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a b s t r a c t

For the Erdős–Rényi random graph Gn,p, we give a precise asymp-
totic formula for the size α̂t(Gn,p) of a largest vertex subset in Gn,p
that induces a subgraph with average degree at most t , provided
that p = p(n) is not too small and t = t(n) is not too large. In
the case of fixed t and p, we find that this value is asymptotically
almost surely concentrated on at most two explicitly given points.
This generalises a result on the independence number of random
graphs. For both the upper and lower bounds, we rely on large de-
viations inequalities for the binomial distribution.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Given a graph G = (V , E) and a non-negative number t , a vertex subset S ⊆ V is t-sparse if the
subgraph G[S] induced by S has average degree at most t . The order of a largest such subset is called
the t-sparsity number of G, denoted α̂t(G). The t-sparsity number α̂t(G) is a natural generalisation of
the independence number α(G). Recall that an independent set is a vertex subset of Gwith no edges,
i.e. a 0-sparse set; thus the order α(G) of a largest independent set is just α̂0(G). Note that α̂t(G) is
non-decreasing in terms of t .

We investigate the asymptotic behaviour of α̂t(Gn,p), where Gn,p is a random graph with vertex set
[n] = {1, . . . , n} and each edge is included independently at random with probability p. We focus on
fairly dense random graphs: ourmain result holds when p = p(n) satisfies p ≥ n−1/3+ε for some fixed
ε > 0 and p bounded away from 1. We say that a property holds asymptotically almost surely (a.a.s.) if
it occurs with probability that tends to 1 as n → ∞.

For t = 0, that is, the independence number, the asymptotic behaviour in dense random graphs
was described forty years ago by Matula [14–16], Grimmett and McDiarmid [9], and Bollobás and

E-mail addresses: n.fountoulakis@bham.ac.uk (N. Fountoulakis), ross.kang@gmail.com (R.J. Kang), cmcd@stats.ox.ac.uk
(C. McDiarmid).

0195-6698/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ejc.2013.06.012

http://dx.doi.org/10.1016/j.ejc.2013.06.012
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejc.2013.06.012&domain=pdf
mailto:n.fountoulakis@bham.ac.uk
mailto:ross.kang@gmail.com
mailto:cmcd@stats.ox.ac.uk
http://dx.doi.org/10.1016/j.ejc.2013.06.012


N. Fountoulakis et al. / European Journal of Combinatorics 35 (2014) 232–244 233

Erdős [4]. For given 0 < p < 1, define b = 1/(1 − p) and

αp(n) = 2 logb n − 2 logb logb(np)+ 2 logb(e/2)+ 1.

It was shown that for any δ > 0 a.a.s. ⌊αp(n) − δ⌋ ≤ α(Gn,p) ≤ ⌊αp(n) + δ⌋. The main objective of
this paper is to provide an analogue of this for α̂t(Gn,p).

Some previous estimates on α̂t(Gn,p) are implicit in the work of two of the authors. In particular,
for fixed p, it was observed using a first moment argument that for any ε > 0, even if t is a growing
function of n, as long as t = o(ln(np)), we have α̂t(Gn,p) ≤ (2 + ε) logb(np) a.a.s., cf. [12, Lemma 2.1].
It follows that α̂t(Gn,p) and α(Gn,p) share the same first-order term growth if t = o(ln(np)). Further-
more, if t = ω(ln(np)), then (1−ε)t/p ≤ α̂t(Gn,p) ≤ (1+ε)t/p, cf. [12, Lemma 2.2]. If t = Θ(ln(np)),
then the growth of the first-order term of α̂t(Gn,p) is a multiple of logb(np), and large deviation tech-
niques were used to determine the factor (which depends on p and t) [13]. (With the exception of the
precise factor at the threshold t = Θ(ln(np)), these statements have been shown to remain valid for
smaller values of p as long as p ≫ 1/n, cf. [11, Theorem 4.18].)

In this work, we present a sharper description of α̂t(Gn,p), using a finer application of the above-
mentioned methods. However, we do not concern ourselves with the entire range of choices for the
growth of t as a function of n, as above. To get our sharp formula with second- and third-order terms,
p = p(n) must not tend to 0 too quickly, and t = t(n) must not grow too quickly. For 0 < p < 1,
define b = 1/(1 − p) and

α̂t,p(n) = 2 logb n + (t − 2) logb logb(np)− t logb t + t logb(2bpe)+ 2 logb(e/2)+ 1. (1)

Observe that α̂0,p(n) = αp(n) (under the convention that 0 ln 0 = 0) and also α̂t,p(n) = αp(n)+ t logb
((2bpe/t) logb(np)). We prove the following.

Theorem 1. Let 0 < p = p(n) < 1 be such that p is bounded away from1 and p > n−1/3+ε , for some pos-
itive ε < 1/3. Suppose t = t(n) ≥ 0 and δ = δ(n) > 0 satisfy t = o(ln n/ ln ln n) and t2 ln ln n/ ln n =

o(pδ). Let α̂t,p(n) be as defined in (1). Then

α̂t,p(n)− δ


≤ α̂t(Gn,p) ≤


α̂t,p(n)+ δ


a.a.s.

