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Abstract

We propose a new protocol solving the fundamental problem of disseminating a piece of
information to all members of a group of n players. It builds upon the classical randomized
rumor spreading protocol and several extensions. The main achievements are the following:

Our protocol spreads the rumor to all other nodes in the asymptotically optimal time of
(1+ o(1)) log

2
n. The whole process can be implemented in a way such that only O(nf(n)) calls

are made, where f(n) = ω(1) can be arbitrary.
In contrast to other protocols suggested in the literature, our algorithm only uses push

operations, i.e., only informed nodes take active actions in the network. To the best of our
knowledge, this is the first randomized push algorithm that achieves an asymptotically optimal
running time.
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1 Introduction

Transmitting a piece of information to all nodes of a network is a classical problem in computer
science. A protocol surprisingly powerful is called randomized rumor spreading, see, e.g., Feige,
Peleg, Raghavan, and Upfal [11], Frieze and Grimmett [13], Karp, Schindelhauer, Shenker, and
Vöcking [15]. It proceeds in rounds as follows: in each round, each node that already knows the
piece of information (“rumor”) chooses a communication partner uniformly at random and sends
her a copy of this rumor.

In spite of being that simple, this protocol succeeds in spreading the rumor to all nodes of a
complete graph in (1 + o(1))(log2 n + lnn) rounds with high probability, that is, with probability
1 − o(1). In addition, due to its randomized nature, it is highly robust against different types of
transmission or node failures. This makes it an interesting alternative to deterministic protocols,
which can reduce the broadcast time to log2(n), but at the price of suffering greatly from failures.

A clear disadvantage of this most simple version of randomized rumor spreading is the enormous
number of Θ(n log n) calls that are necessary. This problem was overcome in the seminal work of
Karp et al. [15]. They present two variations of the randomized rumor spreading protocol which
spread the rumor with a total number of O(n log log n) messages only while still using O(log n)
rounds only. A central ingredient are so-called pull operations, which allow nodes not yet informed
to call random nodes and ask for news. Pull operations, however, have the disadvantage that they
create network traffic even if there is no news to be spread. Therefore the assumption underlying
the analysis of Karp et al. [15] is that there is constantly new information injected in the network.

In this work, we present an alternative solution to the problem. It completely avoids the
problematic pull operations. It achieves a broadcast time of (1 + o(1)) log2 n and it uses a total
number O(nf(n)) calls, where f = ω(1) can be any function tending to infinity arbitrarily slow.
This is very close to the theoretically optimal values of ⌈log2 n⌉ rounds and n − 1 calls. Due to
its randomized nature, we still have reasonable robustness. For example, if a constant fraction of
the nodes chosen uniformly at random crashes at arbitrary times, the time needed to inform all
properly working nodes increases by at most a constant factor (depending on the failure rate).

The only point in which we assume the protocol to be more powerful compared to previous
works is that we discard the address-obliviousness. That is, we assume that each node has a unique
label chosen arbitrarily from some ordered set (e.g., the integers). This seems to be a reasonable
assumption in many settings.

1.1 The protocol of Karp et al. [15]

As described above, Karp et al. [15] showed how to modify the simple randomized rumor spreading
protocol such that instead of Θ(n log n) messages only O(n log log n) are sufficient to spread a
rumor. Roughly speaking, their protocol proceeds as follows. The rumor is equipped with a time
stamp (or age counter) in such a way that all nodes that receive the rumor also know for how many
rounds it has been in the network. In each round, each node chooses a random other node as a
communication partner. The communication then proceeds in both directions, that is, any partner
who knows the rumor forwards it to the other partner. It is shown that after log3 n+Θ(log log n)
rounds of this protocol, all nodes know the rumor with high probability. In addition, a rumor is
transmitted in this time interval at most O(n log log n) times.

Note that this way of counting tacitly ignores all communication effort which does not result
in a rumor to be sent. In particular, all calls between two uninformed nodes that arise due to
pull operations are ignored. The way this is usually justified is by assuming that there is sufficient
traffic in the network due to regular insertions of new rumors. Still, we feel that this is slightly
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dissatisfying. Note that when using pull operations, there is no way to avoid such communication
overhead—a node that did not receive a rumor recently has no way of finding out whether there
are rumors around that justify starting pull operations or not. Moreover, even nodes that did
receive a rumor recently cannot be sure that there is no new rumor that would justify starting pull
operations again.

