one end at u2 ∈ seg(1, 4] ∪ seg[4, 6) and the other end at

v2 ∈ seg[2, 6). Because we are going to show that (H, a, b, c) contains (O12, 3, 2, 1) as

a rooted minor, by possibly switching the role of P and Q, we can assume that u = 6,

v1 = v2 = 2, u1 = 5 and u2 = 4. It is easy to see that (H, a, b, c) contains (O12, 3, 2, 1)

as a rooted minor with signature (4, 5, 6)→֒(4, 6, 5).
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Case 3.6 The outcome (vii) of Theorem 3.0.17 holds, i.e. there exists a blocking

interlaced S-fork of type I.

This case is similar to Case 2.7 in the proof of Lemma 4.1.3 where roles of a and c

are switched, so (H, a, b, c) contains (O15, 3, 2, 1) as a rooted minor.

Case 4 (G, a, b, c) contains (O6, 1, 2, 3) or (O6, 2, 1, 3) as a rooted subdivision.

If (G, a, b, c) contains (O6, 2, 1, 3) as a rooted subdivision then the assertion of the

lemma hold. So assume that (G, a, b, c) contains (O6, 1, 2, 3) as a rooted subdivision.

Note that in this case (H, a, b, c) contains (K ′
2,3, 1, 2, 3). The case analysis presented

in Case 2 of Lemma 4.1.3 where roles of a and c are switched shows that (H, a, b, c)

contains Oi(3, 2, 1) for some i = {3,4,6,8,9,10} as a rooted subdivision, or (H, a, b, c)

contains (O2, 1, 2, 3), (O5, 2, 3, 1), (O5, 3, 2, 1), (O15, 3, 2, 1) or (O18, 3, 2, 1) as a rooted

minor. Because ab is an edge in (G, a, b, c), by applying Lemma 4.2.1, we can say that

(H, a, b, c) contains (O24, 1, 2, 3), (O23, 3, 2, 1), (O26, 2, 1, 3), (O25, 1, 2, 3), (O28, 2, 1, 3)

or (O27, 1, 2, 3) as a rooted minor. Thus to summarize this case (H, a, b, c) contains

either (O2, 1, 2, 3), (O5, 3, 1, 2), (O5, 3, 2, 1), (O15, 3, 2, 1), (O18, 3, 2, 1) (O24, 1, 2, 3),

(O23, 3, 2, 1), (O26, 2, 1, 3), (O25, 1, 2, 3), (O28, 2, 1, 3) or (O27, 1, 2, 3) as a rooted minor.

Case 5 (G, a, b, c) contains (O7, 1, 2, 3) as a rooted subdivision.

Let (K̃2,3, 1, 2, 3) be a rooted graph obtained from (K2,3, 1, 2, 3) by adding the edge 45.

Note that in this case (H, a, b, c) contains (K̃2,3, 1, 2, 3) as a rooted minor. Moreover

there exists an edge from a to vertex b in (H, a, b, c).

Let J be the multigraph obtained from (K̃2,3, 1, 2, 3) by adding the two parallel

13 edges and two parallel 21 edges. Let C = {134, 135, 142, 152, 345, 452, 131,

121} be a double cycle cover for J . It is easy to see that C is a 1-disk system, and

(H, a, b, c) contains a (J, 1, 2, 3)-subdivision, called (S, 1, 2, 3) as a subgraph. It is easy

to see that H, J, S, C satisfy conditions of Theorem 3.0.17. So one of the outcomes of

Theorem 3.0.17 holds. Similarly as Case 1 in Lemma 4.1.3, (ii), (iii), (vi), (vii), (xi),

(x) and (ix) of Theorem 3.0.17 do not hold. Moreover (viii) of Theorem 3.0.17 does

96



not hold. Now, we are going to analyze the other outcomes, i.e., (i), (iv) and (v) of

Theorem 3.0.17.

Case 5.1 The outcome (i) of Theorem 3.0.17 holds, i.e. there exists an S-jump.

Let P be an S-jump with ends w, z, where w ∈ seg[1, 4) ∪ seg[1, 5) ∪ seg[2, 4) and

z ∈ seg[3, 5]∪ seg(3, 4]∪ seg(2, 4]∪ seg(2, 5]∪ seg(5, 4). By symmetry, we consider two

possibilities.

In the first possibility assume, w ∈ seg[1, 4) and z ∈ seg(1, 4]∪seg(3, 4]∪seg[4, 6)∪

seg(4, 5). If w = 1 and z ∈ seg(4, 5), in which case (H, a, b, c) contains (O6, 2, 1, 3) as

a rooted subdivision with signature (4, 5, 6)→֒(4, 5, z). So assume that w ∈ seg(1, 4).

If z ∈ seg(2, 5)∪ seg(3, 5) then (H, a, b, c) contains (O5, 3, 2, 1) as a rooted minor with

signature (4, 5, 6, 7)→֒(5, w, z, 4). If z = 5 then (H, a, b, c) contains (O6, 2, 1, 3) as a

rooted subdivision with signature (4, 5, 6)→֒(4, 5, 6). If z ∈ seg(4, 5) then (H, a, b, c)

contains (O6, 2, 1, 3) as a rooted subdivision with signature (4, 5, 6)→֒(4, 5, z). Finally

if z ∈ seg(1, 5) then (H, a, b, c) contains (O6, 2, 1, 3) as a rooted subdivision with

signature (4, 5, 6)→֒(4, 5, w).

In the second possibility, by symmetry assume that w ∈ seg[2, 4) and z ∈ seg[3, 5).

We start by assuming that z ∈ seg(3, 5). If w ∈ seg(2, 4) in which case (H, a, b, c)

contains (O5, 1, 2, 3) as a rooted minor with signature (4, 5, 6, 7)→֒(4, z, w, 5). If w = 2

then (H, a, b, c) contains (O6, 2, 1, 3) as a rooted subdivision. Thus assume z = 3. If

w = 2 and P is an edge then (H, a, b, c) contains (O11, 2, 1, 3) as a rooted subdivision

with signature (4, 5)→֒(4, 5). If P is not an edge then there exists a path P ′ from

x ∈ Int(P ) to y ∈ S. If y ∈ seg[1, 4) ∪ seg[1, 5), then it is easy to see that (H, a, b, c)

contains (O2, 1, 2, 3) as a rooted minor with signature (4, 5, 6)→֒(4, 5, x). If y = 4

or y = 5, say by symmetry y = 4, then (H, a, b, c) contains (O6, 2, 1, 3) as a rooted

subdivision with signature (4, 5, 6)→֒(5, x, 4). If y ∈ seg(4, 5) then (H, a, b, c) contains

(O15, 1, 2, 3) as a rooted minor with signature (4, 5, 6, 7)→֒(4, x, y, 5). Finally, if y ∈

S \ (seg[1, 4] ∪ seg[1, 5] ∪ seg[4, 5]), the above case analysis has already investigated
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the other possible outcomes.

Case 5.2 The outcome (iv) of Theorem 3.0.17 holds, i.e. there exists weakly free

S-cross anchored at c.

The same argument as presented in Case 1.2 in the proof of Lemma 4.1.3, where the

roles of a and c are switched implies that (H, a, b, c) contains (O5, 2, 3, 1) as a rooted

minor.

Case 5.3 The outcome (v) of Theorem 3.0.17 holds, i.e. there exists a free solid

S ′-cross.

Let (P1, P2) be the free cross with feet u, w, v, z. Since in the following case analysis,

appearance of the edge 12 does not change the results, by symmetry we consider only

one possibility, i.e. the feet of the cross belong to the disk 245.

Since we are going to show that (H, a, b, c) contains (O5, 2, 3, 1) as a rooted minor,

we assume either u = 4, v ∈ seg(2, 5), w = 2, z ∈ seg(4, 5), or u = 5, v ∈ seg(2, 4), w =

4, z ∈ seg(2, 5) which both imply that (H, a, b, c) contains (O5, 2, 3, 1) as a rooted

minor with signature (4, 5, 6, 7)→֒(v, z, 4, 5). Note that in proving the existence of

(O5, 2, 3, 1) as a rooted minor, we did not use the fact that there are edges connecting

terminal vertices this gives us an opportunity to use this case analysis in the future.

Lemma 4.2.3. Let (G, a, b, c) be a 3-connected rooted graph. Let G = (G1, G2) be

an internal separation such that V (G1) ∩ V (G2) = {a, b′, c}, {a, b, c} ⊆ V (G2) and

E(G1) = E(G[V (G1)]). Moreover assume that G1 is isomorphic to K2,3. If (G, a, b, c)

is not ac-planar then (G, a, b, c) contains (Oi, α, 2, γ) for some i ∈ {2, 12, 15, 24},

{α, γ} = {1, 3}, or (O5, 2, 3, 1), (O5, 1, 3, 2), (O26, 2, 1, 3) or (O26, 3, 1, 2) as a rooted

minor.

Proof. Our proof strategy is that in the first step, we determine the lists LS,LM of

rooted graphs such that (G, a, b, c) must contain a member of these lists as a rooted

subdivision or minor, respectively, for not being c-planar. Then, by assuming that
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(G, a, b, c) contains one of the rooted graph in LS as a rooted subdivision, we show

that (G, a, b, c) contains one of the graph listed in the statement of the Lemma as a

rooted subdivision or rooted minor.

The analysis presented in Case 1 of Lemma 4.1.5 shows that LS = {O3(1, 2, 3),

O6(1, 2, 3)} and LM = {(O2, 1, 2, 3), (O5, 1, 3, 2), (O12, 1, 2, 3), (O15, 1, 2, 3), (O15, 2, 1, 3)}.

Let H be the multigraph obtained from (G, a, b, c) by adding two parallel ac edges

and two parallel ab edges.

Now we consider two cases:

Case 1 (G, a, b, c) contains (O3, 1, 2, 3) as a rooted subdivision.