We see then that α̂t(Gn,p) is concentrated around α̂t,p(n) in an interval of width approximately
t2 ln ln n/(p ln n). Thus, if t2 = o(p ln n/ ln ln n), then we have two-point concentration (or focusing),
on explicit values.

Let us mention another related generalisation of the independence number. Given a graph G =

(V , E) and a non-negative integer t , a vertex subset S ⊆ V is t-dependent (or t-stable) if the subgraph
G[S] induced by S has maximum degree at most t . The order of a largest such subset is called the t-
dependence (or t-stability) number of G, denoted αt(G). Easily, αt(G) ≤ α̂t(G). In [8], we considered
αt(Gn,p), with our attention restricted to fixed p and fixed t , in order to apply analytic techniques to the
generating function of degree sequences on k vertices andmaximum degree at most t . For 0 < p < 1,
define

αt,p(n) = 2 logb n + (t − 2) logb logb(np)+ logb(t
t/t!2)+ t logb(2bp/e)+ 2 logb(e/2)+ 1.

We showed in [8] that for any fixed δ > 0,

αt,p(n)− δ


≤ αt(Gn,p) ≤


αt,p(n)+ δ


a.a.s. Note

that in this setting the difference between the t-sparsity and the t-dependence numbers of Gn,p is
essentially α̂t,p(n)− αt,p(n) = 2 logb(t!et/t t). By Stirling’s approximation for t! (cf. [3]), we have that
α̂t,p(n)− αt,p(n) ∼ logb(2π t) as t → ∞.

We also comment here that, even if t is fixed, the property of t-sparsity is not hereditary, i.e. t-
sparsity is not closed under vertex-deletion. Hence the general asymptotic results of Bollobás and
Thomason [5] (developed in a long line of research that can be traced back to early results of
Alekseev [1], cf. also [2]), for partitions of random graphs according to a fixed hereditary property,
are not applicable here. In our previous studies [8,13], it was useful that t-dependence is hereditary
for fixed t . Unfortunately, this is not the case for t-sparsity.

As will become apparent, challenges arise in the second moment computations. We have split this
into several parts, according to the degree of overlap between two k-subsets of [n]. Furthermore, in
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each part we must carefully account for the number of edges which are, say, within one of the k-
subsets but not the other, or strictly contained in the overlap, and so on. This careful accountingmakes
use of large deviations bounds for the binomial distribution.

The term ‘‘sparse’’ may take on a number of different meanings in graph theoretic or algorithmic
research. Instead of bounding average degree, one could instead bound for example the degeneracy
(i.e. the maximum over all subgraphs of the minimum degree) or the maximum average degree. The
counterparts of t-sparsity for these alternative versions of ‘‘sparse’’ are certainly of interest, but we do
not pursue them here.We remark only that the counterpart for the former example is bounded below
by αt , while for the latter example it is necessarily bounded between αt and α̂t .

It is worth noting that the algorithmic complexity of computing the t-sparsity of a graph – for the
special cases of t fixed or t parameterised in terms of the order of the target set – was recently stud-
ied by Bourgeois et al. [6] and, perhaps unsurprisingly, NP-hardness was shown to hold even in the
restricted case of bipartite graphs.

Our paper is organised as follows. In Section 2, we outline the large deviations results that we
employ. In Section 3, we perform first moment calculations to obtain Lemma 6; this lemma implies
the upper bound in Theorem 1. In Section 4, we give a second moment calculation (Lemma 7) which
implies the lower bound in Theorem 1.

2. Large deviations

In this section, we state the large deviations techniques used to precisely describe the average de-
gree of a k-set (a vertex subset of order k) in Gn,p. For background into large deviations, consult Dembo
and Zeitouni [7]; we borrow some notation from this reference. Given 0 < p < 1, we let q = 1 − p
throughout. Also, let

Λ∗(x) =

x ln
x
p

+ (1 − x) ln
1 − x
q

for x ∈ [0, 1]

∞ otherwise

(where Λ∗(0) = ln(1/q) and Λ∗(1) = ln(1/p)). This is the Fenchel–Legendre transform of the log-
arithmic moment generating function associated with the Bernoulli distribution with probability p
(cf. Exercise 2.2.23(b) of [7]). Some easy calculus verifies that Λ∗(x) has a global minimum of 0 at
x = p, is strictly decreasing on [0, p) and strictly increasing on (p, 1].

In the next lemma – a large deviations result for the binomial distribution – the upper bound fol-
lows easily from a strong version of Chernoff’s bound, e.g. (2.4) in [10], while the lower bound is
implied by a sharp form of Stirling’s formula, e.g. (1.4) of [3]: see the appendix of [13] for an explicit
proof (when r is integral).

Lemma 2. There is a constant δ > 0 such that the following holds. Let 0 < p < 1, let N be a positive
integer, and let X ∈ Bin(N, p). Then, for each 1 ≤ r ≤ N − 1 such that r ≤ Np,

δ · max

r−1/2, (N − r)−1/2

· exp(−NΛ∗(r/N)) ≤ P(X ≤ r) ≤ exp(−NΛ∗(r/N)).