Karp et al. [15] also prove lower bounds, which, roughly speaking, show that if in each round
all communication is restricted to random matchings of communication partners (i) any address-
oblivious algorithm has to make Ω(n log log n) calls and (ii) that any algorithm informing all but a
o(1) fraction of the vertices in logarithmic time has to make ω(n) calls.

1.2 Our results

The first lower bound stated in the previous paragraph suggests that asking for an address-oblivious
protocol may result in only a limited performance being achievable. In addition, one might also
wonder if really many broadcasting problems ask for address-oblivious protocols, or if not rather in
the majority of settings each participant naturally has a unique addresses, simply to organize the
transport of a message to an addressee.

In this work, we shall skip the requirement of address-obliviousness. However, we shall keep
the concept of contacting random neighbors without any preference, as this seems to be the key to
obtaining good broadcasting times, robustness and small number of calls in all previous works.

Contrary to the model of Karp et al. [15], we do not perform pull operations. That is, all
transmissions are initiated by nodes that know the rumor. In consequence, the only direction of
informing is from the initiator of the transmission to its addressee, which is chosen uniformly at
random, though not always independently.

We do allow, however, two-way communication, in that the addressee acknowledges his readiness
to receive the rumor or the fact that he already knows the rumor. Such a mechanism makes sense
anyway, because it allows to reduce the amount of data sent through the network (if the addressee
cannot receive the rumor or already knows it, we do not need to send it). In practice, most
communication protocols (e.g., the standard network protocol FTP) allow some kind of two-way
communication to ensure an error-free transmission.

In this, as we think, natural setting, we propose a protocol that needs only (1 + o(1)) log2 n
rounds and nf(n) calls, where f = ω(1) can be chosen arbitrarily. Note that no protocol that only
uses push operations can work in less than ⌈log2 n⌉ rounds or using less than n− 1 calls.

More precisely, we have the following trade-off between rounds and messages. For all f :
N → N, we give a protocol that needs only log2(n) + f(n) + O(f(n)−1 log n) rounds with high
probability and O(nf(n)) calls. In terms of run-time, this is optimal for f(n) = Θ(

√
log n), leading

to log2 n+O(
√
log n) rounds and O(n

√
log n) calls.

The protocol is very simple. For the presentation, let us assume that the nodes are numbered
from 1 to n, even though what we really need is only that nodes are able (i) to compute the label of
a node chosen uniformly at random and (ii) given a label of a node, to compute a uniquely defined
successor along a cyclic order of the labels (here the label plus one, modulo n).

Let f : N → N be given (to formulate the tradeoff scenario). Then the protocol works as
follows. Each newly informed node sends its first message to another node chosen uniformly at
random. From then on, it does the following. If the previous message was sent to a node that was
not informed yet, then the next message is sent to the successor of that node in the cyclic order.
Otherwise, the next message is sent again to a node chosen uniformly at random. After having
encountered f(n) nodes that were already informed, the node stops and does not transmit the
rumor anymore. This protocol can be interpreted as a variant of the quasirandom rumor spreading
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protocol investigated in [6, 7], where in addition all nodes have the same cyclic permutation and
they re-start at a random position whenever they call a node that is already informed (up to f(n)−1
times).

The main technical difficulty in the analysis of the proposed protocols stems from the fact that
the transmission of messages at each node is not independent, and thus, many classical tools cannot
be employed. The key to the solution here is to exploit the existing independence stemming from
communications started with random partners.

In summary, our result shows that considerable improvements over the fully independent rumor
spreading protocol are possible if we skip the requirement that the protocol is address-oblivious. It
thus seems worthwhile questioning whether the address-obliviousness assumption is really needed
in previous applications of the protocol. From the methodological side, our result again shows that
spicing up randomized algorithms with well-chosen dependencies can yield additional gains. It may
make the theoretical analysis more complicated, but not so much the algorithm itself.

1.3 Disclaimers

Applications: For reasons of space, we have not given extensive details on randomized rumor
spreading and its applications. The seminal papers Feige et al. [11] and Karp et al. [15] contain
great discussions of this, better than we could possibly do here. For reports on the actual use of
such protocols, see Demers, Greene, Hauser, Irish, Larson, Shenker, Sturgis, Swinehart, and Terry
[5], Hedetniemi, Hedetniemi, and Liestman [14] and Kempe, Dobra, and Gehrke [16].