Let J be the multigraph obtained from K ′
2,3 by adding the two parallel 13 edges and

two parallel 12 edges where 1, 2, 3 are terminal, 4, 5 are centers and 6 is the only

neighbor of 2. Let C = {135, 134, 1562, 3465, 1462, 313, 212} be a double cycle cover

for J . It is easy to see that C is a 1-disk system, andH contains a J-subdivision, called

S, as a subgraph where a, b, c correspond to 1, 2, 3, respectively, where b′ correspond

to 6. Note that H, J, S, C satisfy the hypothesis of Theorem 2.2.10, so one of the

outcomes listed in the statement of Theorem 2.2.10 holds. Note that since (G, a, b, c)

actually contains (O3, 1, 2, 3) as a rooted subdivision, there is a path, called Q, from

1 to vertex 7 ∈ seg(2, 6) in H .

Note that since {1, 3, 6} is a vertex cut in H and E(G1) = E(G[V (G1)]), the

outcomes (ii), (iv), (v), (vi), (vii) and (x) of Theorem 2.2.10 do not hold. By applying

Lemma 2.1.3, we can see that (xi) of Theorem 2.2.10 does not hold. Since J is not

isomorphic to K4, (xii) of Theorem 2.2.10 does not hold. Finally since G is not

1-planar, (xiii) of Theorem 2.2.10 does not hold. So either (i), (iii), (viii) or (ix)

holds.

Note that we are going to apply a similar case analysis that we did in Case 1

of Lemma 4.1.5, where the roles of a and c are switched. Note that as Case 1

of Lemma 4.1.5 shows, the occurrence of (iii), (viii), (ix) of Theorem 2.2.10 imply
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that (H, a, b, c) contains either (O2, 1, 2, 3), (O5, 2, 3, 1), (O12, 3, 2, 1), (O15, 3, 2, 1) or

(O15, 3, 1, 2) as a rooted minor. Thus we may assume that (i) of Theorem 2.2.10

holds. Note that since {1, 3, 6} is a vertex cut, the only possible S-jump in H is a

path P from 3 to z ∈ seg[2, 6). If there exists a vertex x ∈ P ∩Int(Q) then (H, a, b, c)

contains (O2, 1, 2, 3) as a rooted subdivision with signature (4, 5, 6)→֒(4, 5, x). So

we assume that P and Q are internally disjoint. If z = 2 then either P is an

edge, in which case (H, a, b, c) contains (O24, 3, 2, 1) as a rooted minor with signa-

ture (4, 5, 6, 7)→֒(4, 5, 6, 7), and if P is not an edge the same analysis presented in

Case 1 of Lemma 4.1.5 shows that (H, a, b, c) contains (O2, 1, 2, 3) as a rooted minor.

Case 2 (G, a, b, c) contains (O6, 1, 2, 3) as a rooted subdivision.

Let H, J, S, C be as defined in the previous case. Note that in this case (G, a, b, c)

contains an edge from a to b, we use this fact when we are identifying some rooted

minors in (G, a, b, c). Similarly as the previous case only (i), (iii), (viii) and (ix) of

Theorem 2.2.10 can occurs where the occurrence of the last three imply that (H, a, b, c)

contains either (O2, 1, 2, 3), O5(2, 3, 1), (O12, 3, 2, 1), (O15, 1, 2, 3) or (O15, 3, 2, 1) as a

rooted minor.

Thus we may assume that (i) of Theorem 2.2.10 holds. Note that since {1, 3, 6}

is a vertex cut, the only possible S-jump in H is a path P from 3 to z ∈ seg[2, 6). If

z ∈ seg(2, 6) then (H, a, b, c) contains (O24, 1, 2, 3) as a rooted minor with signature

(4, 5, 6, 7)→֒(4, 5, 6, z). If z = 2 then either P is an edge, in which case (H, a, b, c)

contains (O26, 2, 1, 3) as a rooted minor with signature (4, 5, 6)→֒(4, 5, 6), and if P

is not an edge the same analysis presented in Case 1 of Lemma 4.1.5 shows that

(H, a, b, c) contains (O2, 1, 2, 3) as a rooted minor.

Lemma 4.2.4. Let (G, a, b, c) be a 3-connected rooted graph. Let G = (G1, G2) be

an internal separation such that V (G1) ∩ V (G2) = {a′, b′, c}, {a, b, c} ⊆ V (G2) and

E(G1) = E(G[V (G1)]). Moreover assume that G1 is isomorphic to K2,3. If (G, a, b, c)

is not c-planar then (G, a, b, c) contains either (O3, α, β, 3) or (O6, α, β), as a rooted
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subdivision or it contains (Oi, α, β, 3) for some i ∈ {2, 5, 12, 15}, or (O25, 3, α, β),

(O5, α, 3, β) as a rooted minor where {α, β} = {1, 2}.

Proof. Proof of this lemma is the same as Case 2 in Lemma 4.1.4.

Lemma 4.2.5. Suppose (G, a, b, c) is not ac-planar. Let G = (G1, G2) be an internal

3-separation such that V (G1) ∩ V (G2) = {a, b′, c′}, {a, b, c} ⊆ V (G2) and E(G1) =

E(G[V (G1)]). Assume (G1, a, b
′, c′) is internally 4-connected rooted not c′-planar but

a-planar rooted graph. Assume b, c 6∈ V (G1) and (G, a, b, c) is a rooted graph such

that V (G) = V (G1) ∪ {b, c}, and (G, a, b, c) is obtained from (G, a, b′, c′) by adding

the edges bb′ and cc′. Then (G, a, b, c) contains (O2, 1, 2, 3), (O5, 2, 1, 3), (O5, 1, 2, 3),

O5, 1, 3, 2), (O2, 1, 3, 2), (O12, 1, 2, 3), (O15, 2, 1, 3), (O15, 1, 2, 3) or (O25, 3, 2, 1) as a

rooted minor.

Proof. Note that there exist paths Pb, Pc which is internally disjoint from G1 and they

connect b′ to b and c′ to c in G, respectively. The proof of this lemma is similar to

the proof of Lemma 4.2.9 and Case 2 in Lemma 4.1.5. Since (G1, a, b
′, c′) is internally

4-connected not c-planar, by applying Lemma 4.1.5, and the fact that (G1, a, b, c
′) is a-

planar, someone can conclude that the rooted graph (G1, a, b
′, c′) contains (Oi, 1, 2, 3)

for some i{1, 3, 4, 6, 7} as a rooted subdivision.

So we consider two cases regarding weather (G1, a, b
′, c′) contains (Oi, 1, 2, 3) for

some i{1, 3, 4, 6, 7} as a rooted subdivision.

Case 1 (G1, a, b
′, c′) contains (O1, 1, 2, 3), (O3, 1, 2, 3), (O4, 1, 2, 3), (O6, 1, 2, 3) as a

rooted subdivision.

By switching the roles of a and c, a similar case analysis presented in Case 2 of

Lemma 4.1.5 shows that (H, a, b, c) contains either (O2, 1, 2, 3), (O5, 2, 1, 3), (O5, 1, 2, 3),

(O12, 1, 2, 3), (O15, 2, 1, 3) or (O25, 3, 2, 1) as a rooted minor.

Case 2 (G1, a, b
′, c′) contains (O7, 1, 2, 3) as a rooted subdivision.
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Let (G∗, 1, 6, 7) be isomorphic to (O7, 1, 6, 7), i.e. we just rename the vertex 3 in

(O7, 1, 2, 3) by 6 in (G∗, 1, 6, 7). Let J be the multigraph obtained from (G∗, 1, 6, 7)

by adding the edge 36 and two parallel 12 edges and two parallel 13 edges where

1, 2, 3 are terminal. Let C = {1375, 1374, 475, 465, 1462, 1562, 121, 131} be a double

cycle cover for J . It is easy to see that C is 1-disk system, and H contains a J-

subdivision, called S, as a subgraph where a, b, c correspond to 1, 2, 3, respectively.

Note that H, J, S, C satisfy the hypothesis of Theorem 2.2.10, so one of the outcomes

listed in the statement of Theorem 2.2.10 holds. Similarly as Case 1, we can see the

only possible outcomes are (i), (iii), (viii) or (ix) of Theorem 2.2.10. Similarly as the

argument presented in Case 1, occurrence of (iii) or (viii) or (ix) of Theorem 2.2.10

lead to the fact that (H, a, b, c) contains either (O2, 1, 2, 3), O5, 1, 3, 2), (O12, 1, 2, 3),

(O15, 1, 2, 3) or (O15, 2, 1, 3) as a rooted minor. So we only focus on analyzing on

occurrence of (i) in Theorem 2.2.10.

Thus, let P be a path from w ∈ seg[2, 6] to z ∈ seg[3, 7]. If w = 6, z = 7

then (H, a, b, c) contains (O14, 1, 2, 3) as a rooted minor. The other possibility for

w and z lead to the same case analysis presented in Case 2 of Lemma 4.1.5 (by

switching the roles of a and c) implying that (H, a, b, c) contains either (O2, 1, 2, 3),

(O5, 2, 1, 3), (O5, 1, 2, 3), (O2, 1, 3, 2), (O12, 1, 2, 3), (O15, 2, 1, 3) or (O25, 3, 2, 1) as a

rooted minor.

Lemma 4.2.6. Let (G1, a
′, b, c) be an internally 4-connected rooted not c-planar but

a′-planar rooted graph. Assume a 6∈ V (G1) and (G, a, b, c) is a rooted graph such that

V (G) = V (G1) ∪ {a}, and (G, a, b, c) is obtained from (G, a′, b, c) by adding the edge

aa′. Then (G, a, b, c) contains (O4, 2, 1, 3) or (O8, 2, 1, 3) as a rooted subdivision, or

it contains either (O5, 1, 2, 3) or (O14, 3, 1, 2) as a rooted minor.

Lemma 4.2.7. Let (G1, a
′, b′, c) be an internally 4-connected rooted not c-planar.

Assume a, b 6∈ V (G1) and (G, a, b, c) is a rooted graph such that V (G) = V (G1)∪{a, b},

and (G, a, b, c) is obtained from (G, a′, b′, c) by adding the edge aa′ and bb′ . Then
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(G, a, b, c) contains (O2, 1, 2, 3), (O5, 1, 2, 3), (O13, 1, 2, 3) or (O14, 3, 2, 1) which are

listed in Figure 1.5 as a rooted minor.