Lemma 2 immediately yields the following estimate on the probability that a given set of size k is
t-dependent. For a graph G, we let deg(G) denote the average degree of G.

Lemma 3. Suppose 0 < p = p(n) < 1 and suppose that t = t(n) ≥ 1 and the positive integer k = k(n)
satisfy that t ≤ p(k − 1). Then

(i) P(deg(Gk,p) ≤ t) ≤ exp

−


k
2


Λ∗
 t
k−1


; and

(ii) P(deg(Gk,p) ≤ t) ≥ exp

−


k
2


Λ∗
 t
k−1


−

1
2 ln k + O(1)


.

For the secondmoment estimation, we will make use of the following asymptotic calculations, the
proofs of which are postponed to the Appendix.
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Lemma 4. Suppose 0 < p = p(n) < 1 and suppose the non-negative number t = t(n) and positive
integer k = k(n) satisfy that t = o(p(k − 1)). For any ε = ε(n) with |ε| ≤ 1,

Λ∗


(1 + ε)t
k − 1


= Λ∗


t

k − 1


− (1 + o(1))

εt
k

ln
pk
t
.

Lemma 5. Suppose 0 < p = p(n) < 1 and that x = x(n) = o(p). Then

Λ∗(x) = ln b (1 + o(1)) .

We remark that we will throughout make implicit use of the fact that, for 0 < x < 1, −x/(1 − x) <
ln(1 − x) < −x.

3. An expectation calculation for the upper bound

In this section, we consider the expected number of t-sparse k-sets. Note that the range of valid
values for p in the following lemma is not as restrictive as for Theorem 1, and that the conditions for
t and δ are accordingly more general.

Lemma 6. Let 0 < p = p(n) < 1 be such that np → ∞ as n → ∞ and p is bounded away from 1.
Suppose t = t(n) ≥ 0 and δ = δ(n) > 0 satisfy t = o(ln(np)/ ln ln(np)) and t2 logb ln(np)/ ln(np) =

o(δ). Let α̂t,p(n) be as defined in (1). Let k+
= ⌈α̂t,p(n)+ δ⌉ and k−

= ⌊α̂t,p(n)− δ⌋ and let Sn,t,k+ and
Sn,t,k− be the collections of t-sparse k+-sets and k−-sets, respectively. Then

E(|Sn,t,k− |) ≥ exp ((1 + o(1))δ ln(np)) and
E(|Sn,t,k+ |) ≤ exp (−(1 + o(1))δ ln(np)) .

Proof. Note that ln b = (1+ o(1))p if p → 0 as n → ∞. For almost the entire proof, the calculations
are carried out in terms of k, instead of k+ or k−.

By Lemma 3,

E(|Sn,t,k|) =

n
k


exp


−


k
2


Λ∗


t

k − 1


+ O(ln k)


=

 en
k

k
exp


−


k − 1
2


Λ∗


t

k − 1


+ O


ln k
k

k

= exp

1 + ln n − ln k −


k − 1
2


Λ∗


t

k − 1


+ O


ln k
k

k

;

therefore,

2 ln E(|Sn,t,k|)

k
= 2 + 2 ln n − 2 ln k − (k − 1)Λ∗


t

k − 1


+ O


ln k
k


. (2)

Let us now expand one of the terms in (2) using the formula forΛ∗:

(k − 1)Λ∗


t

k − 1


= t ln

t
p(k − 1)

+ (k − t − 1) ln


1 −
t

k − 1


·
1
q


= t ln t − t ln(p(k − 1))+ (k − t − 1) ln


1 −

t
k − 1


+ (k − t − 1) ln b.
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Since |t/(k − 1)| < 1 for n large enough, we have by Taylor expansion that

ln

1 −

t
k − 1


= −

t
k − 1

−
t2

2(k − 1)2
−

t3

3(k − 1)3
− · · · , and

(k − t − 1) ln

1 −

t
k − 1


= −t +

t2

2(k − 1)
+

t3

6(k − 1)2
+ · · · ,

giving that

2 ln E(|Sn,t,k|)

k
= 2 + 2 ln n − 2 ln k − t ln t + t ln(p(k − 1))

+ t − (k − t − 1) ln b + O

t2 + ln k

k


. (3)

Now, since t ≥ 0, np → ∞ and t ≤ ln(np) for n large enough, it follows that k ≥ 2 logb(np) −

2 logb ln(np) and

ln n − ln k ≤ ln n − ln (2 logb(np)− 2 logb ln(np))

≤ ln n − ln ln(np)− ln(2/ ln b)− ln

1 −

ln ln(np)
ln(np)


≤ ln n − ln ln(np)− ln(2/ ln b)+ O


ln ln(np)
ln(np)


for n large enough. Furthermore, for n large enough,

t ln(p(k − 1)) ≤ t ln(p(2 logb(np)+ t logb ln(np)))

≤ t ln ln(np)+ t ln(2p/ ln b)+ t ln

1 +

t ln ln(np)
2 ln(np)


≤ t ln ln(np)+ t ln(2p/ ln b)+

t2 ln ln(np)
ln(np)

.