Other network topologies: Randomized rumor spreading can be used on all types of net-
work topologies. Nodes then choose their communication partners at random from the set of their
neighbors. For many network topologies, broadcast times logarithmic in the number of nodes have
been shown. Besides the complete graph, they include hypercubes [11], random graphs G(n, p)
with p ≥ (1+ ε) ln(n)/n [11] and certain expander graphs [17]. Recently, rumor spreading was also
shown to be doable in poly-logarithmic time for social networks modelled by preferential attach-
ment graphs [3] and for graphs of bounded conductance [4]. For Cayley graphs [9] and random
geometric graphs [2], the (in another sense) near-optimal bounds of O(diam(G)+ log n) are known.
In spite of these results, we concentrated ourselves on the setting where each node has a direct
way to communicate with each other node. The reason is that we feel that this is a sufficiently
interesting and useful case on its own. Also, of course, it is the setting in which it is easiest to
experiment with new ideas. Recall that the concept of reducing the number of messages was also
first demonstrated on complete graphs by Karp et al. [15]. Only much later, similar results were
obtained for other network topologies, e.g., by Berenbrink, Elsässer, and Friedetzky [1], Elsässer
[8] and Elsässer and Sauerwald [10].

2 The Hybrid Protocol

Let G = (V,E) be the complete, undirected graph on n nodes. We assume that the nodes of the
complete graph are ordered and denote by i the i-th node according to that order. Our goal is
to spread a ‘rumor’ known initially to one node to all nodes in V . We call the node initiating
the rumor the starting node. A rumor can be transmitted along each edge of the graph in both
directions. Every transmission along an edge is always initiated by a node that knows the rumor.
We count every contact of a node to another node as a call. We assume that two nodes never call
a node exactly simultaneously even if they both call the same node in the same round. Hence, a
node is always only informed by a single node.
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We introduce a simple algorithm that for a certain instantiation achieves, up to lower order
terms, an optimal running time. The algorithm is related to the quasi-random protocol by Doerr
et al. [6]. In this quasi-random protocol, every node v is equipped with a cyclic permutation
πv : V → V of all nodes in V . Once a node v becomes informed, it chooses one position on its list
uniformly at random. This is the node v contacts first in the next round. In each following round,
v contacts πv(u) where u is the node it contacted in the previous round. Note that different nodes
can have different permutations.

Our hybrid protocol differs from this quasi-random protocol in two aspects. First, we assume
that the permutations of all nodes are identical. Second, we introduce the notion of a restart : if
a node calls an already informed node, it chooses a random communication partner in the next
round instead of informing the next node according to the permutation. Furthermore, each node
stops informing if it calls an informed node after the R-th random call, where R can be a function
of n. By this rule we can bound the total number of calls made. This aspect of keeping the number
of calls small was not discussed in Doerr et al. [6].

A detailed description of the hybrid protocol is given in Algorithm 1. The only exception is the
starting node. This node does not select a random communication partner at the beginning, but
starts informing its own successor node (according to the given permutation) immediately. Only
after it encountered the first informed node does it then proceed according to Algorithm 1.

Algorithm 1: Procedure started by newly informed node in the hybrid protocol

let R ∈ Z
+ be number of random calls per node

for i = 1 to R do

select node j uniformly at random;
while j not informed // iteration counts as call even if j informed

do

inform j;
j ← j + 1;

We will analyze how long it takes for a rumor initiated by any node to reach all nodes under
the proposed protocol. We give almost matching upper and lower bounds. Apart from the running
time, we will also analyze the number of calls made.

2.1 Running Time And Number of Calls

We give an upper bound and an almost matching lower bound on the number of rounds and calls
needed by the protocol to spread a rumor from an arbitrary starting node to all nodes of the
complete graph.

2.1.1 Upper Bound

Theorem 1. Let ε > 0 be an arbitrarily small constant. With probability 1−o(1), the hybrid model
with R random calls per node informs all nodes in

log2 n+ (1 + ε) ln(n)/R+R+ h(n), if R ≤
√
lnn

log2 n+ (2 + ε)
√

ln(n), if R ≥
√
lnn

rounds, where h(n) is a function of arbitrarily slow growth. This uses n(R+ 1) calls.
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Note that by adjusting the stopping parameter R, we get a tradeoff between the number of
rounds needed to inform all nodes and the number of calls.

Before analyzing the protocol for general R, we describe two special cases that achieve an
(almost) optimal number of rounds and communications, respectively. For R =

√
lnn, we achieve,

up to a lower order term, an optimal running time while using only O(n
√
lnn) calls.