Lemma 4.2.8. Suppose (G, a, b, c) is not ac-planar. Let G = (G1, G2) be an in-

ternal 3-separation such that V (G1) ∩ V (G2) = {a, b′, c}, {a, b, c} ⊆ V (G2) and

E(G1) = E(G[V (G1)]). Assume (G1, a, b
′, c) is internally 4-connected not c-planar but

a-planar. Then (G, a, b, c) contains (O2, 1, 2, 3), (O5, 2, 3, 1), (O5, 3, 1, 2), (O12, 3, 2, 1),

(O12, 2, 1, 3), (O15, 3, 1, 2), (O15, 2, 1, 3), (O23, 1, 2, 3), (O24, 3, 2, 1) , (O25, 1, 2, 3) as a

rooted minor.

Proof. Note that there exists a path Pb which is internally disjoint from G1 and it

connects b′ to b in G. Since (G1, a, b
′, c) is internally 4-connected not c-planar, then

by Lemma 4.1.5, and the fact that (G1, a, b
′, c) is a-planar, someone can conclude that

the rooted graph (G1, a, b
′, c) contains (Oi, 1, 2, 3) for some i = 1, 3, 4, 6, 7 as a rooted

subdivision.

So we consider five cases regarding whether (G1, a, b, c
′) contains (Oi, 1, 2, 3) for

some i ∈ {1, 3, 4, 6, 7} as a rooted subdivision.

Case 1 (G1, a, b, c
′) contains (O1, 1, 2, 3) as a rooted subdivisions.

Let (G∗, 1, 7, 3) be isomorphic to (O1, 1, 2, 3), i.e. we just rename the vertex 2 in

(O1, 1, 2, 3) by 7 in (G∗, 1, 7, 3). Let J be the multigraph obtained from (G∗, 1, 7, 3)

by adding the edge 27 and two parallel 12 edges and two parallel 13 edges where

1, 2, 3 are terminal. Let C = {3651, 3641, 4657, 1572, 1472, 121, 131} be a double

cycle cover for J . It is easy to see that C is 1-disk system, and H contains a J-

subdivision, called S, as a subgraph where a, b, c correspond to 1, 2, 3, respectively.

Note that H, J, S, C satisfy the hypothesis of Theorem 2.2.10, so one of the outcomes

listed in the statement of Theorem 2.2.10 holds. Note that since {1, 3, 7} is a vertex

cut in H and E(G1) = E(G[V (G1)]), the outcomes (ii), (iv), (v), (vi), (vii) and (x)

of Theorem 2.2.10 do not hold. By applying Lemma 2.1.3, we can see that (xi) of

103



Theorem 2.2.10 does not hold. Since J is not isomorphic toK4, (xii) of Theorem 2.2.10

does not hold. Finally since G is not 1-planar, (xiii) of Theorem 2.2.10 does not hold.

So either (i), (iii), (viii) or (ix) holds.

If (i) of Theorem 2.2.10 holds, i.e, there exists a path P from w ∈ seg[2, 7) to 3.

If w ∈ seg(2, 7] then since we are going to show that (H, a, b, c) contains (O5, 3, 1, 2)

as a rooted minor, we may assume that w = 7. Then it is easy to see that (H, a, b, c)

contains (O5, 3, 1, 2) as a rooted minor with signature (4, 5, 6, 7)→֒(4, 5, 6, 7). If w =

2 and P is an edge then (H, a, b, c) contains (O25, 1, 3, 2) as a rooted minor with

signature (4, 5, 6, 7)→֒(4, 5, 6, 7), and if P is not an edge then there exists a path P ′

from x ∈ Int(P ) to y ∈ S. Since {1, 3, 7} is a cut set, y ∈ seg(2, 7) which implies

that (H, a, b, c) contains (O5, 3, 1, 2) as a rooted minor as before.

If (iii) or (viii) or (ix) of Theorem 2.2.10 holds, by contracting the edge 67, H con-

tains either (O2, 1, 2, 3), (O5, 2, 3, 1), (O12, 3, 2, 1) or (O15, 3, 1, 2) as a rooted minor,

the case analysis is exactly the same as Case 2 in Lemma 4.1.5 by switching the roles

of a and c.

Case 2 (G1, a, b
′, c) contains (O3, 1, 2, 3) as a rooted subdivision.

Let (G∗, 1, 8, 3) be isomorphic to (K ′
2,3, 1, 2, 3), i.e. we just rename the vertex 2 in

(K ′
2,3, 1, 2, 3) by 8 in (G∗, 1, 8, 3). Let J be the multigraph obtained from (G∗, 1, 8, 3)

by adding the edge 28 and two parallel 12 edges and two parallel 13 edges where 1, 2, 3

are terminal. Let C = {351, 341, 4653, 15682, 14682, 121, 131} be a double cycle

cover for J . It is easy to see that C is 1-disk system, and H contains a J-subdivision,

called S, as a subgraph where a, b, c correspond to 1, 2, 3, respectively. Note that there

exists an edge in (H, a, b, c) from vertex 1 to a vertex in seg(6, 8), called 7. It is easy

to see that H, J, S, C satisfy the hypothesis of Theorem 2.2.10, so one of the outcomes

listed in the statement of Theorem 2.2.10 holds. Similarly as Case 1, we just analyzed

the occurrence of (i) of Theorem 2.2.10, since either the other outcomes do not hold
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or they lead to existence of (O2, 1, 2, 3), (O5, 2, 3, 1), (O12, 3, 2, 1) or (O15, 3, 1, 2) as a

rooted minor in (H, a, b, c)

If (i) of Theorem 2.2.10 holds, i.e, there exists a path P from w ∈ seg[2, 8]

to 3. If w ∈ seg(2, 8] then since we are going to show that (H, a, b, c) contains

(O15, 2, 1, 3) as a rooted minor, we may assume that w = 8. Then it is easy to see

that by contracting the edge 78, (H, a, b, c) contains (O15, 2, 1, 3) as a rooted minor

with signature (4, 5, 6, 7)→֒(4, 5, 6, 7). If w = 2 and P is an edge then by contract-

ing the edge 78, (H, a, b, c) contains (O24, 3, 2, 1) as a rooted minor with signature

(4, 5, 6, 7)→֒(4, 5, 6, 7), and if P is not an edge then there exists a path P ′ from

x ∈ Int(P ) to y ∈ S. Since {1, 3, 8} is a cut set, y ∈ seg(2, 8) which implies that

(H, a, b, c) contains (O15, 2, 1, 3) as a rooted minor as before.

Case 3 (G1, a, b
′, c) contains (O4, 1, 2, 3) as a rooted subdivision.

Let (G∗, 1, 7, 3) be isomorphic to (O4, 1, 2, 3), i.e. we just rename the vertex 2 in

(O4, 1, 2, 3) by 7 in (G∗, 1, 7, 3). Let J be the multigraph obtained from (G∗, 1, 7, 3)

by removing the edge 16 and adding the edge 27 and two parallel 12 edges and two

parallel 13 edges. Let C = {351, 341, 345, 456, 15672, 14672, 121, 131} be a double

cycle cover for J . It is easy to see that C is 1-disk system, and H contains a J-

subdivision, called S, as a subgraph where a, b, c correspond to 1, 2, 3, respectively.

Note that there exists an edge in (H, a, b, c) from vertex 1 to a vertex in 6. Remember,

we remove the edge 16 from J , just to make H, J, S, C satisfying the hypothesis of

Theorem 2.2.10. So one of the outcomes listed in the statement of Theorem 2.2.10

holds. Similarly as Case 1, we just analyzed the occurrence of (i) of Theorem 2.2.10,

since the other outcomes either do not hold or they lead to existence of (O2, 1, 2, 3),

(O5, 2, 3, 1), (O12, 3, 2, 1) or (O15, 3, 1, 2) as a rooted minor in (H, a, b, c)

If (i) of Theorem 2.2.10 holds, i.e, there exists a path P from w ∈ seg[2, 7] to 3.

If w ∈ seg(2, 7] then since we are going to show that (H, a, b, c) contains (O12, 2, 1, 3)
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as a rooted minor, we may assume that w = 7. Then it is easy to see that by

contracting the edge 67, (H, a, b, c) contains (O12, 2, 1, 3) as a rooted minor with sig-

nature (4, 5, 6)→֒(4, 5, 6). If w = 2 and P is an edge then by contracting the edge 67,

(H, a, b, c) contains (O23, 1, 2, 3) as a rooted minor with signature (4, 5, 6)→֒(4, 5, 6),

and if P is not an edge then there exists a path P ′ from x ∈ Int(P ) to y ∈ S. Since

{1, 3, 7} is a cut set, y ∈ seg(2, 7) which implies that (H, a, b, c) contains (O12, 2, 1, 3)

as a rooted minor as before.

Case 4 (G1, a, b
′, c) contains (O6, 1, 2, 3) as a rooted subdivision.

Let (G∗, 1, 7, 3) be isomorphic to (K ′
2,3, 1, 2, 3), i.e. we just rename the vertex 2 in

(K ′
2,3, 1, 2, 3) by 7 in (G∗, 1, 7, 3). Let J be the multigraph obtained from (G∗, 1, 7, 3)

by adding the edge 27 and two parallel 12 edges and two parallel 13 edges where 1, 2, 3

are terminal. Let C = {351, 341, 3456, 15672, 14672, 121, 131} be a double cycle

cover for J . It is easy to see that C is 1-disk system, and H contains a J-subdivision,

called S, as a subgraph where a, b, c correspond to 1, 2, 3, respectively. Note that

there exists an edge in (H, a, b, c) from vertex 1 to a vertex in 7. It is easy to see that

H, J, S, C satisfying the hypothesis of Theorem 2.2.10. So one of the outcomes listed

in the statement of Theorem 2.2.10 holds. Similarly as Case 1, we just analyzed the

occurrence of (i) of Theorem 2.2.10, since the other outcomes either do not hold or

they lead to existence of (O2, 1, 2, 3), (O5, 2, 3, 1), (O12, 3, 2, 1) or (O15, 3, 1, 2) as a

rooted minor in (H, a, b, c).

If (i) of Theorem 2.2.10 holds, i.e, there exists a path P from w ∈ seg[2, 7] to 3.