Similarly, for n large enough,

ln n − ln k ≥ ln n − ln ln(np)− ln(2/ ln b)+ O

t ln ln(np)
ln(np)


and

t ln(p(k − 1)) ≥ t ln ln(np)+ t ln(2p/ ln b)+ O

t ln ln(np)
ln(np)


so that

ln n − ln k = ln n − ln ln(np)− ln(2/ ln b)+ O

t ln ln(np)
ln(np)


and (4)

t ln(p(k − 1)) = t ln ln(np)+ t ln(2p/ ln b)+ O

t2 ln ln(np)

ln(np)


. (5)

Until here, our calculations did not depend on using k+ or k−, but now we have

(k−
− t − 1) ln b ≤ 2 ln n + (t − 2) ln ln(np)− (t − 2) ln ln b − t ln t

+ t ln(2pe)+ 2 ln(e/2)± δ ln b
≤ (k+

− t − 1) ln b.

Substituting the last inequalities together with (4) and (5) into (3), we obtain, for n large enough,

2 ln E(|Sn,t,k− |)

k−
≥ O


t2 ln ln(np)

ln(np)


+ O


t2 + ln k

k


+ δ ln b = (1 + o(1))δ ln b and
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2 ln E(|Sn,t,k+ |)

k+
≤ O


t2 ln ln(np)

ln(np)


+ O


t2 + ln k

k


− δ ln b = −(1 + o(1))δ ln b,

since t2 ln ln(np)/ ln(np) = o(δ ln b) and k ≥ ln(np). Now, substituting the expression (1 + o(1))2
logb(np) for k+ or k− completes the proof. �

For illustration, let us consider the case of p and t fixed. To satisfy the conditions in the above lemma
we need δ ln n/ ln ln n → ∞ as n → ∞. So we may, for instance, set δ = (ln ln n)2/ ln n. We find
that the expected number of t-sparse sets of size k− tends to infinity. The probability that there is a
t-sparse set of size at least k+ is at most E(|Sn,t,k+ |) → 0 as n → ∞, and so α̂t(Gn,p) ≤ ⌊α̂t,p(n)+ δ⌋
a.a.s.

4. Second moment calculations for the lower bound

Lemma 7. Let 0 < p = p(n) < 1 be such that p is bounded away from 1 and p > n−1/3+ε , for some
positive ε < 1/3. Suppose t = t(n) ≥ 0 and δ = δ(n) > 0 satisfy t = o(ln n/ ln ln n) and t2 ln ln n/ ln n
= o(pδ). Let α̂t,p(n) be as defined in (1). If k = k(n) = ⌊α̂t,p(n)− δ⌋, then

P(α̂t(Gn,p) < k) = o(1).

Proof. Let Sn,t,k be the collection of t-sparse k-sets in Gn,p. By Lemma 6,

E(|Sn,t,k|) ≥ exp ((1 + o(1))δ ln(np)) . (6)

We use Janson’s Inequality (Theorem 2.18(ii) in [10]):

P(α̂t(Gn,p) < k) = P(|Sn,t,k| = 0) ≤ exp


−
E2(|Sn,t,k|)

E(|Sn,t,k|)+∆


, (7)

where

∆ =


A,B⊆[n],1<|A∩B|<k

P(A, B ∈ Sn,t,k).

Wewill split this sum into three sums according to the size of |A∩ B| which we denote by ℓ. In partic-
ular, let p(k, ℓ) be the probability that two k-subsets of [n] that overlap on exactly ℓ vertices are both
in Sn,t,k. Thus,

∆ =

k−1
ℓ=1

n
k

k
ℓ


n − k
k − ℓ


p(k, ℓ).

For ℓ ∈ {1, . . . , k − 1}, let f (ℓ) =
 n
k

  k
ℓ

 
n−k
k−ℓ


p(k, ℓ). We set λ1 = εk/2 and λ2 = (1 − ε)k. (In

fact, we shall assume throughout our proof that ε < 1/4; note that this assumption still implies the
lemma.) Now we write∆ = ∆1 +∆2 +∆3 where the parameters λ1 and λ2 determine the ranges of
the three sums into which we decompose∆:

∆1 =


1≤ℓ<λ1

f (ℓ), ∆2 =


λ1≤ℓ<λ2

f (ℓ), and ∆3 =


λ2≤ℓ<k

f (ℓ).

We will show that for i ∈ {1, 2, 3} we have

∆i = o


E2(Sn,t,k)

.

So then the result follows from (7).
To bound∆i for each i ∈ {1, 2, 3}, we consider two arbitrary k-subsets A and B of [n] that overlap

on exactly ℓ vertices, i.e. |A∩ B| = ℓ, and estimate p(k, ℓ) by conditioning on the set E[A∩ B] of edges
induced byA∩B. In each of the three regimes,weneed slightly different techniques to estimate p(k, ℓ).
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Bounding ∆1
To bound∆1, we write

p(k, ℓ) = P(A, B ∈ Sn,t,k) = P(A ∈ Sn,t,k | B ∈ Sn,t,k) · P(B ∈ Sn,t,k).

