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ON BALANCED COLORING GAMES IN RANDOM

GRAPHS

LUCA GUGELMANN AND RETO SPÖHEL

Abstract. Consider the balanced Ramsey game, in which a player has
r colors and where in each step r random edges of an initially empty
graph on n vertices are presented. The player has to immediately as-
sign a different color to each edge and her goal is to avoid creating a
monochromatic copy of some fixed graph F for as long as possible. The
Achlioptas game is similar, but the player only loses when she creates
a copy of F in one distinguished color. We show that there is an infi-
nite family of non-forests F for which the balanced Ramsey game has a
different threshold than the Achlioptas game, settling an open question
by Krivelevich et al. We also consider the natural vertex analogues of
both games and show that their thresholds coincide for all graphs F , in
contrast to our results for the edge case.

1. Introduction

1.1. The balanced Ramsey game. Consider the following probabilistic
one-player game. Starting with the empty graph on n vertices, in each
step r new edges are sampled uniformly at random from all non-edges and
inserted into the graph. The player – we call her Painter – has r colors
at her disposal and must color these r edges immediately subject to the
restriction that each color is assigned to exactly one of the r edges. Her
goal is to avoid creating a monochromatic copy of some fixed graph F for
as long as possible. We refer to this game as the balanced Ramsey game; it
was introduced by Marciniszyn et al. in [5].

The typical duration of this game when played with an optimal strategy
is formalized by the notion of its threshold function N0(F, r, n). Specifically,
we say that N0(F, r, n) is a threshold function for the game (for a fixed graph
F and a fixed integer r ≥ 2) if for any function N(n) ≪ N0

1, Painter can
a.a.s.2 ‘survive’ for at least N steps using an appropriate strategy, and if
for any N(n) ≫ N0, Painter a.a.s. cannot survive for more than N steps
regardless of her strategy. Note that this defines the threshold function
only up to constant factors; therefore, whenever we compare two threshold
functions and e.g. say that one is strictly higher than the other this refers
to their orders of magnitude.

Standard arguments show that such a threshold function always exists for
games of this type (see [6, Lemma 2.1]). Therefore the goal when studying
these games usually is to determine their threshold function explicitly. In [5],
Marciniszyn et al. determined the threshold function of the balanced Ramsey

1We write f ≪ g for f = o(g) and f ≫ g for f = ω(g). All our asymptotics are for
n → ∞.

2asymptotically almost surely, i.e. with probability tending to 1 as n tends to infinity
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game for the case when F is a cycle of arbitrary fixed length, and r = 2 colors
are available. For example, the threshold of the balanced Ramsey game when
F = C3 is a triangle and r = 2 was shown to be N0(C3, 2, n) = n6/5. More
recently, Prakash et al. [8] extended these results to an arbitrary number of
colors r ≥ 2. In particular, their work yields the first threshold results for
the case where F = Kℓ is a complete graph of size at least 4 (and r is large
enough; specifically, their result requires r ≥ ℓ).

1.2. The Achlioptas game. A similar game to the one above was first
studied by Krivelevich et al. in [3]. For the purposes of this paper we shall
refer to it simply as the Achlioptas game. In this game we start with an
empty graph on n vertices. In each step, r edges chosen uniformly at random
from all edges never seen before are revealed. The player has to choose
exactly one of these edges for inclusion in the graph; the remaining r − 1
edges are discarded. The player’s goal is to avoid creating a copy of some
fixed graph F for as long as possible. Note that this can be seen as a balanced
Ramsey game with relaxed rules such that the player only needs to worry
about copies of F in the first color and can ignore the other r− 1 colors. As
an immediate consequence, for any F and r the threshold of the Achlioptas
game is an upper bound on the threshold of the balanced Ramsey game.

Mütze et al. [7] recently determined the general threshold function of
the Achlioptas game, valid for any fixed graph F and any fixed integer
r ≥ 2. The general threshold formula turns out to be considerably more
complicated than the preliminary results of [3] suggest.

It follows from known results that if F is e.g. a star or a path, the balanced
Ramsey and the Achlioptas game have different thresholds (see Section 5
for an example). However, for all non-forests F where both thresholds are
known (i.e. for all cases covered by Prakash et al. [8]), the two thresholds
coincide, and so far it was unknown whether in fact the two thresholds
coincide for any non-forest F and any r ≥ 2. This question was raised
explicitly in Krivelevich et al. [4]. We answer this question negatively in
this work.

Theorem 1. There is an infinite family of non-forests F for which, for any
fixed integer r ≥ 2, the balanced Ramsey game has a strictly lower threshold
than the Achlioptas game.

The simplest non-forest graph F for which we show that the two online
thresholds differ consists of three triangles joined at a common vertex, cfr.
Figure 2(a) on page 14.

Theorem 1 is in contrast with known results on the offline problems cor-
responding to the two online games discussed here: As shown in [4], the two
offline problems have the same threshold for ‘almost all’ non-forests F , in
particular for ‘most’ graphs of the infinite family from Theorem 1.3

1.3. Vertex analogues. Both the balanced Ramsey and the Achlioptas
game have a natural vertex analogue, where the player is presented with r
new vertices (instead of edges) in each step. At the start of these games, a

3The result is proven for all non-forests F that have a strictly 2-balanced subgraph
H 6= K3.
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random graph G(n, p) on vertex set {v1, . . . , vn} is generated, hidden from
the player’s view, by including each of the

(

n
2

)

possible edges with some fixed
probability p = p(n) independently. We assume that r divides n. In each
step of the game, the r next consecutive vertices are revealed, along with all
edges induced by the vertices revealed so far. Thus after i steps, the player
sees exactly the random edges induced by v1, . . . , vir.

In the balanced Ramsey game the player has to assign each of r available
colors to exactly one of the r new vertices at each step, without completing
a (vertex-)monochromatic copy of some fixed graph F . In the Achlioptas
game, she has to select one of the r new vertices, and the r − 1 remaining
vertices are discarded along with all incident edges. Again the player’s goal
is to avoid creating a copy of some fixed graph F .

In both cases we are interested in explicit threshold functions p0 = p0(F, r, n)
such that (i) for any function p(n)≪ p0 there is a strategy which a.a.s. al-
lows the player to color (resp. choose from) all n vertices without creating
a (monochromatic) copy of F , and (ii) for any p(n) ≫ p0 every possible
player strategy a.a.s. fails to do so. (The mere existence of such threshold
functions can again be shown similarly to [6, Lemma 2.1].)

Prakash et al. [8] proved results analogous to those discussed above for
the edge-coloring setting also for the vertex case. Moreover, also the results
of Mütze et al. [7] for the Achlioptas game translate with minimal changes
to the vertex setting, even though this is not made explicit in their work.
(We will elaborate on this in Section 2 below and in the Appendix.) To
sum up, in the literature the vertex and the edge case of the two games are
equally well understood, and the known results for them are in complete
analogy to each other.

As we shall see, this pattern breaks down in the general case: We prove
that in the vertex case the thresholds of the balanced Ramsey and the
Achlioptas game coincide for all graphs F and all r ≥ 2. This is in con-
trast with our result for the edge case given in Theorem 1.