If w ∈ seg(2, 7] then since we are going to show that (H, a, b, c) contains (O15, 2, 1, 3)

as a rooted minor, we may assume that w = 7. Then it is easy to see that (H, a, b, c)

contains (O15, 2, 1, 3) as a rooted minor with signature (4, 5, 6, 7)→֒(4, 5, 6, 7). If w =

2 and P is an edge then (H, a, b, c) contains (O24, 3, 2, 1) as a rooted minor with

signature (4, 5, 6, 7)→֒(4, 5, 6, 7), and if P is not an edge then there exists a path P ′
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from x ∈ Int(P ) to y ∈ S. Since {1, 3, 7} is a cut set, y ∈ seg(2, 7) which implies

that (H, a, b, c) contains (O15, 2, 1, 3) as a rooted minor as before.

Case 5 (G1, a, b
′, c) contains (O7, 1, 2, 3) as a rooted subdivision.

The analysis of this case is the same as Case 3, so (H, a, b, c) contains (O2, 1, 2, 3),

(O5, 2, 3, 1), (O12, 3, 2, 1), (O15, 3, 1, 2), (O12, 2, 1, 3) (O23, 1, 2, 3) as a rooted minor.

Lemma 4.2.9. Suppose (G, a, b, c) is not ac-planar. Let G = (G1, G2) be an internal

3-separation such that V (G1) ∩ V (G2) = {a, b, c′}, {a, b, c} ⊆ V (G2) and E(G1) =

E(G[V (G1)]). Assume (G1, a, b, c
′) is internally 4-connected not c′-planar but a-

planar. Then (G, a, b, c) contains (O3, 2, 1, 3), (O4, 2, 1, 3), (O6, 2, 1, 3) as a rooted

subdivision or it contains either (O2, 1, 2, 3), (O5, 2, 1, 3), (O5, 3, 2, 1), (O5, 3, 1, 2),

(O12, 3, 1, 2), (O15, 3, 2, 1), (O15, 3, 1, 2), or (O25, 1, 3, 2) as a rooted minor.

Proof. Note that there exists a path Pc which is internally disjoint from (G1, a, b, c
′)

and it connects c′ to c in G. Since (G1, a, b, c
′) is internally 4-connected not c-planar,

then by Lemma 4.1.5, and the fact that (G1, a, b, c
′) is a-planar, we can conclude

that the rooted graph (G1, a, b, c
′) contains (Oi, 1, 2, 3) for some i = {1, 3, 4, 6, 7} as a

rooted subdivision.

So we consider five cases regarding weather (G1, a, b, c
′) contains (Oi, 1, 2, 3) for

some i = {1, 3, 4, 6, 7} as a rooted subdivision.

Case 1 (G1, a, b, c
′) contains (O1, 1, 2, 3) as a rooted subdivision.

Let (G∗, 1, 2, 7) be isomorphic to (O1, 1, 2, 3), i.e. we just rename the vertex 3 in

(O1, 1, 2, 3) by 7 in (G∗, 1, 2, 7). Let J be the multigraph obtained from (G∗, 1, 2, 7)

by adding the edge 37 and two parallel 12 edges and two parallel 13 edges where

1, 2, 3 are terminal. Let C = {241, 251, 14673, 15673, 2465, 131, 121} be a double
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cycle cover for J . It is easy to see that C is 1-disk system, and H contains a J-

subdivision, called S, as a subgraph where a, b, c correspond to 1, 2, 3, respectively.

Note that H, J, S, C satisfy the hypothesis of Theorem 2.2.10, so one of the outcomes

listed in the statement of Theorem 2.2.10 holds. Note that since {1, 2, 7} is a vertex

cut in H and E(G1) = E(G[V (G1)]), the outcomes (ii), (iv), (v), (vi), (vii) and (x)

of Theorem 2.2.10 do not hold. By applying Lemma 2.1.3, we can see that (xi) of

Theorem 2.2.10 does not hold. Since J is not isomorphic toK4, (xii) of Theorem 2.2.10

does not hold. Finally since G is not 1-planar, (xiii) of Theorem 2.2.10 does not hold.

So either (i), (iii), (viii) or (ix) holds.

If (i) of Theorem 2.2.10 holds, i.e, there exists a path P from w ∈ seg[3, 7) to 2. If

w ∈ seg(3, 7) then (H, a, b, c) contains (O3, 3, 1, 2) as a rooted subdivision. If w = 3

and P is an edge then (H, a, b, c) contains (O6, 3, 1, 2) as a rooted subdivision with

signature (4, 5, 6)→֒(4, 5, 6), and if P is not an edge then there exists a path P ′ from

x ∈ Int(P ) to y ∈ S. Since {1, 2, 7} is a cut set, y ∈ seg(3, 7) which implies that

(H, a, b, c) contains (O3, 3, 1, 2) as a rooted subdivision as before.

If (iii) or (viii) or (ix) of Theorem 2.2.10 holds, by contracting the edge 67, H

contains either (O2, 1, 2, 3), (O5, 2, 1, 3), (O15, 3, 2, 1), (O15, 3, 1, 2) or (O12, 3, 1, 2) as

a rooted minor. The case analysis is exactly the same as Case 1 in Lemma 4.1.5

where a, b, c play the roles of c, a, b, respectively, in Case 1 in Lemma 4.1.5.

Case 2 (G1, a, b, c
′) contains (O3, 1, 2, 3), (O4, 1, 2, 3) or (O6, 1, 2, 3) as a rooted sub-

division.

Similarly as Case 2 in Lemma 4.1.5, (H, a, b, c) contains either (O2, 1, 2, 3), (O5, 3, 2, 1),

(O5, 3, 1, 2), (O5, 2, 1, 3), (O12, 3, 1, 2), (O15, 3, 2, 1) or (O25, 1, 3, 2), as a rooted minor.

Note that a, b, c play the roles of c, a, b, respectively, in Case 2 in Lemma 4.1.5.

Case 3 (G1, a, b, c
′) contains (O7, 1, 2, 3) as a rooted subdivision.

Let (G∗, 1, 2, 6) be isomorphic to (O7, 1, 2, 3), i.e. we just rename the vertex 3 in
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(O7, 1, 2, 3) by 6 in (G∗, 1, 2, 6). Let J be the multigraph obtained from (G∗, 1, 2, 7) by

adding the edge 36 and two parallel 12 edges and two parallel 13 edges where 1, 2, 3

are terminal. Let C = {125, 142, 245, 456, 1463, 1563} be a double cycle cover for J .

It is easy to see that C is 1-disk system, and H contains a J-subdivision, called S, as

a subgraph where a, b, c correspond to 1, 2, 3, respectively. Note that H, J, S, C satisfy

the hypothesis of Theorem 2.2.10, so one of the outcomes listed in the statement of

Theorem 2.2.10 holds. Similarly as Case 1, we can see the only possible outcomes are

(i), (iii), (viii) or (ix) of Theorem 2.2.10. Similarly as the argument presented in Case 1

occurrence of (iii) or (viii) or (ix) of Theorem 2.2.10 lead to the fact that (H, a, b, c)

contains either (O2, 1, 2, 3), (O5, 2, 1, 3), (O15, 3, 2, 1), (O15, 3, 1, 2) or (O12, 3, 1, 2) as

a rooted minor. So we only focus on analyzing on occurrence of (i) in Theorem 2.2.10.

Thus, let P be a path from w ∈ seg[3, 6] to 2. If w ∈ seg(3, 6) then (H, a, b, c)

contains (O3, 3, 1, 2) as a rooted subdivision. If w = 6 then (H, a, b, c) contains

(O4, 3, 1, 2) as a rooted subdivision with signature (4, 5, 6)→֒(4, 5, 6). If w = 3 and P

is an edge then (H, a, b, c) contains (O6, 3, 1, 2) as a rooted subdivision with signature

(4, 5, 6)→֒(4, 5, 6), and if P is not an edge then there exists a path P ′ from x ∈ Int(P )

to y ∈ S. Since {1, 2, 6} is a cut set, y ∈ seg(3, 6] which implies that (H, a, b, c)

contains either (O3, 3, 1, 2) or (O4, 3, 1, 2) as a rooted subdivision as before.

Theorem 4.2.10. Let (G, a, b, c) be a 3-connected rooted graph. If (G, a, b, c) is minor

minimal not ac-planar rooted graph then (G, a, b, c) contains contains (Oi, β, 1, γ) for

some i ∈ {3, 4, 6, 8, 9, 10, 11}, {β, γ} = {2, 3} as a rooted subdivision or G contains

(Oj , β, 1, γ) for some j ∈ {2, 5, 12, 13, 15, 16, 24, 26, 28}, {β, γ} = {2, 3} or

(Ok, α, 2, γ) for some k ∈ {5, 12, 14, 15, 16, 17, 18, 19, 23, 24, 25, 27}, {α, γ} =

{1, 3}, or (Oℓ, α, 3, β) for some ℓ ∈ {5, 25}, {α, β} = {1, 2} as a rooted minor. These

are listed in Figure 1.4 and 1.5 as a rooted minor.

Proof. The proof strategy is similar to the one presented in the proof of Lemma 4.1.6.

We consider two cases, either (G, a, b, c) is internally 4-connected or it is not internally
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4-connected. If (G, a, b, c) is internally 4-connected then by Lemma 4.2.2, (G, a, b, c)

contains (Oi, β, 1, γ) for some i ∈ {3, 4, 6, 8, 9, 10,11}, {β, γ} = {2, 3} as a rooted

subdivision or G contains (Oj , β, 1, γ) for some j ∈ {2, 5, 12, 13, 15, 16, 24, 26, 28},

{β, γ} = {2, 3} or (Ok, α, 2, γ) for some k ∈ {5, 12, 15, 16, 17, 18, 19, 23, 24, 25, 27},

{α, γ} = {1, 3}, or (O5, 2, 3, 1) as a rooted minor.

So assume that (G, a, b, c) is not internally 4-connected. Let G = (G1, G2) be an

internal 3-separation in G such that V (G1)∩V (G2) = {a′, b′, c′} and {a, b, c} ⊂ V (G1)

and the number of vertices ofG1 is as small as possible. SinceH is 3-connected we may

assume there exist three disjoint paths Pa, Pb, Pc in G1 connecting a, b, c to a′, b′, c′,

respectively. The same argument presented in the proof of Lemma 4.1.6 shows that

G1 contains a double fork with feet on a′, b′, c′. If c 6= c′ and a 6= a′ then it is easy to

see that (G, a, b, c) contains either (O8, 2, 1, 3) as a rooted subdivision or (G, a, b, c)

contains (O13, 1, 2, 3) as a rooted minor. So from now on, we may assume either c = c′

or a = a′, but for preserving symmetry, we do not specify which one until we need

them.