Corollary 1. Let ε > 0 be an arbitrarily small constant. With probability 1 − o(1), the hybrid
model with R =

√
lnn informs all nodes in log2 n+(2+ ε)

√
lnn rounds. This uses 2(1+2ε)n

√
lnn

communications.

For R = 1, we get a very simple broadcasting protocol that, up to constant factors, is both
optimal in terms of rounds needed as well as the number of calls.

Corollary 2. Let ε > 0 be an arbitrarily small constant. With probability 1 − o(1), the hybrid
model with R = 1 informs all nodes in log2 n+ (1 + ε) ln n rounds. This uses 2n calls.

Before we prove Theorem 1, we make two observations that will prove useful for the analysis.

Fact 1. The hybrid model is always at least as fast as the quasi-random model implemented with
identical lists.

This simple, but useful observation follows from the fact that in the hybrid model every node acts
as in the quasi-random model until it encounters an informed node. In this case, since we assumed
all lists to be the same, the node becomes useless in the quasi-random model as all successive nodes
on its list will have also been informed once it tries to call them. In the hybrid model, however,
the node can still potentially inform uninformed nodes.

Fact 2. If a node is delayed, i.e., halted for a number of rounds, then the protocol can only become
slower.

It follows that, in our upper bound analysis, we can assume that a node is delayed any number
of rounds.

Proof of Theorem 1. We first analyze the time until all nodes are informed. We distinguish three
phases of the rumor spreading process. The first phase lasts for log2 n+ h(n) rounds where h(n) is
an arbitrarily slowly growing function. By Fact 2, we can assume that every node is delayed to the
second phase once it contacts an informed node. Since this delayed protocol remains at least as fast
as the hybrid model with R = 1, it follows from Fact 1 that it is still faster than the quasi-random
model implemented with identical lists. Fountoulakis and Huber [12] showed that the quasi-random
model informs (1 − ε)n nodes for an arbitrarily small constant ε > 0 with probability 1 − o(1) in
this phase. Thus, we get the same result for our delayed protocol.

The second phase lasts for R rounds. By our delaying assumption, every node that is informed
in the first phase will remain active for at least R − 1 rounds before the second phase ends. The
crucial observation is that every informed node that is still active either informs an uninformed
node in a single round or calls a random node in the next round. The former happens at most εn
times in total. We conclude that at the end of the second phase the nodes will have contributed
at least (1 − ε)nR − εn ≥ (1 − 2ε)nR random calls (including the random calls made in the first
phase). We show that then the largest interval of uninformed nodes is at most (1 + 3ε) ln(n)/R.
Let I be an interval of length (1 + 3ε) ln(n)/R. Then, the probability that no node in I becomes
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informed in the second phase by these random calls is at most

(

1− (1 + 3ε) ln n

nR

)(1−2ε)nR

≤ exp (−(1− 2ε)(1 + 3ε) ln n)

= n−1−ε+6ε2 = n−1−ε′ ,

for some constant ε′ > 0 (when ε is sufficiently small). Hence, by a union bound argument, it
follows that there is no completely uninformed interval of length (1 + 3ε) ln(n)/R after the second
phase with probability at least 1− n−ε′ for some constant ε′ > 0.

In the last phase, all the remaining uninformed intervals are filled up. This takes at most the
length of the largest uninformed interval which is (1 + 3ε) ln(n)/R by the previous argument.

Using a simple union bound, we can bound the total failure probability by o(1).
It remains to bound the number of calls. Note that each node calls at most R informed nodes

in total. Hence, we use at most n calls to inform all nodes and, in addition, at most nR calls until
all nodes stop informing.

2.1.2 Lower Bound

In this section, we show that the upper bound from the previous section is essentially sharp.

Theorem 2. Let ε > 0. If the hybrid model with R random calls per node is run for less than

log2(n) + (1− ε) ln(n)/R + 1
2R, if R ≤

√

2(1 − ε) lnn,

log2(n) +
√

2(1− ε) ln n, if R ≥
√

2(1− ε) ln n

rounds, then with probability 1− exp(−nΘ(ε)) not all nodes are informed.