Theorem 2 (Main result). For all graphs F and all r ≥ 2, the vertex
versions of the balanced Ramsey game and the Achlioptas game have the
same threshold.

We give the explicit threshold formula of the two games in Section 2
below.

1.4. Organization of this paper. Recall that the threshold of the (ver-
tex) Achlioptas is always an upper bound on the threshold of the (vertex)
balanced Ramsey game. Hence to prove Theorem 2 it suffices to give an up-
per bound on the threshold of the vertex Achlioptas game and a matching
lower bound on the vertex balanced Ramsey game.

In Section 2 we outline how the results of Mütze et al. [7] on the edge
Achlioptas game, including their upper bound proof, translate to the vertex
setting. The proofs for these results are given in the Appendix, as they follow
their edge counterparts quite closely and are not the main contribution of
this work. In Section 3, we adapt some key concepts from [7] to the vertex
setting. In Section 4, we then use these to prove the desired matching lower
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bound for the vertex balanced Ramsey game. Finally, we prove Theorem 1
concerning the edge case in Section 5.

2. On the vertex Achlioptas game

In this section we adapt the formalism and the results of Mütze et al.
[7] from the edge to the vertex case. The proofs are very similar; and we
reproduce them in the Appendix. We also refer the reader to [7] for a more
in-depth discussion of the intuition behind our threshold formulas.

A (vertex-)ordered graph is a pair (H,π), where H is a graph, h := v(H),
and π : V (H)→ {1, . . . , h} is an ordering of the vertices of H, conveniently
denoted by its preimages, π = (π−1(1), . . . , π−1(h)). In the context of the
vertex Achlioptas or balanced Ramsey game, we interpret the ordering π =:
(u1, . . . , uh) as the order in which the vertices of H appeared in the process,
where uh is the vertex that appeared first (the “oldest” vertex) and u1 is the
vertex that appeared last (the “youngest” vertex). We denote by Π(V (H))
the set of all possible orderings of the vertices of H, and by

S(F ) :=
{

(H,π) | H ⊆ F ∧ π ∈ Π(V (H))
}

the set of all ordered subgraphs of F . For some ordered graph (H,π) and a
subgraph J ⊆ H, we denote by π|J the order on the vertices of J induced
by π. Given an ordered graph (H,π), π = (u1, . . . , uh), we denote by H \
{u1, . . . , ui} the graph obtained from H by removing the vertices u1, . . . , ui
and all edges that contain at least one one of these vertices. (In other words,
H \ {u1, . . . , ui} is the subgraph of H induced by the vertices ui+1, . . . , uh.)
We use u ∈ H as a shorthand notation for u ∈ V (H).

For any graph H, we use the notations e(H) := |E(H)| and v(H) :=
|V (H)|. For any nonempty ordered graph (H1, π), π = (u1, u2, . . . , uh),
any sequence of subgraphs H2, . . . ,Hh ⊆ H1 with Hi ⊆ H1 \ {u1, . . . , ui−1}
and ui ∈ Hi for all 2 ≤ i ≤ h, and any integer r ≥ 2 define coefficients
ci = ci((H1, π),H2, . . . ,Hh, r) recursively by

c1 := r,

ci := (r − 1) ·
i−1
∑

j=1

cj1{ui∈Hj}, 2 ≤ i ≤ h
(1)

(where 1{ui∈Hj} = 1 if ui ∈ Hj and 1{ui∈Hj} = 0 otherwise), and set

(2) dr∗(H1, π) := max
H2,...,Hh

∀i≥2:Hi⊆H1\{u1,...,ui−1}∧ui∈Hi

∑h
i=1 cie(Hi)

1 +
∑h

i=1 ci
(

v(Hi)− 1
)
.

Furthermore, we set for any integer r ≥ 2 and any nonempty graph F ,

(3) mr∗(F ) := min
π∈Π(V (F ))

max
H1⊆F

dr∗(H1, π|H1).

With these notations and definitions, the main result of [7] translates to
the following statement for the vertex Achlioptas case:

Theorem 3. Let F be a fixed nonempty graph, and let r ≥ 2 be a fixed
integer. Then the threshold of the vertex Achlioptas game with parameters
F and r is

p0(F, r, n) = n−1/mr∗(F ).
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In particular, if p(n)≫ n−1/mr∗(F ), the player a.a.s. loses the vertex Achliop-
tas game with parameters F and r, regardless of her strategy.

As discussed in the introduction, this result also yields an upper bound
of n−1/mr∗(F ) on the threshold of the vertex balanced Ramsey game with
parameters F and r. We will prove a matching lower bound in the next
section. We now present an alternative formulation of Theorem 3 that is
more convenient for this lower bound proof. Again we refer to [7] for a
discussion of the advantages of this alternative viewpoint.

Given an ordered graph (H,π), π = (u1, . . . , uh), we use H \ u1 as a
shorthand notation for H \ {u1}, and π \ u1 as a shorthand notation for
π|H\{u1}. As usual we denote for u ∈ V (H) by degH(u) the degree of u
in H.

For a fixed integer r ≥ 2 and a fixed real value 0 ≤ θ ≤ 2 we recursively
define for any ordered graph (H,π), π = (u1, . . . , uh), the following quantity:
(4)

λr,θ(H,π) :=































0, if v(H) = 0

1 +
(

λr,θ(H \ u1, π \ u1)− θ · degH(u1)
)

+ (r − 1) · min
J⊆H
u1∈J

(

λr,θ(J \ u1, π|J\u1
)− θ · degJ(u1)

)

,

otherwise.

We further define for r and θ as before and any F the quantity

(5) Λr,θ(F ) := max
π∈Π(V (F ))

min
H⊆F

λr,θ(H,π|H ).

It is straightforward to check that as a function of θ for a fixed r and a
fixed nonempty graph (H,π) respectively F , both λr,θ(H,π) and Λr,θ(F )
are continuous, piecewise linear with integer coefficients, and non-increasing.
Furthermore, both functions have a unique rational root.

Analogously to [7] one can prove:

Theorem 4. Let F be a fixed nonempty graph, and let r ≥ 2 be a fixed
integer. Let θ∗ = θ∗(F, r) be the unique solution of

(6) Λr,θ(F )
!
= 0,

where Λr,θ(F ) is defined in (4) and (5). Then we have

mr∗(F ) =
1

θ∗(F, r)
.

Consequently, the threshold of the vertex Achlioptas game with parameters
F and r can be written as

p0(F, r, n) = n−θ∗(F,r).

3. r-matched graphs

In this section we adapt some key notions concerning r-(edge-)matched
graphs introduced in [4] and [7] to the vertex setting studied here. We will
need these concepts in our proof of a lower bound on the vertex balanced
Ramsey threshold.
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Definition 5 (r-matched graph). An r-(vertex-)matched graph G = (V,E,K)
is a (simple, undirected) graph with vertex set V and edge set E together with
a partition K of V into sets of size r, the r-sets. With κ(G) := |K| = |V |/r
we denote the number of r-sets of G. We refer to the (non-r-matched) graph
G′ = (V,E) as the underlying graph of G.