By symmetry, we consider three main cases, either (G1, a
′, b′, c′) is not a′c′-planar,

(G1, a
′, b′, c′) is not c′-planar but it is a′-planar, or (G1, a

′, b′, c′) is both a′-planar and

c′-planar.

Case 4 (G1, a
′, b′, c′) is not a′c′-planar.

Here, by symmetry we assume that c = c′. By Lemma 4.2.2, we know that

(G1, a
′, b′, c) contains (Oi, β, 1, γ) for some i ∈ {3, 4, 6, 8, 9, 10,11}, {β, γ} = {2, 3}

as a rooted subdivision or G contains (Oj , β, 1, γ) for some j ∈ {2, 5, 12, 13, 15, 16,

24, 26, 28}, {β, γ} = {2, 3} or (Ok, α, 2, γ) for some k ∈ {5, 12, 15, 16, 17, 18, 19, 23,

24, 25, 27}, {α, γ} = {1, 3}, or (O5, 2, 3, 1) as a rooted minor.

Note that the if a 6= a′ then the fact that (G, a, b, c) is minor minimal not ac-

planar implies that the edges in the path Pa is contractible if and only if there is no
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edge between a′ and c and no edge between a′ and b in (G1, a
′, b′, c). It is easy to see

that none of the graphs listed above have an edge between 2 and 3 or 2 and 1 except

(O6, 2, 1, 3) and (O11, 2, 1, 3) which implies that (G, a, b, c) contains either (O3, 2, 1, 3)

or (O4, 2, 1, 3) as a rooted subdivision.

Thus assume a = a′ and the fact that G 6= G1 implies that b 6= b′. the fact that

(G, a, b, c) is minor minimal not ac-planar implies that the edges in the path Pb is

contractible if and only if there is no edge between b′ and c and no edge between b′

and a in (G1, a, b
′, c). It is easy to see that none of the graphs listed above have an

edge between 1 and 3 or 1 and 2 except (O6, 2, 1, 3), (O11, 2, 1, 3) which implies that

(G, a, b, c) contains either (O5, 1, 2, 3) or (O12, 2, 1, 3) as a rooted minor.

Case 5 (G1, a
′, b′, c′) is not c′-planar but it is a′-planar.

If a 6= a′ then by Lemma 4.2.6 and Lemma 4.2.7, (G1, a, b, c) contains either

(O8, 2, 1, 3), (O4, 2, 1, 3) as a rooted subdivision, or it contains either (O5, 1, 2, 3),

(O13, 1, 2, 3) or (O14, 3, 2, 1) as a rooted minor.

So we assumed that a = a′. Note that by applying Lemma 4.2.8, 4.2.9 or 4.2.5

to the case b 6= b′, c = c′ or b 6= b′, c = c′, or b 6= b′, c 6= c′, respectively, we can

see that (G, a, b, c) contains either (O3, 2, 1, 3), (O4, 2, 1, 3) or (O6, 2, 1, 3) as a rooted

subdivision or it contains either (Oi, 1, 2, 3), (Oj, 1, 3, 2), (Ok, 2, 1, 3), (Oℓ, 2, 3, 1),

(Om, 3, 1, 2), (On, 3, 2, 1) for some i ∈ {2, 5, 12, 15, 23, 25}, j ∈ {2, 5, 25}, k ∈ {5,

12, 15}, ℓ ∈ {2,5}, m ∈ {2, 5, 12, 15}, n ∈ {2, 5, 12, 15, 24, 25} as a rooted minor.

Case 6 (G1, a
′, b′, c′) is c′-planar and a′-planar.

Since (G, a, b, c) is minor minimal not ac-planar, then (G1, a
′, b′, c′) is isomorphic

to (K2,3, 1, 2, 3) where a, b, c correspond to 1, 2, 3. Without loss of generality, assume

c = c′. If a 6= a′ then by switching the roles of a and b in the proof of Lemma 4.1.5

(note that in analyzing both Case 1 and Case 2 in the proof of Lemma 4.1.5, we have
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the assumption of b 6= b′), we infer (G1, a, b, c) contains (O3, 2, 1, 3) or (O6, 2, 1, 3)

as a rooted subdivision or it contains either (O2, 1, 2, 3), (O5, 1, 2, 3), (O5, 2, 1, 3),

(O5, 3, 1, 2), (O12, 2, 1, 3), (O15, 1, 2, 3), (O15, 2, 1, 3) or (O25, 2, 3, 1) as a rooted minor.

So we may assume that a = a′. Because {a, b, c} 6= {a′, b′, c′}, we have b 6= b′.

Now, the rest of the proof is similar to the strategy, we had in Lemma 4.2.2. In the

first step, we determine the lists LS,LM of rooted graphs such that (G, a, b, c) must

contain a member of these lists as a rooted subdivision or minor, respectively, for not

being c-planar. Then, by assuming that (G, a, b, c) contains one of the rooted graph in

LS as a rooted subdivision, we find a list such that (G, a, b, c) must contains a member

of the list as a rooted minor for not being ac-planar. Note that the proof presented

here is slightly different than the proof of Lemma 4.2.2, and difference comes from

the fact that {a, b′, c} is a cut set in (G, a, b, c).

Now by Lemma 4.1.5, LS = {(O3, 1, 2, 3), (O6, 1, 2, 3)} and LM = {(Oi, α, β, 3) :

i = 2, 5, 12, 15, {α, β} = {1, 2}} ∪{(O5, 3, 1, 2), (O5, 3, 2, 1), (O5, 1, 3, 2), (O5, 2, 3, 1)}

∪{(O25, 3, 1, 2), (O25, 3, 2, 1)}, and this finishes the first step. In the second step, we

know that (G, a, b, c) contains either (O3, 1, 2, 3) or (O6, 1, 2, 3) as a subdivision, where

{1, 3, 6} is a cut set in (G, a, b, c). Note that the vertex 6 in (O3, 1, 2, 3) or (O6, 1, 2, 3)

corresponds to vertex b′ in (G, a, b, c).

Assume (G, a, b, c) contains (O3, 1, 2, 3) as a rooted subdivision. Let J be the

multigraph obtained from (K ′
2,3, 1, 2, 3) by adding the two parallel 13 edges and two

parallel 21 edges . Let C = {134, 135, 1562, 1462, 3564, 131, 121} be a double cycle

cover for J . It is easy to see that C is a 1-disk system, and (H, a, b, c) contains a

(J, 1, 2, 3)-subdivision, called S, as a subgraph. It is easy to see that H, J, S, C satisfy

conditions of Theorem 2.2.10. So one of the outcomes listed in the statement of

Theorem 2.2.10 holds. Moreover, (G, a, b, c) contains an edge Q from 1 to vertex

7 ∈ seg(2, 6). Since {1, 3, 6} is a cut set, similarly as Lemma 4.1.5, we can see the

only possible outcomes are (i), (iii), (viii) or (ix) of Theorem 2.2.10. Note that by
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switching the role of a and c, as Case 2 of Lemma 4.1.5 shows, the occurrence of

(iii), (viii) or (ix) of Theorem 2.2.10 lead to the fact that (H, a, b, c) contains either

(O2, 1, 2, 3), (O5, 3, 1, 2), (O5, 3, 2, 1), (O5, 2, 3, 1), (O12, 3, 2, 1) or (O15, 3, 1, 2) as a

rooted minor. So we only focus on analyzing on occurrence of (i) in Theorem 2.2.10.

For analyzing on occurrence of (i) in Theorem 2.2.10, we can follow the same

analysis presented in the in the second possibility of Case 2.1 in Lemma 4.2.2 to show

that (G, a, b, c) contains either (O2, 1, 2, 3), (O15, 2, 1, 3) or (O24, 3, 1, 2). Note that

the fact that {1, 3, 6} is a cut set in (G, a, b, c) makes the case analysis presented in

the second possibility of Case 2.1 in Lemma 4.2.2 shorter.

Now assume (G, a, b, c) contains (O6, 1, 2, 3) as a rooted subdivision. Let H, J, S, C

be as defined above. Moreover, (G, a, b, c) contains an edge with one ends at a and

another one at b. So one of the outcomes listed in the statement of Theorem 2.2.10

holds. Since {1, 3, 6} is a cut set, similarly as Lemma 4.1.5, we can see the only

possible outcomes are (i), (iii), (viii) or (ix) of Theorem 2.2.10. Note that by switching

the role of a and c, as Case 2 of Lemma 4.1.5 shows, the occurrence of (iii), (viii)

or (ix) of Theorem 2.2.10 lead to the fact that (H, a, b, c) contains either (O2, 1, 2, 3),

(O5, 3, 1, 2), (O5, 3, 2, 1), (O5, 2, 3, 1), (O12, 3, 2, 1) or (O15, 3, 1, 2) as a rooted minor.

Thus we only focus on analyzing on the occurrence of (i) in Theorem 2.2.10.

Thus, let P be a path from w ∈ seg[2, 6) to z = 3. If w ∈ seg(2, 6) then (G, a, b, c)

contains (O24, 3, 1, 2) as a rooted minor. If w = 2 and P is an edge then (G, a, b, c)

contains (O26, 2, 1, 3) as a rooted minor with signature (4, 5, 6)→֒(4, 5, 6), and if P is

not an edge then there exists a path P ′ from x ∈ Int(P ) to y ∈ S. Since {1, 3, 6} is a

cut set, y ∈ seg(2, 6] which implies that (H, a, b, c) contains (O24, 3, 1, 2) as a rooted

minor as before.

Now the proof of Theorem 1.8.4 follows from Lemma 4.2.2 and Theorem 4.2.10.
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4.3 Obstructions for abc-planarity

Lemma 4.3.1. Let (G1, a, b, c) be an internally 4-connected rooted not ac-planar

graph. Assume b 6∈ V (G1) and (G, a, b, c) is a rooted graph such that V (G) =

V (G1) ∪ {b}, and (G, a, b, c) is obtained from (G, a, b′, c) by adding the edge bb′.

Then (G, a, b, c) contains (Oi, α, β, γ) for some i ∈ {2, 5, 12, 13, 14, 22} where

{α, β, γ} = {1, 2, 3}, as a rooted minor.