The property of having average degree atmost t ismonotone decreasing, so the conditional probability
that A ∈ Sn,t,k is maximised when E[A ∩ B] = ∅. Thus

P(A ∈ Sn,t,k | B ∈ Sn,t,k) ≤ P(A ∈ Sn,t,k | E[A ∩ B] = ∅)

≤
P(A ∈ Sn,t,k)

P(E[A ∩ B] = ∅)
= b


ℓ
2


P(A ∈ Sn,t,k)

implying that p(k, ℓ) ≤ b

ℓ
2


P2(A ∈ Sn,t,k).

We have though that for n large enough
k
ℓ

 
n−k
k−ℓ


 n
k

 ≤ 2


k
ℓ


· nk−ℓ/(k − ℓ)!

nk/k!
= 2


k
ℓ

2
ℓ!

nℓ
.

Thus

∆1 ≤

n
k


P(A ∈ Sn,t,k)

2 
2


2≤ℓ<λ1


k
ℓ

2
ℓ!

nℓ
b

ℓ
2


.

We set

sℓ :=


k
ℓ

2
ℓ!

nℓ
b

ℓ
2


.

Thus we write

∆1 ≤ 2 · E2(Sn,t,k)


2≤ℓ<λ1

sℓ.

We will show that this sum is o(1).
The following claim regards the monotonicity of {sℓ} for ℓ in the range of interest.

Claim 8. If n is large enough, then for any 2 ≤ ℓ < λ1 we have sℓ+1/sℓ < 1/2.

Proof. We have

sℓ+1

sℓ
=
(k − ℓ)2

ℓ+ 1
bℓ

n
≤

k2

n
bλ1 = O


nε log2 n

np2


,

as bλ1 = O(nε). But as p ≥ n−1/2+ε , we have np2 ≥ n2ε and, therefore, sℓ+1/sℓ < 1/2, for large enough
n. �

Thus the sum


ℓ<λ1
sℓ is essentially determined by its first term s2:

ℓ<λ1

sℓ ≤ 2s2.

But we have

s2 = O

k4

n2


= O


log4 n
n2p4


= O


n2 log

4 n
(np)4


= o(1),

if p ≥ n−1/2+ε .
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Bounding ∆2
The bound on∆2 =


λ1≤ℓ<λ2

f (ℓ) involves amore thorough consideration of the number of edges
in the overlap between the sets A and B.

Let us fix some integer ℓ such that λ1 ≤ ℓ < λ2. We will show that f (ℓ)/E2(|Sn,t,k|) = o(1/k).
With A, B being two sets of vertices, each having size k, that overlap on ℓ vertices, we have

f (ℓ)
E2(|Sn,t,k|)

=


n−k
k−ℓ

 
k
ℓ


 n
k

 P(A, B ∈ Sn,t,k)

P2(A ∈ Sn,t,k)
. (8)

The first ratio on the right-hand side can be bounded for n sufficiently large as follows:
k
ℓ

 
n−k
k−ℓ


 n
k

 ≤ 2k+1 nk−ℓ/(k − ℓ)!

nk/k!
≤ 2k+1


k
ℓ


ℓ!

nℓ
≤ 22k+1


k
n

ℓ
. (9)

We now give estimates on P(A, B ∈ Sn,t,k) as well as on P(A ∈ Sn,t,k). For each set A of vertices, let
E[A] denote the set of edges with both their endvertices in A, and let e(A) = |E[A]|. Also, let e′(A, B)
= e(A)− e(A ∩ B), the number of edges in E[A] \ E[A ∩ B]. Setting I = A ∩ B, we have

P(A, B ∈ Sn,t,k) ≤ P(e(I) ≤ kt/2) · P2(e′(A, B) ≤ kt/2).

We will bound the two probabilities on the right-hand side of the above inequality using Lemma 2.
As e(I) ∈ Bin


ℓ

2


, p

and e′(A, B) ∈ Bin


k
2


−


ℓ

2


, p

, with xI = kt/(ℓ(ℓ − 1)) and xA,B =

kt/(k(k − 1)− ℓ(ℓ− 1))we have

P(e(I) ≤ kt/2) = exp


−


ℓ

2


Λ∗ (xI)+ O (ln k)


P(e′(A, B) ≤ kt/2) = exp


−


k
2


−


ℓ

2


Λ∗

xA,B


+ O (ln k)


.

Now, note that both xI and xA,B are o(p). This holds since xI and xA,B are O(t/k), k = Θ(ln n/p) and
t = o(ln n/ ln ln n). But now we can apply Lemma 5 to obtain

P(e(I) ≤ kt/2) · P2(e′(A, B) ≤ kt/2)

= exp


−


ℓ

2


ln b(1 + o(1))− 2


k
2


−


ℓ

2


ln b(1 + o(1))+ O (ln k)


= exp


ℓ

2


ln b − 2


k
2


ln b + o(k2p)


. (10)

Similarly,

P(A ∈ Sn,t,k) = exp


−


k
2


ln b + o(k2p)


. (11)

Hence the estimates in (10) and (11) yield

P(A, B ∈ Sn,t,k)

P2(A ∈ Sn,t,k)
= exp


ℓ

2


ln b + o(k2p)


.