We extend standard notions like graph isomorphism, subgraph contain-
ment etc. to r-matched graphs in the obvious way.

Recall that the vertex Achlioptas and vertex balanced Ramsey game is
played on a binomial random graph G(n, p) on vertex set {v1, . . . , vn} that
is initially hidden from the player’s view and revealed r vertices at a time.
We denote by Gi the graph induced by {v1, . . . , vir} (i.e. the graph visi-
ble to the player after i steps), viewed as an (uncolored) r-matched graph
with partition K = {{v1, . . . , vr}, {vr+1, . . . , v2r}, . . . , {v(i−1)r+1, . . . , vir}}.
In particular, Gn/r is the random graph G(n, p) generated before the game
starts, viewed as an r-matched graph with the obvious partition. We denote
a generic instance of such a random r-matched graph by Gr(n, p) in the
following.

In our lower bound proof we will need the following simple lemma.

Lemma 6. Let r ≥ 2 be a fixed integer, and let F be a fixed r-matched graph
with at least one edge. Then the expected number of copies of F in Gr(n, p)

is Θ(nκ(F )pe(F )).

Proof. There are
( n/r
κ(F )

)

· Θ(1) = Θ(nκ(F )) possible occurrences of F in

Gr(n, p), and each of them appears with probability pe(F ). �

For r ≥ 2, any r-matched graph F and 0 ≤ θ ≤ 2 let

(7) µr,θ(F ) := κ(F ) − θ · e(F ).

Note that, by the above lemma, for p := n−θ the expected number of copies
of F in Gr(n, p) is of order nµr,θ(F ).

4. A matching lower bound on the vertex balanced Ramsey

threshold

In this section we prove the main contribution of this work, a lower bound
on the threshold of the balanced Ramsey game that matches the upper
bound given by Theorem 3. In view of Theorem 4, it suffices to prove the
following statement.

Theorem 7. Let F be a fixed nonempty graph, and let r ≥ 2 be a fixed
integer. Let θ∗ = θ∗(F, r) be the unique solution of

(8) Λr,θ(F )
!
= 0,

where Λr,θ(F ) is defined in (4) and (5). Then for all p≪ n−θ∗ there exists
a strategy such that Painter can a.a.s. win the vertex balanced Ramsey game
with parameters F and r.

We now describe the general coloring strategy for which we will prove
Theorem 7. The strategy is a natural extension of the one proposed in [7] for
the (edge or vertex) Achlioptas game; and we use very similar notations and
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conventions in the following. Note however that the analogous extension
of the edge Achlioptas strategy fails to yield a similar lower bound, cfr.
Theorem 1 and its proof in Section 5.

Crucially, our strategy keeps track of the order in which copies of sub-
graphs appear on the board. We say that the board contains a (monochro-
matic) copy of (H,π), π = (u1, . . . , uh), if it contains a (monochromatic)
subgraph isomorphic to H whose vertices appeared in the order specified by
π (with uh being the first and u1 being the last vertex to appear).

Let r ≥ 2 and 0 ≤ θ ≤ 2 be arbitrary but fixed. (Eventually we will
set θ = θ∗(F, r), but for the moment it is more convenient to work with an
arbitrary θ.) We denote with C the set of available colors. Consider a fixed
step of the game, and let R denote the r-set presented to the player in that
step. (We have R = {v(i−1)r+1, . . . , vir} for some i, 1 ≤ i ≤ n/r.) Painter’s
decision in this step can be formalized as choosing a perfect matching in the
complete bipartite graphB with parts C andR, where each edge corresponds
to assigning a color to a vertex. We say that a perfect matching M closes
a copy of some graph (H,π) ∈ S(F ) if coloring R according to M creates a
monochromatic copy of (H,π) on the board (clearly, then the last vertex of
H according to π is in R).

Painter’s strategy now is the following: She partitions B into r disjoint
perfect matchings M1, . . . ,Mr arbitrarily. (By an easy application of the
marriage theorem, this is always possible.) For each of these matchings she
determines the value
(9)
d(M) := min

{

λr,θ(H,π) | (H,π) ∈ S(F ) ∧ M closes a copy of (H,π)
}

,

and chooses the matching for which this value is maximal.
If there is not a unique maximum, ties are broken according to the fol-

lowing somewhat technical criterion. Consider the directed graph G = G(F )
with vertex set S(F ) and arcs given by proper (ordered) subgraph inclu-
sion; i.e., from every vertex (H,π) there are arcs to all vertices (J, π|J ) with
J ( H. Clearly, G contains no directed cycles. We extend G to a graph
G′ = G′(F, r, θ) by first connecting every pair of distinct vertices (H1, π1),
(H2, π2) for which λr,θ(H1, π1) = λr,θ(H2, π2) with an (undirected) edge,
and then orienting these additional edges in such a way that the directed
graph G′ remains acyclic. (It is easy to see that this is always possible.)
Note that for every fixed λ0 ∈ R this yields a total ordering on all graphs
(H,π) with λr,θ(H,π) = λ0. We say that (H1, π1) is higher than (H2, π2)
in this ordering if the corresponding arc in G′ is directed from (H1, π1) to
(H2, π2).

Our strategy breaks ties according to this ordering: Whenever we have a
choice between different perfect matchings with the same value d(M), then
for each such matching we consider the set of ordered graphs
(10)
J (M) := argmin{λr,θ(H,π) | (H,π) ∈ S(F ) ∧M closes a copy of (H,π)}

and, among these, we let J(M) ∈ J (M) denote the graph that is lowest
in the total ordering for λ0 := d(M). Then we select the matching M for
which J(M) is highest in the total ordering for λ0.
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The next lemma states a witness graph invariant that is crucial in our
proof of Theorem 7. Note that the statement of the lemma is purely deter-
ministic.

Lemma 8. Let r ≥ 2 be an integer and 0 ≤ θ ≤ 2 be fixed. Following
the above vertex coloring strategy ensures that the following invariant is
maintained throughout the game for some vmax = vmax(F, r, θ):

The graph Gi contains a copy of some r-matched graph K ′ with v(K ′) ≤
vmax and

µr,θ(K
′) < 0,

or for every (H,π) ∈ S(F ) we have that each monochromatic copy of (H,π)
on the board is contained in an r-matched subgraph H ′ of Gi with v(H ′) ≤
vmax and

(11) µr,θ(H
′) ≤ λr,θ(H,π),

where µr,θ() and λr,θ() are defined in (7) and (4), respectively.

We postpone the proof of Lemma 8 and show first how it implies Theo-
rem 7.

Proof of Theorem 7. Let θ∗ = θ∗(F, r) be defined as in the theorem. We
show that the above strategy for θ := θ∗ allows Painter to win a.a.s. for all
p≪ p0(r, F, n) = n−θ∗.