Theorem 4.3.2. Let (G, a, b, c) be an internally 4-connected. If (G, a, b, c) is minor

minimal not ac-planar rooted graph then (G, a, b, c) contains (Oi, α, β, γ), i ∈ {2, 5,

12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28} where {α, β, γ} = {1, 2, 3},

as a rooted minor.

Proof. In the proof of this theorem because of the symmetry between a, b, c, we do

not list the order of the root when we are going to show that (G, a, b, c) contains one

of the rooted graph listed in the statement of the theorem as a rooted minor.

Our proof strategy is that in the first step, we determine the lists LS,LM of

rooted graphs such that (G, a, b, c) must contain a member of these lists as a rooted

subdivision or minor, respectively, for not being ac-planar. Then, by assuming that

(G, a, b, c) contains one of the rooted graph in LS as a rooted subdivision, we find the

list of graphs mentioned in the statement of the theorem.

The analysis presented in Lemma 4.2.2 shows that LS = {(Oi, 2, 1, 3) : i =

3, 4, 6, 8, 9, 10, 11} as a rooted subdivision. This completes the first step.

Now we consider the following seven cases:

Case 1 (G, a, b, c) contains (O3, 2, 1, 3) as a rooted subdivision.

The analysis of this case is exactly the same as Case 2 in Lemma 4.2.2 which shows

that (G, a, b, c) contains either O2, O5, O12, O13, O15, O16, O17, O18 or O19 as a

rooted minor.

Case 2 (G, a, b, c) contains (O4, 2, 1, 3) as a rooted subdivision.
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The analysis of this case is exactly the same as Case 3 in Lemma 4.2.2 which shows

that (G, a, b, c) contains either O2, O5, O12, O13, O15, O16 or O23 as a rooted minor.

Case 3 (G, a, b, c) contains (O6, 2, 1, 3) as a rooted subdivision.

The analysis of this case is exactly the same as Case 4 in Lemma 4.2.2 which shows

that (G, a, b, c) contains either O2, O5, O15, O23, O24, O25, O26, O27 or O28 as a

rooted minor.

Case 4 (G, a, b, c) contains (O8, 1, 2, 3) as a rooted subdivision.

The analysis of this case is exactly the same as Case 3 in Lemma 4.1.3 which shows

that (G, a, b, c) contains either O2, O5, O13, O14, O15, O25 or O21 as a rooted minor.

Let the multigraph H be obtained from (G, a, b, c) by adding two parallel ab edges

and two parallel bc edges, if they do not exists.

Case 5 (G, a, b, c) contains (O9, 2, 1, 3) as a rooted subdivision.

Let J be the multigraph obtained from (O9, 1, 2, 3) by adding the two parallel 12

edges and two parallel 23 edges. Let C = {142, 152, 342, 352, 346, 365, 156, 146,

212, 232} be a double cycle cover for J . It is easy to see that C is a 2-disk system,

and (H, a, b, c) contains a (J, 1, 2, 3)-subdivision, called S, as a subgraph. It is easy

to see that H, J, S, C satisfy conditions of Theorem 3.0.17. So one of the outcomes of

Theorem 3.0.17 holds. Similarly as Case 1 in Lemma 4.1.3, (ii), (iii), (vi), (vii), (ix),

(x), (xi) of Theorem 3.0.17 do not hold. Moreover, (iv) and (viii) of Theorem 3.0.17

do not hold. Now, we are going to analysis of other possible outcomes, i.e. (i) and

(v) of Theorem 3.0.17.

Case 5.1 The outcome (i) of Theorem 3.0.17 holds, i.e. there exists an S-jump.

Let P be a path with ends w, z ∈ S. Since we are going to show that (H, a, b, c)

contains either O2, O12, O15 or O28 as a minor, by using symmetry we just have four

possibilities.

In the first possibility, if w = 4, z = 5 then (H, a, b, c) contains O12 as a rooted
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minor with signature (4, 5, 6)→֒(4, 6, 5).

In the second possibility, if w = 2, z = 6 then (H, a, b, c) contains O2 as a rooted

minor with signature (4, 5, 6)→֒(4, 5, 6).

In the third possibility, if w = 1, z ∈ seg(3, 4) then (H, a, b, c) contains O2 as a

rooted minor with signature (4, 5, 6)→֒(5, 6, z).

In the fourth possibility, assume w = 1, z = 3. If P is an edge then (H, a, b, c)

contains O28 as a rooted minor, and if P is not an edge then there is a path P ′ from

x ∈ Int(P ) to y ∈ S. Since we are going to show that (H, a, b, c) contains O2 or O15 as

a rooted minor, we can assume either y = 4, 2 or 6. If y = 4 or y = 2 then (H, a, b, c)

contains O2 as a rooted minor with signature (4, 5, 6)→֒(x, 6, 5), and if y = 6 then

(H, a, b, c) contains O15 as a rooted minor with signature (4, 5, 6, 7)→֒(x, 4, y, 5).

Case 5.2 The outcome (v) of Theorem 3.0.17 holds, i.e. there exists a free solid

S-cross.

Let (P1, P2) be the free cross with feet u, w, v, z. By symmetry, we may assume that

u, w, v, z belong to the disk 146. Now by contracting the edge 56 and applying the

same analysis as presented in Case 5.3 in Lemma 4.2.2 shows that (H, a, b, c) contains

O5 as a rooted minor.

Case 6 (G, a, b, c) contains (O10, 2, 1, 3) as a rooted subdivision.

Let J be the multigraph obtained from (O10, 1, 2, 3) by adding the two parallel

12 edges and two parallel 23 edges. Let C = {2412, 2561, 1476, 3765, 2473, 253,

212, 232} be a double cycle cover for J . It is easy to see that C is a 2-disk system,

and (H, a, b, c) contains a (J, 1, 2, 3)-subdivision, called S, as a subgraph. It is easy

to see that H, J, S, C satisfy conditions of Theorem 3.0.17. So one of the outcomes

of Theorem 3.0.17 holds. Similarly to Case 1 in Lemma 4.1.3, (ii), (iii), (vi), (vii),

(ix), (x), (xi) of Theorem 3.0.17 do not hold. Now, we are going to analysis of other

possible outcomes, i.e. (i), (iv), (v) and (viii) of Theorem 3.0.17.
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Case 6.1 The outcome (i) of Theorem 3.0.17 holds, i.e. there exists an S-jump.

Let P be a path with ends w, z ∈ S. Since we are going to show that (H, a, b, c)

contains either O2, O5, O17, O18 or O27 as a minor, by using symmetry we just have

six possibilities.

In the first possibility, if w ∈ seg(1, 4), z = 5 then by contracting 67, (H, a, b, c)

contains O5 as a rooted minor with signature (4, 5, 6, 7)→֒(4, 5, w, 6).

In the second possibility, if w ∈ seg(1, 4), z = 3 then (H, a, b, c) contains O2 as a

rooted minor with signature (4, 5, 6)→֒(5, 7, w).

In the third possibility, if w = 4, z = 5 then (H, a, b, c) contains O5 as a rooted

minor with signature (4, 5, 6, 7)→֒(5, 7, 6, 4).

In the fourth possibility, if w = 2, z ∈ seg(6, 7) then (H, a, b, c) contains O2 as a

rooted minor with signature (4, 5, 6)→֒(4, 5, z).

In the fifth possibility, if w ∈ seg(2, 4), z = 6 then (H, a, b, c) contains O18 as a

rooted minor with signature (4, 5, 6, 7, 8)→֒(6, 4, 5, w, 7).

In the sixth possibility, assume w = 1, z = 3. If P is an edge then (H, a, b, c)

contains O27 as a rooted minor, and if P is not an edge then there is a path P ′ from

x ∈ Int(P ) to y ∈ S. Since we are going to show that (H, a, b, c) contains O2 or

O16 as a rooted minor, we can assume either y = 2, 4 or 6. If y = 2 then (H, a, b, c)

contains O2 as a rooted minor with signature (4, 5, 6)→֒(4, 5, x), and if y = 4 then by

contracting 24, 67 the rooted graph (H, a, b, c) contains O2 as a rooted minor with

signature (4, 5, 6)→֒(4, 6, x). Finally, if y = 6 then (H, a, b, c) contains O17 as a rooted

minor with signature (4, 5, 6, 7, 8)→֒(8, 7, 5, 4, 6).

Case 6.2 The outcome (iv) of Theorem 3.0.17 holds, i.e. there exists weakly free

S-cross anchored at c.

The analysis of this case is exactly the same as Case 1.2 in Lemma 4.1.3 which shows

that (G, a, b, c) contains O5 as a rooted minor.

Case 6.3 The outcome (v) of Theorem 3.0.17 holds, i.e. there exists a free solid
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S-cross.

Let (P1, P2) be the free cross with feet u, w, v, z. By symmetry either u, w, v, z belong

to the disk 1476, or to the disk 1652.

First, assume that u, w, v, z belong to the disk 1476. Since we are going to

show that (H, a, b, c) contains O5 as a rooted minor, we can assume either u =

4, w ∈ seg(1, 6), v = 6, z = 7 implying (H, a, b, c) contains O5 as a rooted mi-

nor by contracting 56 and with signature (4, 5, 6, 7)→֒(w, 4, 7, 5), or u = 1, w ∈

seg(1, 6), v ∈ seg(6, 7), z = 7 implying (H, a, b, c) contains O5 as a rooted minor

by contracting 47, 56 and with signature (4, 5, 6, 7)→֒(v, w, 5, 4), or u = 1, w = 6, v ∈

seg(6, 7), z = 4 implying (H, a, b, c) contains O5 as a rooted minor with signature

(4, 5, 6, 7)→֒(6, 7, v, 4).

Second, assume that u, w, v, z belong to the disk 1652. Since we are going to

show that (H, a, b, c) contains O2 as a rooted minor, we can assume u = 1, w ∈

seg(1, 5), v = 5, z = 6 implying (H, a, b, c) contains O2 as a rooted minor with signa-

ture (4, 5, 6)→֒(4, 5, 6).

Case 6.4 The outcome (viii) of Theorem 3.0.17 holds, i.e. there exists an essential

S-triad with one feet on c.

Let (P1, P2, P3) be an essential triad with center 0 and feet on v1, v2, 1, respectively.