Proof. Let ∆ = min{(1 − ε) ln(n)/R + 1
2R,

√

2(1 − ε) ln n} and T = log2 n + ∆. We first analyze
the probability that one (specific) vertex u with a distance of more than T from the starting node
(in the cyclic order) becomes informed in the first T rounds. We call the event that a node chooses
another node to inform uniformly at random a random call. Hence, random calls occur as first calls
of a node after the node encountered an already informed node. Clearly, u remains uninformed if
for all i ≤ T all random calls happening at time T − i avoid u and the i vertices to the left of it.
We say that u is unaffected by such a random call.

We show that for ε′ > 0

(i) with probability at least 1−3n−ε′ log2 n, u is unaffected by random calls happening in rounds
1 to (1− ε′) log2 n,

(ii) with probability at least (1 − ε′ log
2
(n)+∆
n

)n, u is unaffected by random calls happening in
rounds (1− ε′) log2 n+ 1 to log2 n,

(iii) with probability at least
∏min{R,∆}

j=1

(

1 − ∆−j
n

)n

, u is unaffected by random calls happening

in the remaining rounds log2(n) + 1 to log2(n) + ∆.

We start with analyzing the effect of random calls happening in a first phase lasting for (1 −
ε′) log2 n rounds. In this phase, at most n1−ε′ nodes can become informed since the number of
informed nodes can at most double in each round. Thus, we have at most n1−ε′ random calls
in this phase. The probability that a particular of these calls affects u is at most T/n. Using a
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simple union bound, we conclude that the probability that any random call affects u is at most
n1−ε′T/n ≤ 3n−ε′ log2 n.

For random calls happening in the second phase consisting of rounds (1−ε′) log2 n+1 to log2 n,
we argue as follows. We bound from above the number of random calls by n and the probability of
each one affecting u by (ε′ log2(n)+∆)/n. Since these are too many random decisions for a simple
union bound, we use the fact that each random call addresses a node chosen independently from
previous random decisions. This yields

Pr(u is unaffected in second phase) ≥
(

1− ε′ log
2
(n)+∆
n

)n

.

Note that in the third phase we have at most min{R,∆} random calls per node. The probability
that the i-th random call of a node in round log2(n)+1 to log2(n)+∆ affects u is at most (∆−i)/n.
Hence, the probability that u is unaffected in the third phase is at least

(

∏min{R,∆}
j=1 (1 − ∆−j

n
)
)n

.

We distinguish two cases: If min{R,∆} = R, then

Pr(u is unaffected in third phase) ≥
R
∏

j=1

(

1− ∆− j

n

)n

≥ exp(

R
∑

j=1

−∆+ j − (∆ − j)2/n) (1)

≥ (1− o(1)) exp(
R
∑

j=1

−∆+ j) (2)

≥ (1− o(1)) exp(−R∆+R(R+ 1)/2) ≥ (1− o(1))n−1+ε,

where (1) follows from the fact that for x ≤ 1
2 , we have 1 − x ≥ e−x−x2

, (2) follows from our

assumption R ≤ ∆ ≤ O(
√
lnn), and the last inequality follows from the definition of ∆. Similarly,

if min{R,∆} = ∆, then

Pr(u is unaffected in third phase) ≥
∆
∏

j=1

(

1− ∆− j

n

)n

≥ (1− o(1)) exp(−∆2/2) ≥ (1− o(1))n−(1−ε).

We set ε′ := ε/4. Since all random calls choose their addressees independently, we have

Pr(u remains unaffected in all three phases)

≥ (1− 3n−ε′ log2(n))
(

1− ε′ log
2
n+∆

n

)n
min{R,∆}

∏

j=1

(

1− ∆− j

n

)n

≥ (1− o(1)) exp(−2ε′ log2 n− (1− ε) ln n) ≥ n−1+Θ(ε).

Let k = n
T+1 − 1. Let u1, . . . , uk be nodes each having distance more than T from each other

and from the starting node (in the cyclic order). We argue that, with sufficiently high probability,
one such node will remain uninformed after the first T rounds. Let Ui denote the event that node
ui is informed. Note that since these nodes have a distance of T from each other, a random call
that informs one such node ui can not lead to the informing of any other node uj during the first T
rounds. Hence, these events are negatively correlated : if some nodes are informed, the probability
that another one is also informed decreases, or formally, Pr(U | U1, . . . , Uj) ≤ Pr(U). We compute

Pr(no node remains uninformed) ≤ Pr(U1 ∧ · · · ∧ Uk) ≤
∏

1≤j≤k

Pr(Uj) ≤ (1− n−1+Θ(ε))k ≤ exp(−nΘ(ε)).
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