By the definition of θ∗ (cf. (5) and (8)) we have that for each possible
ordering π of the vertices of F there exists some pair (H,π|H) ∈ S(F )
such that λr,θ∗(H,π|H) ≤ 0. According to Lemma 8 the following holds for
each such (H,π|H ): If the final board contains a monochromatic copy of
(H,π|H), then Gn/r contains an r-matched graph K ′ of size at most vmax

and µr,θ∗(K
′) < 0, or an r-matched graph H ′, again of size at most vmax,

satisfying

µr,θ∗(H
′) ≤ λr,θ∗(H,π|H ) ≤ 0 .

This yields a family W = W(F, π, r) of r-matched graphs W ′ satisfying
µ(W ′) ≤ 0 and v(W ′) ≤ vmax such that, deterministically, Gn/r contains a
graph from W if the final board contains a monochromatic copy of (F, π)
(and hence also a copy of (H,π|H)). It follows that Gn/r contains a graph
from W∗ = W∗(F, r) := ∪π∈Π(E(F ))W(F, π, r) if the final board contains a
monochromatic copy of F . Moreover, as no graph in W∗ has more than
vmax vertices, the size of W∗ is bounded by a constant depending only on
F and r. As Gn/r is distributed as a random r-matched graph Gr(n, p),
we obtain with Lemma 6, the definition of µr,θ∗() in (7), and the fact that

µr,θ∗(W
′) ≤ 0 for all W ′ ∈ W∗, that for p ≪ n−θ∗ the expected number of

copies of graphs from W∗ in Gn/r is of order

∑

W ′∈W∗

nκ(W ′)pe(W
′) ≪

∑

W ′∈W∗

nµr,θ(W
′) ≤ |W∗| · n0 = Θ(1).

It follows from Markov’s inequality that a.a.s. Gn/r
∼= Gr(n, p) contains no

r-matched graph from W∗. Consequently a.a.s. the final board contains no
monochromatic copy of F . �
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Ĵ

(H,π)

H ′
1

R

J5

J ′
5

J1
J2

J ′
2

J4

J ′
4

K ′
5

J3

J ′
3

(H,π)

(H\u1, π\u1) (J2\w2, π2\w2) (Jr\wr, πr\wr)· · ·

· · · · · · · · ·

T (H ′)

T (H ′
1) T (J ′

2) T (J ′
r)

Figure 1. Notations used in the proof of Lemma 8. The
arcs of T (H ′) drawn grey are either grey or red in the proof.

For the proof of Lemma 8 we require the following technical lemma con-
cerning the minimization in the definition of λr,θ(). The proof is straight-
forward and analogous to [7, Lemma 10].

Lemma 9. Let r ≥ 2 be an integer, 0 ≤ θ ≤ 2 fixed, and let F be a family
of ordered graphs with the property that if some (H,π), π = (u1, . . . , uh), is
in F then for every subgraph J ⊆ H with u1 ∈ J also (J, π|J ) is in F . Then
for λr,θ() as defined in (4) we have

(12) argmin
(H,π)∈F

λr,θ(H,π) = argmin
(H,π)∈F

(

λr,θ(H \u1, π \u1)− θ ·degH(u1)
)

⊆ F ,

and all ordered graphs (Ĵ , π̂), π̂ = (û1, . . . , ûj), in the family (12) satisfy

(13) λr,θ(Ĵ , π̂) = 1 + r ·
(

λr,θ(Ĵ \ û1, π̂ \ û1)− θ · degĴ(û1)
)

.

�

It remains to prove Lemma 8.

Proof of Lemma 8. To simplify the notation we drop the subscripts from λr,θ

and µr,θ and write λ and µ instead. For the reader’s convenience, Figure 1
illustrates the notations used throughout the proof. Let

ε = ε(F, r, θ) = min
{

|λ(H1, π1)− λ(H2, π2)| | (H1, π1), (H2, π2) ∈ S(F )

∧ λ(H1, π1) 6= λ(H2, π2)
}

(14)

and

(15) vmax = vmax(F, r, θ) = r(v(F )r/ε+1)|S(F )|+2 · v(F ) + r
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We prove the lemma by induction on the number of steps in the game.
We show that the statement about graphs (H,π) ∈ S(F ) is true as long as
the currently revealed graph Gi does not contain an r-matched subgraph K ′

with v(K ′) ≤ vmax and µ(K ′) < 0. Once such a subgraph K ′ appears we
are done as it will remain in the game to the end.

After the first step Painter has assigned a color to r vertices and the
inequality (11) is trivially satisfied: In each color we only have a single
vertex, which has a λ-value of 1 according to (4). Each of these vertices is
contained in the r-matched graph induced by the first r-set, whose µ-value
is at most 1, see (7).

Consider now an arbitrary step of the game, and denote with M1, . . . ,Mr

the matchings Painter considered in this step, where w.l.o.g. M1 is the
matching Painter chose. Assume that M1 completed a monochromatic copy
of (H \ u1, π \ u1) to a copy of (H,π) (where u1 denotes the first vertex of

π). Let Ĵ be some graph in argminJ⊆H,u1∈J λ(J, π|J ), and note that M1

also closed a copy of Ĵ . For 1 ≤ i ≤ r, let (Ji, πi) := J(Mi) as in the
definition of our strategy after (10). By definition (J1, π1) minimizes λ()
over all monochromatic ordered graphs in S(F ) that are closed by M1, see
(9). Furthermore, since Painter preferred M1 over the alternatives we have
λ(J1, π1) ≥ λ(Ji, πi), 2 ≤ i ≤ r. Taken together it follows that

(16) λ(Ĵ , π|Ĵ ) ≥ λ(J1, π1) ≥ λ(Ji, πi) for 2 ≤ i ≤ r.

Note that H, Ĵ or J1 might be the same graph.
For 1 ≤ i ≤ r, let wi denote the youngest vertex of Ji according to πi;

i.e., πi = (wi, . . .). Again by the definition of our strategy the graphs (Ji, πi)
minimize λ() among all graphs that are closed by Mi, 1 ≤ i ≤ r. As for
each index i the family of these graphs is subgraph-closed in the sense of
Lemma 9, it follows that

λ(Ji, πi) = 1 + r
(

λ(Ji \ wi, πi \ wi)− θ · degJi(wi)
)

.

Similarly, Lemma 9 also yields that

λ(Ĵ , π|Ĵ ) = 1 + r
(

λ(Ĵ \ u1, π|Ĵ\u1
)− θ · degĴ(u1)

)

.

Applying these transformations to equation (16) yields that for 1 ≤ i ≤ r

(17) λ(Ĵ \ u1, π|Ĵ\u1
)− θ · degĴ(u1) ≥ λ(Ji \ wi, πi \ wi)− θ · degJi(wi).

The copy of (H \u1, π \u1) on the board is monochromatic and by induc-
tion must be contained in some r-matched graphH ′

1 satisfying equation (11),
i.e.

(18) µ(H ′
1) ≤ λ(H \ u1, π \ u1) .

Similarly, the copies of (Ji \ wi, πi \ wi) that are completed to copies of
(Ji, πi), 2 ≤ i ≤ r on the board are also monochromatic, and hence they are
contained in r-matched graphs J ′

2, . . . , J
′
r with

(19) µ(J ′
i) ≤ λ(Ji \ wi, πi \ wi) for 2 ≤ i ≤ r.