By considering symmetry and the fact that we are going to show (H, a, b, c) contains

O2,O18 as a rooted minor, we analyze the following possibilities: If v1 = 1, v2 = 7 in

which case (H, a, b, c) contains O2 as a rooted minor with signature (4, 5, 6)→֒(4, 5, 0).

If v1 = 7, v2 = 6 then (H, a, b, c) contains O2 as a rooted minor with signature

(4, 5, 6)→֒(4, 5, 0). If v1 = 4, v2 = 6 then (H, a, b, c) contains O18 as a rooted minor

with signature (4, 5, 6, 7, 8)→֒(6, 4, 5, 0, 7).

Case 7 (G, a, b, c) contains (O11, 2, 1, 3) as a rooted subdivision.

Note that (G, a, b, c) contains (O7, 2, 1, 3) as a subdivision, therefore by applying

118



the same case analysis presented in Case 5 of Lemma 4.2.2, we conclude that (G, a, b, c)

contains either (O6, 1, 2, 3) or (O11, 1, 2, 3) as a rooted subdivision or it contains O2,O5

as a rooted minor, using the fact that (G, a, b, c) also contains the edge bc (Note that

adding the edge bc is equivalent to adding the edge 13 to (O11, 1, 2, 3) and also adding

the edge 13 to (O6, 1, 2, 3)), we can say that (G, a, b, c) contains O26, O20, O2 or O5

as a rooted minor. Note that O26,O20 are obtained from (O6, 2, 1, 3), (O11, 2, 1, 3) by

adding the edge bc, respectively.

Theorem 4.3.3. Let (G, a, b, c) be a 3-connected graph. If (G, a, b, c) is minor mini-

mal not ac-planar rooted graph then (G, a, b, c) contains (Oi, α, β, γ) for some i ∈ {2,

5, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28} where {α, β, γ} = {1, 2, 3},

as a rooted minor. These rooted graphs are listed in Figure 1.5.

Proof. In the proof of this theorem because of the symmetry between a, b, c, we do

not list the order of the root when we are going to show that (G, a, b, c) contains one

of the rooted graph listed in the statement of the theorem as a rooted minor.

The proof strategy is similar to the one presented in the proof of Lemma 4.1.6 and

Theorem 4.2.10. We consider two cases, either (G, a, b, c) is internally 4-connected

or it is not internally 4-connected. If (G, a, b, c) is internally 4-connected then by

Theorem 4.3.2, G contains either O2, O5, O12, O13, O14, O15, O16, O17, O18, O19,

O20, O23, O24, O25, O26, O27 or O28 as a rooted minor.

So assume that (G, a, b, c) is not internally 4-connected. Let G = (G1, G2) be an

internal 3-separation in G such that V (G1)∩V (G2) = {a′, b′, c′} and {a, b, c} ⊂ V (G1)

and the number of vertices ofG1 is as small as possible. SinceH is 3-connected we may

assume there exist three disjoint paths Pa, Pb, Pc in G1 connecting a, b, c to a′, b′, c′,

respectively. The same argument presented in the proof of Lemma 4.1.6 shows that

G1 contains a double fork with feet on a′, b′, c′. If a 6= a′, b 6= b′ and c 6= c′ then it

is easy to see that (G, a, b, c) contains O13 as a rooted minor. So from now on, we

may assume b 6= b′. By symmetry between a, c and a′, c′, respectively, we consider
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the following cases:

• c = c′, a 6= a′ and b 6= b′

If (G1, a
′, b′, c) is not c-planar, then by applying Lemma 4.2.7, we can see that

(G, a, b, c) contains either O2, O5, O13 or O14, as a rooted minor. If (G1, a
′, b′, c)

is c-planar, then by applying a similar argument as presented in Case 2 in the proof

of Lemma 4.1.5, we can infer that (G, a, b, c) contains either O2, O5, O12, O15 or O25

as a rooted minor.

• c = c′, a = a′ and b 6= b′

If (G1, a, b
′, c) is not ac-planar, then by applying Lemma 4.3.1, we can see that

(G, a, b, c) contains either O2, O5, O13, O14, O12 or O22, as a rooted minor. Now,

we consider the possibility that (G1, a, b
′, c) is not c-planar but it is a-planar. Then

by applying Lemma 4.2.8 (G, a, b, c) contains either O2, O5, O12, O15, O23, O24 or

O25 as a rooted minor. Finally, we assume that (G1, a, b
′, c) is c-planar and a-planar

in which case the same argument presented in the second paragraph of Case 6 in

Theorem 4.2.10 is applicable and it shows that (G, a, b, c) contains O5, O2, O12, O15,

O24, O25, O26 as a rooted minor.

Now the proof of Theorem 1.8.5 follows from Theorem 4.3.2 and 4.3.3.
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CHAPTER V

MINOR MINIMAL NON-PROJECTIVE PLANAR

GRAPHS WITH AN INTERNAL 3-SEPARATION

Definition 5.0.4. Let (G1, a, b, c) and (G2, a, b, c) be two rooted graphs, where the

graph induced by the set {a, b, c} in G1 is equal to the graph induced by the set {a, b, c}

in G2. We define G1(a, b, c)+G2(a, b, c) to be the graph obtained from G1(a, b, c) and

G2(a, b, c) by identifying the vertices a, b, c in (G1, a, b, c) with the vertices a, b, c in

(G2, a, b, c). Note that |V (G1(a, b, c)+G2(a, b, c))| = |V (G1(a, b, c))|+|V (G2(a, b, c))|−

3

Lemma 5.0.5. Suppose (G, a, b, c) is minor minimal either not c-, not bc-, or not

abc-planar. Then ab ∈ E(G) if and only if G \ {ab} is c-planar.

Definition 5.0.6. Let (G, a, b, c) be a rooted graph such that {a, b, c} is an indepen-

dent set in G. We say (G, a, b, c) is a-persistent if it is not a-planar and it is not

minor minimal with respect to not the a-planarity property, i.e. there exists an edge

e ∈ E(G, a, b, c) such that by deleting or contracting e, the rooted graph remains not

a-planar.

Definition 5.0.6 will be useful for analyzing the interaction of not ac-planar graphs

with not b-planar graphs. Therefore in the following lemma, we just focus on the list

of not ac-planar graphs.

Lemma 5.0.7. (i) If (G, a, b, c) is isomorphic to one of the graphs (Oi, 2, 1, 3) for

i ∈ {8, 9, 10, 12, 15, 26, 28, 23, 24}, then (G, a, b, c) is a-persistent and it is

c-persistent.
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(ii) If (G, a, b, c) is isomorphic to one of the graphs (O4, 2, 1, 3), (O3, 2, 1, 3) then

(G, a, b, c) is a-persistent and it is not c-persistent.

(iii) If (G, a, b, c) is isomorphic to (O5, 1, 2, 3) or (O5, 2, 1, 3) then (G, a, b, c) is a-

persistent but it is not c-persistent.

Proof. (i) Assume (G, a, b, c) is isomorphic to one of the graphs (Oi, 2, 1, 3) for

i ∈ {8, 9, 10, 12, 15, 26}.

By symmetry between a, c, it is enough to show that (G, a, b, c) is a-persistent. It is

easy to show that If (G, a, b, c) is isomorphic to one of the graphs (Oi, 2, 1, 3) for i = 8,

9, 10 then it contains (O1, 3, 2, 1) as a proper subgraph, if (G, a, b, c) is isomorphic

to one of the graphs (Oi, 2, 1, 3) for i = 12, 15, 26 then it contains (O4, 3, 2, 1),

(O3, 3, 2, 1), or (O6, 3, 2, 1) as a proper subgraph, respectively. Thus (G, a, b, c) is

a-persistent.

Assume (G, a, b, c) is isomorphic to (O28, 2, 1, 3). It is easy to see that (G, a, b, c)

contains (O6, 3, 2, 1) and (O9, 1, 2, 3), so (G, a, b, c) is c- and a-persistent.

Assume (G, a, b, c) is isomorphic to (O23, 2, 1, 3). It is easy to see that (G, a, b, c)

contains (O4, 3, 2, 1) and (O6, 1, 2, 3), so (G, a, b, c) is a- and c-persistent.

Assume (G, a, b, c) is isomorphic to (O24, 2, 1, 3). It is easy to see that (G, a, b, c)

contains (O3, 3, 2, 1) and (O6, 1, 2, 3), so (G, a, b, c) is a- and c-persistent.

(ii) Assume (G, a, b, c) is isomorphic to either (O3, 2, 1, 3) or (O4, 2, 1, 3).

Since (O4, 2, 1, 3), (O3, 2, 1, 3) are minor minimal not 3-planar and they are minor

minimal with respect to this property, (G, a, b, c) is not c-persistent. Similarly to

part(i), it is easy to see that (G, a, b, c) contains (O1, 3, 2, 1) as a proper subgraph, so

(G, a, b, c) is a-persistent.

(iii) If (G, a, b, c) is isomorphic to (O5, 1, 2, 3) or (O5, 2, 1, 3), then we proceed as

follows.
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Since (G, a, b, c) is minor minimal c-planar, (G, a, b, c) is not c-persistent. It is easy

to see that (G, a, b, c) contains (O8, 2, 3, 1) as a proper subgraph so it is a-persistent

but it is not c-persistent.

Now we are ready to prove our main theorem, i.e. Theorem 1.8.1.

Proof of Theorem 1.8.1. Let G = (G1, G2) and G1 ∩ G2 = {a, b, c} be an internal 3-

separation in G. By Theorem 1.8.2 there exists no x ∈ {a, b, c} such that (G1, a, b, c)

and (G2, a, b, c) are both x-planar. By Lemma 4.0.22, we know that G1 and G2 each

contains a double fork with feet on a, b, c. Now based on the fact that either {a, b, c}

is an independent set or it is not independent, and by symmetry between G1, G2 and

a, b, c, without loss of generality, we consider the following cases:

Case 1 The set {a, b, c} is an independent set.

Case 1.1 (G1, a, b, c) is not abc-planar and (G2, a, b, c) is isomorphic to K2,3(1, 2, 3).