Now, combining the above together with (9) and the right-hand side of (8), we obtain

f (ℓ)
E2(|Sn,t,k|)

= exp


−ℓ ln n + ℓ ln k +


ℓ

2


ln b + o(k2p)


= exp


−ℓ


ln n − ln k −

ℓ ln b
2

+ o(kp)


. (12)
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We will show that ln n − ln k − ℓ ln b/2 → ∞ as n → ∞, for any λ1 ≤ ℓ < λ2. Recall that k =

(2+ o(1)) logb(np). Thus ln n− ln k = ln (n ln b/(2 ln(np)))+ o(1) ≥ ln (np)+ O(ln ln n) as ln b ≥ p.
Also, as ℓ < (1 − ε)k, we have ℓ ln b/2 < (1 − ε) ln(np)(1 + o(1)). Therefore

ln n − ln k −
ℓ ln b
2

> ε ln(np)+ o(ln n).

These two bounds substituted into (12) now imply that

f (ℓ)
E2(|Sn,t,k|)

= exp (−Ω(ℓ ln n)) , (13)

uniformly for all λ1 ≤ ℓ < λ2. But since ℓ ≥ εk/2, this bound is o(1/k) and therefore ∆2 =

o


E2(Sn,t,k)

.

Bounding ∆3
Next, to bound∆3, the aim here is also to show that for ℓ ≥ λ2 we have

f (ℓ)
E2(|Sn,t,k|)

= o

1
k


.

This is the portion of∆ that is the most difficult to control. It is also the regime in which the condition
p ≥ n−1/3+ε is required. (We only required the weaker condition p ≥ n−1/2+ε to bound ∆1 and ∆2.)
In this regime, we need to separately treat two sub-regimes which are divided according to the edge
count in the overlap.

Let us consider an arbitrary ℓ ≥ λ2 and write

p(k, ℓ) =

⌊tk/2⌋
m=0

p(k, ℓ,m)

where p(k, ℓ,m) = P(A, B ∈ Sn,t,k∧e(A∩B) = m). (Note thatm ≤ tk/2 or trivially both A, B ∉ Sn,t,k.)
We split this summation in two:

p(k, ℓ) =

µ
m=0

p(k, ℓ,m)+

⌊tk/2⌋
m=µ+1

p(k, ℓ,m) =: p1(k, ℓ)+ p2(k, ℓ), (14)

withµ = max{0, ⌊tk/2− (k− ℓ)(k+ ℓ− 1)ψp/2⌋}, whereψ is the unique 0 < ψ = ψ(n) < 1 such
thatΛ∗(ψp) = (1 − ξ) ln b, for some fixed 0 < ξ < 1 yet to be specified.

That ψ exists is guaranteed by the fact that Λ∗ is strictly decreasing on [0, p), Λ∗(0) = ln b and
Λ∗(p) = 0. We now show that ψ is bounded away from 0. We have that ψ satisfies

ξ = 1 −
Λ∗(ψp)

ln b
= 1 −


ψp
ln b

lnψ +
1 − ψp
ln b

ln
1 − ψp

q


= ψp +

ψp
ln b

ln
1
ψ

−
(1 − ψp) ln(1 − ψp)

ln b

≤ ψp +
ψp
ln b

ln
1
ψ

+
ψp
ln b

since (1 − x) ln(1 − x) ≥ −x for 0 < x < 1. Thus, using also p ≤ ln b,

ξ ≤ ψp + ψ ln
1
ψ

+ ψ ≤ ψ(2 + lnψ).

But x(2 + ln x) → 0 as x ↘ 0. Hence there exists δ = δ(ξ) > 0 such that ψ ≥ δ uniformly over p.
Let us give a bound on p1(k, ℓ). We may assume that (k − ℓ)(k + ℓ − 1)ψp ≤ tk, or else the

sum is empty. It will suffice to consider E[A ∩ B] alone. Observe that e(A ∩ B) is binomially dis-
tributed with parameters


ℓ

2


and p. But ℓ ≥ λ2 = Ω(ln n/p), and so since t = o(ln n) it follows
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that µ ≤ tk/2 = o

p

ℓ

2


. Thus, by Lemma 2,

p1(k, ℓ) ≤ P(e(A ∩ B) ≤ µ) ≤ exp


−


ℓ

2


Λ∗


µ


ℓ

2


= exp


−


ℓ

2


Λ∗


tk

ℓ(ℓ− 1)
−
(k − ℓ)(k + ℓ− 1)ψp

ℓ(ℓ− 1)


.