By induction all these graphs contain at most vmax vertices. We can also
assume that µ(H ′

1) and µ(J ′
2), . . . , µ(J

′
r) are all non-negative, as otherwise
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we have found a graph K ′ with µ(K ′) < 0 and v(K ′) ≤ vmax and are done.
We will argue later that if the µ-values under consideration are indeed non-
negative, even stronger bounds on the number of vertices hold; specifically,
that

v(H ′
1) < vmax/r − 1

v(J ′
i) < vmax/r − 1 for 2 ≤ i ≤ r.

(20)

We now construct an r-matched graph H ′ for (H,π) satisfying the con-
ditions of the lemma. Denote with E1 a set of edges that completes the
considered copy of (H\u1, π\u1) to a copy of (H,π) (where the vertex corre-
sponding to u1 is in R and |E1| = degH(u1)). Similarly, for 2 ≤ i ≤ r denote
with Ei a set of edges that completes the considered copy of (Ji \wi, πi \wi)
to a copy of (Ji, πi) (where the vertex corresponding to wi is in R and
|Ei| = degJi(wi)).

Let H ′ be the r-matched graph obtained by the union of H ′
1, J

′
i and R

together with all the edges in Ei, 1 ≤ i ≤ r. Formally, we set

V (H ′) := R ∪ V (H ′
1) ∪

r
⋃

i=2

V (J ′
i)

E(H ′) := E(H ′
1) ∪

r
⋃

i=2

E(J ′
i) ∪

r
⋃

i=1

Ei

K(H ′) := {R} ∪ K(H ′
1) ∪

r
⋃

i=2

K(J ′
i) .

This is again a well-defined r-matched graph: All r-sets in H ′
1, J

′
i (2 ≤ i ≤ r)

and {R} are also r-sets of the current game board. As such they are either
equal or disjoint. Further V (H ′) is indeed the union of all r-sets in K(H ′),
and contains the endpoints of all edges in E(H ′).

Note that by (20) it follows that v(H ′) < vmax.
The r-matched graphs H ′

1, J
′
2, . . . , J

′
r are all formed by r-sets that ap-

peared before R in the process and are therefore vertex-disjoint from R. In
particular, they do not contain any edges from E1, . . . , Er. Furthermore, the
sets E1, . . . , Er are pairwise disjoint: if two such sets Ei1 , Ei2 involve the
same vertex from R, then together with this vertex they complete monochro-
matic copies of graphs (Ji \ wi, πi \ wi) in two different colors to copies of
(Ji, πi); i.e., the endpoints of the edges in Ei1 , Ei2 outside R are in two
different colors and are therefore distinct.

We define the r-matched graphs

K ′
i = J ′

i ∩
(

H ′
1 ∪

i−1
⋃

j=2

J ′
j

)

for 2 ≤ i ≤ r.

With the above observations and the definition of µ() in (7) we obtain that

µ(H ′) = 1 + µ(H ′
1)− θ · degH(u1)

+

r
∑

i=2

(

µ(J ′
i)− θ · degJi(wi)

)

−
r

∑

i=2

µ(K ′
i).

(21)
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We can assume that all µ(K ′
i) are non-negative, because if this is not the

case we have found a graph K ′ with µ(K ′) < 0 and v(K ′) ≤ vmax and are
done. With this observation and (18), (19) we obtain that

µ(H ′) ≤ 1 + λ(H \ u1, π \ u1)− θ · degH(u1)

+
r

∑

i=2

(

λ(Ji \ wi, πi \ wi)− θ · degJi(wi)
)

.

Combining this with equation (17) yields

µ(H ′) ≤ 1 + λ(H \ u1, π \ u1)− θ · degH(u1)

+ (r − 1) ·
(

λ(Ĵ \ u1, π|Ĵ\u1
)− θ · degĴ(u1)

)

.
(22)

By Lemma 9 and our choice of Ĵ the right hand side of the above equation
equals λ(H,π) as defined in (4); i.e., we have

µ(H ′) ≤ λ(H,π)

as desired.
It remains to prove that equation (20) holds. It suffices to show that given

µ(H ′) ≥ 0 we have v(H ′) ≤ vmax/r − 1.
In the above argument we constructed H ′ from copies of H ′

1 and J ′
i , or

in other words from graphs constructed equivalently to H ′ in prior steps of
the induction from (H \ u1, π \ u1) and (Ji \ wi, πi \ wi). To analyze this
construction we associate it with an edge-colored directed rooted tree T (H ′)
(cf. Figure 1). The vertices of T (H ′) correspond to monochromatic copies
of graphs from S(F ) on the board of the game (the same copy may appear
as a vertex multiple times). If (H,π) consists of a single vertex, then T (H ′)
consists just of the copy of (H,π) as the root. If this is not the case, then
T (H ′) consists of the copy of (H,π) as the root vertex joined to r subtrees
T (H ′

1) and T (J
′
i), 2 ≤ i ≤ r. The subtree T (H ′

1) is connected to the root by
a black arc and every T (J ′

i) is connected to the root by either a grey or red
arc according to the following criterion: Each such arc corresponds to an
instance of the inequalities in (16) somewhere along the induction. The arc is

grey if both inequalities are tight, i.e., if λ(Ĵ , π|Ĵ ) = λ(Ji, πi). If on the other

hand at least one of the inequalities is strict, i.e., if λ(Ĵ , π|Ĵ) > λ(Ji, πi),
then the arc is red. All arcs are oriented away from the root. Note that
T (H ′) captures only the logical structure of the inductive history of H ′.
Overlappings (captured by the graphs K ′

i in (21)) are completely ignored.
Every red arc of T (H ′) corresponds to a strict inequality in (16). In this

case, as a consequence of Lemma 9, equation (17) is also strict, with a differ-
ence of at least ε/r (cf. (14)) between the right and left side. Consequently,
each red arc contributes a term of −ε/r to the right side of (22) in the cor-
responding induction step. Accumulating these terms along the induction
yields that

(23) µ(H ′) ≤ λ(H,π)− ℓ(H ′) · ε/r,

where ℓ(H ′) denotes the number of red arcs in T (H ′).
Note that λ(H,π) ≤ v(F ) for all (H,π) ∈ S(F ). Thus if µ(H ′) ≥ 0,

then by (23) the tree T (H ′) has at most λ(H,π)r/ε ≤ v(F )r/ε many red
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arcs. We will show that, due to our tie-breaking rule involving the auxiliary
graph G′, this bound on the number of red arcs implies the claimed bound of
vmax/r− 1 on the number of vertices of H ′. To that end, we first show that
if two vertices of T (H ′) are connected by a (directed, i.e. descending) path
P that contains no red arcs, then these two vertices correspond to copies of
different ordered graphs (H1, π1), (H2, π2) ∈ S(F ).