By Theorem 4.3.3 and Theorem 1.8.5 and the fact that {a, b, c} is an independent

set, (G1, a, b, c) is isomorphic one of the rooted graphs (Oi, 1, 2, 3), for i ∈ {2, 5, 12,

13, 14, 15, 16, 17, 18, 19} which implies that G is isomorphic to K3,5, F5, D3, G1, E19,

E5, D12, E11, E27, D9.

Case 1.2 (G1, a, b, c) is not ac-planar and (G2, a, b, c) is not b-planar.

Since {a, b, c} is an independent set, we may assume (G1, a, b, c) is b-planar, other-

wise the possible outcomes are analyzed in Case 1.1. Let {x, y} = {a, c} and we

assume that (G2, a, b, c) is x-planar; otherwise, the possible outcomes have been al-

ready analyzed in 1.1. Note that since (G, a, b, c) is minor minimal (G2, a, b, c) is not

b-persistent. Moreover if (G2, a, b, c) is not y-planar then (G1, a, b, c) should not be

x-persistent. Thus, we consider two possibilities. In the first possibility, assume that

(G2, a, b, c) is y-planar. So by Theorem 1.8.3, (G2, a, b, c) is isomorphic to (O1, t, 3, s)
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where {t, s} = {1, 2} and by Theorem 1.8.4 (G1, a, b, c) is isomorphic to O3, O4, O6,

O8, O9, O10, where a, b, c correspond to z, 1, w where {z, w} = {2, 3}. Note that O3,

O4, O6, O8, O9, O10 are the only graphs in the statement of Theorem 1.8.4 which

are not ac-planar and {a, b, c} is an independent set. Now by gluing (G1, a, b, c) to

(G2, a, b, c), we can imply that G is isomorphic to either F1, E19,F1,G1,D3,F1, re-

spectively.

In the second possibility, assume that (G2, a, b, c) is not y-planar. Thus, (G1, a, b, c)

is not x-persistent. Without loss of generality, assume y = a. Thus by Theorem 1.8.4

and Lemma 5.0.7, (G1, a, b, c) is isomorphic to (O3, 2, 1, 3) or (O4, 2, 1, 3) and also

(G2, a, b, c) is isomorphic to (O3, 2, 3, 1) or (O4, 2, 3, 1). If (G1, a, b, c) is isomorphic

to (O3, 2, 1, 3) and (G2, a, b, c) is isomorphic to (O3, 2, 3, 1) then it is easy to see that

(G, a, b, c) must contain a degree two vertex, a contradiction. Similarly, if (G1, a, b, c)

is isomorphic to (O4, 2, 1, 3) and (G2, a, b, c) is isomorphic to (O4, 2, 3, 1) then G must

contain a degree two vertex, a contradiction. If (G1, a, b, c) is isomorphic to (O3, 2, 1, 3)

and (G2, a, b, c) is isomorphic to (O4, 2, 3, 1) then it is easy to see thatG contains to C7.

If (G1, a, b, c) is isomorphic to (O4, 2, 1, 3) and (G2, a, b, c) is isomorphic to (O3, 2, 3, 1)

then it is easy to see that G contains C7.

Case 2 The set {a, b, c} is not an independent set.

Case 2.1 |E(G[a, b, c])| = 1 and E(G[a, b, c]) = {ab}.

By our assumptions, the edge ab ∈ E(G1, a, b, c). Note that the fact that G is

minor minimal non-projective planar implies that (G1, a, b, c) must be not c-planar

and (G1, a, b, c) \ ab must be c-planar. Let G′
2(a, b, c) be the rooted graph obtained

from G′
2(a, b, c) by adding the edge ab. It is easy to see that (G′

2, a, b, c) must be not

c-planar and (G2, a, b, c) must be c-planar.

By symmetry, we consider two possibilities. In the first one, we assume that
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(G1, a, b, c) is not abc-planar and G′
2(a, b, c) is not c-planar. By applying Theo-

rem 1.8.3, G′
2(a, b, c) is isomorphic to (O6, 1, 2, 3) or (O7, 1, 2, 3). By applying Theo-

rem 1.8.5, G1(a, b, c) is isomorphic to O23, O24, O25, O27, O28 where a, b, c correspond

to x, y, z where {x, y, z} ∈ {1, 2, 3}. It is not hard to see that by gluing (G1, a, b, c) and

(G′
2, a, b, c), we can infer that either G = O23 + (O6, 1, 2, 3), G = O24 + (O7, 1, 2, 3),

G = O27 + (O7, 1, 2, 3) or G = O28 + (O6, 1, 2, 3), therefore G contains D3 as a mi-

nor, or, G = O23 + (O7, 1, 2, 3), so G is isomorphic C7, or G = O24 + (O6, 1, 2, 3),

G = O25 + (O6, 1, 2, 3), G = O27 + (O6, 1, 2, 3), so G contains F1 as a minor, or

G = O25+(O7, 1, 2, 3), thusG contains E19 as a minor, or finallyG = O28+(O7, 1, 2, 3),

therefore G contains K7 − C4 as a minor.

In the second possibility, we assume that (G1, a, b, c) is not ac-planar andG′
2(a, b, c)

is not bc-planar. Note that we assume that (G1, a, b, c) is b-planar and G′
2(a, b, c) is a-

planar. Moreover (G1, a, b, c) is not a-persistent and G′
2(a, b, c) is not b-persistent.

Thus by applying Theorem 1.8.4 and Lemma 5.0.7, (G1, a, b, c) is isomorphic to

(O6, 3, 1, 2) and (G′
2, a, b, c) is isomorphic to (O6, 1, 3, 2). This implies that bc ∈ E(G2)

and ac ∈ E(G′
2), a contradiction.

Case 2.2 |E(G[a, b, c])| = 2 and E(G[a, b, c]) = {ab, ac}.

Let G′
2(a, b, c) be the rooted graph obtained from G2(a, b, c) by adding the edge ab

and ac. Since G is minor minimal not projective planar, by applying lemma 5.0.5

on (G1, a, b, c) and (G′
2, a, b, c), we can infer that (G1, a, b, c) and (G′

2, a, b, c) is not

bc-planar. Without loss of generality, assume that (G1, a, b, c) is not abc-planar.

By applying Theorem 1.8.4 G′
2(a, b, c) is isomorphic to (O11, 1, 2, 3). By applying

Theorem 1.8.5, G1(a, b, c) is isomorphic to O26 where a, b, c correspond to x, y, z where

{x, y, z} ∈ {1, 2, 3}. Note that there is a symmetry between b, c. It is not hard to see

that by gluing (G1, a, b, c) and (G′
2, a, b, c), we can infer that G is isomorphic to D3.

Case 2.3 |E(G[a, b, c])| = 3 and E(G[a, b, c]) = {ab, ac, bc}.

Let G′
2(a, b, c) be rooted graph obtained from G2(a, b, c) by adding the edge ab, ac
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and bc. Since G is minor minimal not projective planar, by applying lemma 5.0.5

to (G1, a, b, c) and (G′
2, a, b, c), we can infer that (G1, a, b, c) and (G′

2, a, b, c) is not

abc-planar.

By applying Theorem 1.8.5, G1(a, b, c) andG′
2(a, b, c) are isomorphic to (O20, 1, 2, 3).

It is not hard to see that by gluing (G1, a, b, c) and (G′
2, a, b, c), we can infer that G

is isomorphic to K7 − C4.
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CHAPTER VI

CONCLUSION

As we mentioned in Chapter 1, we developed a new technique and modern approach

for finding the set Ω, the set of minor minimal non-projective planar graphs. In

particular, we settled the case where G ∈ Ω and G is 3-connected with an internal

3-separation. Our main results are as follows:

(i) We found the set of 3-connected minor minimal non-projective planar graphs

with an internal 3-separation.

(ii) We developed a theory for finding non-c-planar extension of c-planar graphs.

(iii) We found the set of minor minimal non-c-planar graphs.

(iv) We found the set of minor minimal non-ac-planar graphs.

(v) We found the set of minor minimal non-abc-planar graphs.

Here we briefly highlight our plan for settling the case where G ∈ Ω and G is

internally 4-connected. We break this case into two cases: either G contains V8 as a

minor or G does not contain V8 as a minor, where V8 is the graph obtained from a

cycle of length eight by adding edges joining every pair of diagonally opposite vertices.

In the case that G does not have V8 as a minor, we use an unpublished result of

Robertson.

Theorem 6.0.8. Let G be an internally 4-connected graph which does not contain V8

as a minor. Then either

(i) G is a planar graph, or,
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(ii) G is isomorphic to the line graph of K3,3, or,

(iii) G has two vertices u, v such that G \ {u, v} is a cycle, or

(iv) G has at most seven vertices, or,

(v) there exists a set S ∈ V (G) of size at most four such that G \ S has no edge.

Note that if G is isomorphic to the line graph of K3,3 or double wheel then G is

projective planar. So the only technical parts for dealing with the case that G does

not contain V8 as a minor are the last two outcomes of Theorem 6.0.8 which can be

done by a simple case analysis since internally 4-connected graphs satisfying (iv) and

(v) in Theorem 6.0.8 are few in number. Now, we may assume G contains V8 as a

minor. Since V8 is a cubic graph, we may assume G contains V8 as a subdivision.

For this part we should develop a new theory similar to the theory developed in

Chapters 2 and 3.

In this thesis we did not have the chance to explore this idea; however the above

strategy is a promising one for finding the set of internally 4-connected minor minimal

non-projective planar graphs. Combining the above strategy and our results in this

thesis would give a new proof of Theorem 1.3.5.
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[26] Hliněný, P. and Thomas, R., “On possible counterexamples to Negami’s

planar cover conjecture,” J. Graph Theory, vol. 46, pp. 183–206, 2004.

[27] Jørgensen, L., “Contraction to K8,” Journal of Graph Theory, vol. 18,

pp. 431–448, 1994.

[28] Kawarabayashi, K., Norine, S., Thomas, R., and Wollan, P., “K6

minors in 6-connected graphs of bounded tree-width,” available at http:

//arxiv.org/abs/1203.2171.

[29] Kawarabayashi, K., Norine, S., Thomas, R., and Wollan, P., “K6 mi-

nors in large 6-connected graphs,” available at http://arxiv.org/abs/1203.

2192.

[30] König, D., “Theorie der endlichen und unendlichen Graphen,” Akademische

Verlagsgesellschaft, 1936.

131
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