By Lemma 4, since tk = o(pℓ(ℓ− 1)) and 0 ≤ (k − ℓ)(k + ℓ− 1)ψp ≤ tk,

p1(k, ℓ) ≤ exp


−


ℓ

2


Λ∗


tk

ℓ(ℓ− 1)


+ (1 + o(1))

(k − ℓ)(k + ℓ− 1)ψp
ℓ(ℓ− 1)

ln
pℓ(ℓ− 1)

tk


= exp


−


ℓ

2


Λ∗


tk

ℓ(ℓ− 1)


− (1 + o(1))


(k − ℓ)(k + ℓ− 1)

2
ψp ln

pℓ(ℓ− 1)
tk


. (15)

To estimate p2(k, ℓ), we need a finer argument in which we also consider the sets E[A] and E[B]
of edges induced by A and B, respectively. In particular, let X1 and X2 denote e′(A, B) (recall that this
is e(A)− e(A ∩ B)) and e′(B, A), respectively. Note that X1 and X2 are binomially distributed with pa-
rameters ℓ(k − ℓ) +


k−ℓ
2


= (k − ℓ)(k + ℓ − 1)/2 and p. Furthermore, X1 and X2 and e(A ∩ B) are

independent. Therefore,

p2(k, ℓ) ≤ P(e(A ∩ B) ≤ tk/2) · P2(X1 ≤ tk/2 − µ− 1).

By Lemma 2, (since tk/2 = o

p

ℓ

2


),

P(e(A ∩ B) ≤ tk/2) ≤ exp


−


ℓ

2


Λ∗


tk

ℓ(ℓ− 1)


and (as 0 < ψ < 1)

P(X1 ≤ tk/2 − µ− 1) ≤ P

X1 ≤

(k − ℓ)(k + ℓ− 1)
2

ψp


≤ exp


−
(k − ℓ)(k + ℓ− 1)

2
Λ∗(ψp)


= exp


−
(k − ℓ)(k + ℓ− 1)

2
(1 − ξ) ln b


.

We conclude that

p2(k, ℓ) ≤ exp


−


ℓ

2


Λ∗


tk

ℓ(ℓ− 1)


−
(k − ℓ)(k + ℓ− 1)

2
(2 − 2ξ) ln b


. (16)

Comparingwith (15), since tk = o(pℓ(ℓ−1)) andψ = Θ(1), we notice that p1(k, ℓ) is asymptotically
smaller than the above upper bound on p2(k, ℓ).

Now, from k ≥ ℓ ≥ λ2 it follows that

ℓ(ℓ− 1) ≥ (k − ℓ)(k + ℓ− 1)

for n sufficiently large. Indeed, (k − ℓ)(k + ℓ − 1) ≤ k2 − ℓ2 ≤ k2 − (1 − ε)2k2 ≤ 2εk2; and also
ℓ(ℓ−1) ≥ (1−ε)2k2 −k ≥ (1−2ε)k2 for n sufficiently large. As ε < 1/4, the above inequality holds.
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Thus, since t = o(p(k − 1)), we obtain using Lemma 4 that
ℓ

2


Λ∗


tk

ℓ(ℓ− 1)


=


ℓ

2


Λ∗


1 +

(k − ℓ)(k + ℓ− 1)
ℓ(ℓ− 1)


t

k − 1


=


ℓ

2


Λ∗


t

k − 1


− (1 + o(1))


ℓ

2


(k − ℓ)(k + ℓ− 1)t

ℓ(ℓ− 1)k
ln

pk
t

=


ℓ

2


Λ∗


t

k − 1


− (1 + o(1))

(k − ℓ)(k + ℓ− 1)
2

p
ln(pk/t)
pk/t

=


ℓ

2


Λ∗


t

k − 1


− o


(k − ℓ)(k + ℓ− 1)

2
ln b


. (17)

Furthermore, sinceΛ∗ is strictly decreasing on [0, p) andΛ∗(0) = ln b,
ℓ

2


Λ∗


t

k − 1


=


k
2


−
(k − ℓ)(k + ℓ− 1)

2


Λ∗


t

k − 1


=


k
2


Λ∗


t

k − 1


−
(k − ℓ)(k + ℓ− 1)

2
Λ∗


t

k − 1


≥


k
2


Λ∗


t

k − 1


−
(k − ℓ)(k + ℓ− 1)

2
ln b. (18)

Combining (16)–(18), we conclude that

p2(k, ℓ) ≤ exp


−


k
2


Λ∗


t

k − 1


− (1 + o(1))

(k − ℓ)(k + ℓ− 1)
2

(1 − 2ξ) ln b

. (19)

As remarked earlier, p1(k, ℓ) is asymptotically smaller than the upper bound for p2(k, ℓ). Hence it
suffices to show that n

k

  k
ℓ

 
n−k
k−ℓ


p2(k, ℓ)

E2(|Sn,t,k|)
= o


1
k


.

Recall that with A being a set of vertices of size kwe have

E(|Sn,t,k|) =

n
k


P(A ∈ Sn,t,k) =

n
k


exp


−


k
2


Λ∗


t

k − 1


+ O(ln k)


,

where the last equality follows from Lemma 3. Thus, using (19), we have n
k

  k
ℓ

 
n−k
k−ℓ


p2(k, ℓ)

E2(|Sn,t,k|)
=


k
ℓ

 
n−k
k−ℓ


E(|Sn,t,k|)

exp


−(1 + o(1))
(k − ℓ)(k + ℓ− 1)

2

× (1 − 2ξ) ln b + O(ln k)

. (20)

Now 
k
ℓ

 
n − k
k − ℓ


≤ (kn)k−ℓ.