Consider such a walk between two vertices (H1, π1) and (H2, π2). We can
map P to a directed walk P ′ in G′ as follows. The initial vertex of P ′ is
(H1, π1). For each black arc in P from a copy of some (H,π) ∈ S(F ) to a
copy of (H \u1, π\u1) we extend P ′ by an arc from (H,π) to (H \u1, π\u1).
This arc exists in G′ by subgraph containment. For each grey arc in P from
a copy of some graph (H,π) to a copy of some graph (Ji \ wi, πi \ wi) for
some 2 ≤ i ≤ r, we have

(24) λ(H,π) ≥ λ(Ĵ , π|Ĵ ) = λ(J1, π1) = λ(Ji, πi).

In G′ we can then walk between the first two graphs in the above equation
(assuming that they are different) because the second is contained in the
first. Further we can walk from the second to the third because (J1, π1) =
J(M1), and therefore by definition it must be lower in the ordering than

(Ĵ , π|Ĵ ), see the text just after (10). The walk between the last two graphs
in (24) is possible because Painter chose the matching M1, and by our tie-
breaking criterion this means that (J1, π1) = J(M1) is higher in the ordering
than (Ji, πi) = J(Mi). The last arc between (Ji, πi) and (Ji \wi, πi \wi) is in
G by subgraph containment. We extend P ′ by all these arcs as well (if any
two subsequent graphs in this walk are the same, then the corresponding
step in the walk is skipped). Proceeding in this manner we obtain a directed
walk P ′ in G′ from (H1, π1) to (H2, π2). As G′ is acyclic we must have
(H1, π1) 6= (H2, π2).

It follows that a (directed) path in T (H ′) that contains no red arcs has
at most |S(F )| many vertices. Since in total we have at most v(F )r/ε many
red arcs in T (H ′), it follows that the depth of T (H ′) is bounded by

(v(F )r/ε + 1)|S(F )| ,

and that consequently

v
(

T (H ′)
)

≤ 1 + r + r2 + · · ·+ r(v(F )r/ε+1)|S(F )| ≤ r(v(F )r/ε+1)|S(F )|+1.

Since each vertex of T (H ′) corresponds to at most v(F ) vertices of H ′ we
finally obtain that

v(H ′) ≤ r(v(F )r/ε+1)|S(F )|+1 · v(F )
(15)
= vmax/r − 1.

�

Remark 10. The reader might wonder where exactly an attempt to extend
the edge Achlioptas lower bound proof in the same way fails. The issue
arises with the definition of the graphs K ′

i that capture possible overlaps of
the r-matched graphs H ′

1, J
′
2, . . . , J

′
r. In the edge case it is not possible to

define these in such a way that the analogue of (21) holds.
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(a) The graph C3,3 (b) The graph C2+
3,3 (c) The graph C2∗

3,3, with its
center star dashed

Figure 2. A graph with different thresholds for the Achliop-
tas and the balanced Ramsey game.

5. The edge case

In this section we prove Theorem 1, our separation result for the edge
case.

As already mentioned, it is not hard to see that the Achlioptas game and
the balanced Ramsey game have different thresholds for certain forests. The
simplest example is the case where F is the star with three rays and r = 2:
By the pigeon-hole principle, in the balanced Ramsey game the player will
lose the game as soon as the board contains a star with five rays, which
by a standard result a.a.s. happens after Θ(n2−6/5) = Θ(n4/5) many steps
(see e.g. [2, Section 3.1]). Thus the threshold of the balanced Ramsey game

is bounded from above by n4/5. In the Achlioptas game with the same
parameters on the other hand, stars on 5 edges are not an issue, as typically
the player can simply choose not to pick more than 2 edges out of each such
star. Specifically, the results of [7] yield a strictly higher threshold of n6/7

for the Achlioptas game.
As it turns out, similar pigeon-hole problems as in the star example may

arise for more complex graphs as well. The simplest such example is given by
the graph C3,3 consisting of 3 triangles joined at one vertex, see Figure 2(a).

The results of [7] yield a threshold of n2−22/35 = n1.371... for the Achlioptas
game with this graph and r = 2. As we will see, the threshold of the
corresponding balanced Ramsey game is at most n1.36. The reason is that,
regardless of the strategy Painter uses, many copies of the graph C2+

3,3 colored

exactly as in Figure 2(b) will appear relatively early in the game. Once all
5 edges drawn dashed in Figure 2(c) have appeared in such a copy, by the
pigeon-hole principle Painter will have created a monochromatic copy of
F = C3,3. As C2∗

3,3 has 16 vertices and 25 edges, the upper bound resulting

from this argument is n2−16/25 = n1.36.
We will show that this argument generalizes to any graph F formed by

some number of cycles of the same length joined at a common vertex, and
to any number r ≥ 2 of colors.

Definition 11. Let Cℓ,k denote the graph obtained by joining k cycles of
length ℓ at one common vertex.
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We will prove:

Theorem 12. For all integers ℓ ≥ 3, k ≥ 3, and r ≥ 2, the threshold of the
the balanced Ramsey game with parameters Cℓ,k and r is strictly lower than
the threshold of the Achlioptas game with the same parameters.

We first give an upper bound on the threshold of the balanced Ramsey
game with parameters Cℓ,k and r. To do so we will use an offline result that
is very similar and can be proved completely analogously to [4, Theorem 15]
for the Achlioptas case. For any graph F with at least one edge, we let

(25) m2(F ) := max
H⊆F :v(H)≥3

e(H)− 1

v(H) − 2

if v(F ) ≥ 3, and m2(F ) = 1/2 otherwise (i.e., if F = K2). By Gr(n,m)
we denote a random r-edge-matched graph obtained by sampling a random
graph G(n,m) on n vertices with m edges uniformly at random, and then
partitioning the m edges into sets of size r uniformly at random (we assume
that m is divisible by r). Note that by symmetry the board of the edge
Achlioptas or balanced Ramsey game after m/r steps is distributed exactly
like Gr(n,m). A balanced coloring of Gr(n,m) is an edge-coloring that uses
each of the r available colors for exactly one edge in each r-set. Note that
in the balanced Ramsey game, the goal is to find such a balanced coloring
in an online setting. The following theorem concerns the same problem in
an offline setting.

Theorem 13. Let F be a fixed graph with at least one edge, and let c :
E(F ) → {1, . . . , r} be an arbitrary edge-coloring of F . There exist positive

constants C = C(F, r) and a = a(F, r) such that for m ≥ Cn2−1/m2(F )

with m ≪ n2, a.a.s. every balanced coloring of Gr(n,m) contains at least

anv(F )(m/n2)e(F ) many copies of F colored as specified by c. �

We now prove the desired upper bound on the balanced Ramsey threshold
for the graphs Cℓ,k.

Lemma 14. For all integers ℓ ≥ 3, k ≥ 3, and r ≥ 2, the threshold for the
balanced Ramsey game with parameters Cℓ,k and r is at most

NUB-bal(ℓ, k, r, n) := n
2− (r(ℓ−2)+1)(r(k−1)+1)+1

(r(ℓ−1)+1)(r(k−1)+1) .

Proof. Consider the graph obtained by joining one endpoint of r paths of
length ℓ − 1 in one common vertex and the other endpoint of each in a
second common vertex. We call this graph a petal and the two vertices
in which all paths meet the endpoints of the petal. We will refer to the
non-edge connecting the two endpoints of a petal as the missing edge of
that petal. Let Cr+

ℓ,k denote the graph obtained by joining one endpoint of

k∗ := r(k − 1) + 1 many petals at a common vertex. We say that a copy
of Cr+

ℓ,k on the game board is properly colored if the two endpoints of each

of its petals are connected by a path (of length ℓ − 1) in each color. See
Figure 2(b) for an example of a properly colored C2+

3,3 . The center star of a

copy of Cr+
ℓ,k is the graph obtained as the union of all missing edges of the
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petals of Cr+
ℓ,k . We denote with Cr∗

ℓ,k the union of Cr+
ℓ,k and its center star,

cfr. Figure 2(c). Clearly, we have

e(Cr∗
ℓ,k) = e(Cr+

ℓ,k ) + k∗ = (r(ℓ− 1) + 1)(r(k − 1) + 1),

v(Cr∗
ℓ,k) = v(Cr+

ℓ,k ) = (r(ℓ− 2) + 1)(r(k − 1) + 1) + 1.

Let d∗ := e(Cr∗
ℓ,k)/v(C

r∗
ℓ,k), and note that NUB-bal(ℓ, k, r, n) = n2−1/d∗ .

It is not hard to check that m2(C
r+
ℓ,k ) = (r(ℓ − 1) − 1)/(r(ℓ − 2)) (the

maximum in (25) is attained by a single petal of Cr+
ℓ,k ), and it is also quite

straightforward to verify that this quantity is strictly less than d∗.
Let now N ≫ NUB-bal = n2−1/d∗ with N ≪ n2 be given, and assume

w.l.o.g. that N is even. Set p := rN/n2. Observing that N ≫ n2−1/d∗ ≥

n2−1/m2(C
r+
ℓ,k

), we obtain with Theorem 13 that a.a.s., after N/2 steps of the

balanced Ramsey game the board contains a(Cr+
ℓ,k , r)·n

v(Cr+
ℓ,k

)pe(C
r+
ℓ,k

)2−e(Cr+
ℓ,k

) =:

M ′ many properly colored copies of Cr+
ℓ,k , regardless of Painter’s strategy.

Furthermore, the expected number of copies of Cr+
ℓ,k (ignoring any coloring)

in which at least one edge of the center star is already present after N/2
steps is O(M ′p) = o(M ′). It follows with Markov’s inequality that after N/2
steps a.a.s. there are at least M := 0.99M ′ properly colored copies of Cr+

ℓ,k

such that in each of these, none of the edges of the center star is already
present.

Let Cr+
ℓ,k ∪JC

r+
ℓ,k denote the union of two copies of Cr+

ℓ,k which intersect in a

graph J and whose (missing) center stars intersect in a nonempty graph JS .
Further let J∗ := J ∪JS . Let the random variable MJ denote the number of
copies of Cr+

ℓ,k ∪J Cr+
ℓ,k (ignoring any coloring) contained in the game board

after the first N/2 steps. We have

E[MJ ] = Θ(n2v(Cr+
ℓ,k

)−v(J)p2e(C
r+
ℓ,k

)−e(J))

= Θ(n2v(Cr+
ℓ,k

)p2e(C
r+
ℓ,k

))n−v(J)p−e(J)

= Θ(M2)n−v(J∗)p−e(J∗)+e(JS),

(26)

where in the last step we used that e(J∗) = e(J) + e(JS).
Note that Cr∗

ℓ,k is a balanced graph, i.e. for all subgraphs H ⊆ Cr∗
ℓ,k with

v(H) ≥ 1 we have e(H)/v(H) ≤ e(Cr∗
ℓ,k)/v(C

r∗
ℓ,k) = d∗. This holds in partic-

ular also for H = J∗. As p ≫ n−1/d∗ , it follows that nv(J∗)pe(J
∗) = ω(1).

Hence by Markov’s inequality we obtain from (26) that a.a.s.

(27) MJ = o(M2)pe(JS)

(i.e., for an approriate function f(n) = o(1) a.a.s. we haveMJ ≤ f(n)M2pe(JS)).
For the remaining N/2 steps of the game we condition on having at

least M properly colored copies of Cr+
ℓ,k whose center star edges are not

already present, and on MJ being as above for all J ⊆ Cr+
ℓ,k . As the num-

ber of graphs J is a constant depending only on k, ℓ, and r, a.a.s all these
properties hold simultaneously after N/2 steps. Using the second moment
method, we will show that in the remaining N/2 steps, a.a.s. in at least one
of the properly colored copies of Cr+

ℓ,k all edges of the center star will appear.
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Clearly, this then forces Painter to complete a monochromatic copy of Cℓ,k

by the pigeon-hole principle.
Fix a family of exactly M properly colored copies of Cr+

ℓ,k (say the lexi-

cographally first ones; w.l.o.g. M is an integer), and let S1, . . . , SM denote
the (not necessarily distinct) center stars of these copies. For each Si let
Zi denote the indicator random variable for the event that the k∗ edges of
Si will appear in the remaining N/2 steps of the game. Let Z denote the
sum over all Zi. As the rN/2 random edges revealed in the second half of
the game are distributed uniformly among the

(n
2

)

− rN/2 edges never seen
before, we have

E[Zi] =

((n2)−rN/2−k∗

rN/2−k∗

)

((n2)−rN/2

rN/2

)

= Θ(pk
∗

)

for all i, and hence

E[Z] = Θ(Mpk
∗

) = Θ(nv(Cr+
ℓ,k

)pe(C
r+
ℓ,k

)+k∗) = Θ
(

nv(Cr∗
ℓ,k

)pe(C
r∗
ℓ,k

)).

By our choice of N this quantity is ω(1).
It remains to establish concentration of Z via the second moment method

— it then follows that Z ≥ 1 a.a.s., which as discussed implies that Painter
loses the game. We have

Var[Z] =

M
∑

i,j=1

(

E[ZiZj ]− E[Zi]E[Zj ]
)

≤
∑

J⊆Cr+
ℓ,k

e(JS)≥1

MJ ·Θ(p2k
∗−e(JS))

(27)
=

∑

J⊆Cr+
ℓ,k

e(JS)≥1

o(M2)p2k
∗

= o(E[Z]2).

The last equality follows from the fact that the number of possible choices for
J is a constant depending only on k, ℓ and r. This concludes the proof. �

We conclude the proof of Theorem 12 by deriving a lower bound on the
Achlioptas threshold for the graphs Cℓ,k from the general formula given
in [7].

Lemma 15. For all integers ℓ ≥ 3, k ≥ 3, and r ≥ 2, the threshold for the
Achlioptas game with parameters Cℓ,k and r is at least

NLB-Achl(ℓ, k, r, n) = n
2− (r(l−2)+1)(rk−1)+r−1

(r(l−1)+1)(rk−1) .

Proof. For the reader’s convenience we reproduce the general edge Achliop-
tas threshold formula here. For notational details we refer to [7].