Thus using the lower bound on E(|Sn,t,k|) given in (6) we obtain

ln

 n
k

  k
ℓ

 
n−k
k−ℓ


p2(k, ℓ)

E2(|Sn,t,k|)
= (k − ℓ) ln(kn)− (1 + o(1))δ ln(np)− (1 + o(1))

×
(k − ℓ)(k + ℓ)

2
(1 − 2ξ) ln b + O(ln k). (21)
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Now, we have for n sufficiently large

(k − ℓ) ln(kn)− (1 + o(1))
(k − ℓ)(k + ℓ)

2
(1 − 2ξ) ln b

≤ (k − ℓ)


ln(nk)−

(2 − ε)k
2

(1 − 2ξ) ln b


≤ (k − ℓ)(ln(nk)− (2 − 2ε) ln(np)),

where in the last inequality we used a choice of ξ small enough as well as the fact that k ln b =

(1 + o(1))2 ln(np). But also k ≤ (1 + o(1))2 ln(np)/p, as ln b ≥ p. This implies that ln k ≤

ln ln(np)− ln p + O(1). Hence, for n sufficiently large,

(k − ℓ) ln(kn)− (1 + o(1))
(k − ℓ)(k + ℓ)

2
(1 − 2ξ) ln b

≤ (k − ℓ)(− ln n + ln ln(np)+ O(1)− 3 ln p + 2ε ln(np))
≤ (k − ℓ)(− ln n − 3 ln n−1/3+ε

+ 3ε ln(np)) ≤ 0,

where we used the condition p ≥ n−1/3+ε in the second last inequality. Substituting this into (21), we
obtain n

k

  k
ℓ

 
n−k
k−ℓ


p2(k, ℓ)

E2(|Sn,t,k|)
≤ exp (−(1 + o(1))δ ln(np)+ O(ln k)) .

But ln ln n/ ln n=o(pδ) and therefore ln ln n/p=o(δ ln(np)). On the other hand, ln k=O (ln(ln n/p)),
which implies that ln k = o(δ ln(np)). Therefore n

k

  k
ℓ

 
n−k
k−ℓ


p2(k, ℓ)

E2(|Sn,t,k|)
= o


1
k


,

as required. �
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Appendix

Proof of Lemma 4. We split the proof into two cases. First, if ε = −1, then

Λ∗


t

k − 1


−Λ∗


(1 + ε)t
k − 1


= Λ∗


t

k − 1


−Λ∗(0)

=
t

k − 1
ln

t
p(k − 1)

+


1 −

t
k − 1


ln

1 −
t

k−1

q
− ln

1
q

=
t

k − 1
ln

t
p(k − 1)

+


1 −

t
k − 1


ln

1 −

t
k − 1


−

t
k − 1

ln
1
q

=
t

k − 1
ln

qt
p(k − 1)

−
t

k − 1
+ O


t2

k2


= −(1 + o(1))

t
k
ln

pk
t

= (1 + o(1))
εt
k

ln
pk
t
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(where we used t = o(k) and the Taylor expansion of (1 − t/(k − 1)) ln(1 − t/(k − 1))). Otherwise,
−1 < ε ≤ 1 and

Λ∗


(1 + ε)t
k − 1


=


(1 + ε)t
k − 1


ln
(1 + ε)t
p(k − 1)

+


1 −

(1 + ε)t
k − 1


ln

k − 1 − (1 + ε)t
q(k − 1)

=
t

k − 1
ln
(1 + ε)t
p(k − 1)

+
εt

k − 1
ln
(1 + ε)t
p(k − 1)

+


1 −

t
k − 1


ln

k − 1 − (1 + ε)t
q(k − 1)

−
εt

k − 1
ln

k − 1 − (1 + ε)t
q(k − 1)

= Λ∗


t

k − 1


+

t
k − 1

ln(1 + ε)+


1 −

t
k − 1


ln

1 −

εt
k − 1 − t


+

εt
k − 1

ln
q(1 + ε)t

p(k − 1 − (1 + ε)t)

and the lemma follows by observing that, by Taylor expansion,

t
k − 1

ln(1 + ε)+


1 −

t
k − 1


ln

1 −

εt
k − 1 − t


= O


ε2t
k


and

εt
k − 1

ln
q(1 + ε)t

p(k − 1 − (1 + ε)t)
= −(1 + o(1))

εt
k

ln
pk
t
. �

Proof of Lemma 5. Since (1 − x) ln(1 − x) = O(x) as x → 0,

Λ∗(x) = x ln

x
p


+ (1 − x) ln b + (1 − x) ln(1 − x)

= ln b

1 +

x
ln b

ln

x
p


+ O

 x
ln b


.

But p = Θ(ln b) and x = o(p), and the lemma follows. �
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