For any nonempty edge-ordered graph (H1, π), π = (e1, . . . , eh), any se-
quence of subgraphs H2, . . . ,Hh ⊆ H1 with Hi ⊆ H1 \ {e1, . . . , ei−1} and
ei ∈ Hi for all 2 ≤ i ≤ h, and any integer r ≥ 2, define coefficients
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ci = ci((H1, π),H2, . . . ,Hh, r) recursively by

c1 := r ,

ci := (r − 1) ·
i−1
∑

j=1

cj1{ei∈Hj} , 2 ≤ i ≤ h ,

(where 1{ei∈Hj} = 1 if ei ∈ Hj and 1{ei∈Hj} = 0 otherwise), and set

(28) dr∗(H1, π) := max
H2,...,Hh

∀i≥2: Hi⊆H1\{e1,...,ei−1} ∧ ei∈Hi

1 +
∑h

i=1 ci(e(Hi)− 1)

2 +
∑h

i=1 ci(v(Hi)− 2)
.

Furthermore, we set for any integer r ≥ 2 and any nonempty graph F

mr∗(F ) := min
π∈Π(E(F ))

max
H1⊆F

dr∗(H1, π|H1) .

The threshold of the Achlioptas game with parameters F and r is then given
by N0(F, r, n) = n2−1/mr∗(F ).

We now prove that mr∗(Cℓ,k) is bounded from below as claimed in the
lemma. Let π = (e1, . . . , eh) be an arbitrary permutation of the edges of Cℓ,k.
Denote with et1 , . . . , etk the first edge in each of the k cycles of Cℓ,k according
to π, in order of their appearance in π. (Thus in particular et1 = e1.) Let
C1, . . . , Ck the corresponding cycles in Cℓ,k, i.e. eti ∈ Ci for all i. Choose

Hi =

{

ei i /∈ {t1, . . . , tk}
⋃k

j≥iCj i = tj
.

Note that this choice is compatible with the requirements of (28). This
yields

e(Htj ) = (k − j + 1)ℓ

v(Htj ) = (k − j + 1)(ℓ− 1) + 1,

and

ctj =

{

r j = 1

(r − 1)rj−1 j 6= 1.

Note that the coefficients ci for i /∈ {t1, . . . , tk} are not required, as both
e(Hi) − 1 and v(Hi) − 2 are 0. It is somewhat tedious but straightforward
to verify that

1 +
∑h

i=1 ci
(

e(Hi)− 1
)

2 +
∑h

i=1 ci
(

v(Hi)− 2
)
=

(r(l − 1) + 1)(rk − 1)

(r(l − 2) + 1)(rk − 1) + r − 1
.

As this holds for any edge ordering π ∈ Π(E(Cℓ,k)), we readily obtain the
desired lower bound

mr∗(Cℓ,k) = min
π∈Π(E(Cℓ,k))

max
H1⊆Cℓ,k

dr∗(H1, π|H1) ≥
(r(l − 1) + 1)(rk − 1)

(r(l − 2) + 1)(rk − 1) + r − 1
.

�

Theorem 12 now follows, after some calculation, from Lemmas 14 and 15.

Acknowledgment. The authors thank the anonymous referee for the thor-
ough and helpful comments concerning the presentation of this work.
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6. Appendix

6.1. Upper bound for the Achlioptas game. In this section we prove
Theorem 3. The proof here is an adaptation to the vertex case of the cor-
responding edge-case proof in [7]. We make use of Theorem 4 (ignoring the
last sentence in its statement; this is restated and proved as Lemma 21 be-
low) and a technical lemma (Lemma 19 below), both of which are proved in
the next section.

Before we start we wish to present the following adaptation to r-matched
graphs of Bollobás’ classical small subgraphs result [1].

Theorem 16. Let r ≥ 2 be a fixed integer, and let F be a fixed r-matched
graph with at least one edge. Define

mr(F ) := max
H⊆F :
κ(H)>0

e(H)

κ(H)
.

Then the threshold for the appearance of F in Gr(n, p) is

p0(n) = n−1/mr(F ).

Further, if p≫ n−1/mr(F ) we have that the number of copies of F in Gr(n, p)
is a.a.s.

Θ(nκ(F )pe(F )).

One can prove this by an easy application of the first and second moment
method. We do not require this result, but it is useful to gain a better
intuition for our proof. Note that we could state the first part of Theorem 16
equivalently as follows.

Theorem 17. Let r ≥ 2 be a fixed integer, and let F be a fixed r-matched
graph with at least one edge. Let θ′ = θ′(F, r) be the unique solution of

min
H⊆F

µr,θ(H)
!
= 0,

where µr,θ is defined in (7). Then the threshold for the appearance of F in
Gr(n, p) is

p0(n) = n−θ′ .

Concerning the second part of Theorem 16, recall also that for p = n−θ

we have nκ(F )pe(F ) = nµr,θ(F ). The two “dual” formulations of our threshold
result in Theorem 3 and (the last sentence of) Theorem 4 are related to each
other similarly as the two statements above.

In order to prove Theorem 3 it is not sufficient to consider only a graph F ,
we additionally need to consider the order in which its vertices are presented
to the player. In our proof this is encoded by an ordered graph (F, π). Recall
that when we use terms such as first or last for the vertices of F we mean
this with respect to the order in which they are presented to the player. In
that context, for π = (u1, . . . , uf ) the last vertex is u1 and the first uf .

If as an adversary we wanted to force the player to create a copy of F , we
would wish to be able to present r copies of F− (F without the last vertex),
an additional r-set, and edges such that choosing any of the vertices in the r-
set completes a copy of F− to a copy of F . In such a situation the player has
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no choice and loses. Of course the player could try to avoid creating copies of
F− in the first place, so that this situation does not arise. However, applying
the same argument recursively, we could force the creation of r copies of F−

by r2 copies of F2− (F missing the last 2 vertices), r many r-sets, and all
edges necessary to join each of the r2 vertices in the r-sets to a different
copy of F2−, in such a way as to form r2 many “threats” for the player.
The player must choose one vertex in all of these r many r-sets and is thus
forced to create r copies of F−. We can continue this reasoning recursively
until at the tail end we have rv(F )−1 disjoint r-sets, out of each of which the
player is forced to choose 1 vertex. Assuming that such a recursive “history
graph” for F appears in the game in the correct order, it would guarantee
that the player is left no choice but to create a copy of F . We denote such
a construct with F π

r and formalize its definition below.
In the following, a grey-black r-matched graph is a tuple H = (V,E,K, B),

where (V,E,K) is an r-matched graph, and B is a set of vertices containing
exactly one vertex from every r-set in K. We interpret B as the set of vertices
chosen by the player during the game, and call them the black vertices. The
remaining |K|(r−1) vertices are considered grey (to indicate “presented but
not chosen”). Sometimes we ignore the coloring and tacitly identify H with
the underlying r-matched graph (V,E,K).

Recall that the board of the game is distributed as a random r-matched
graph Gr(n, p), and that we defined its state after 1 ≤ i ≤ n/r rounds with
Gi. For the purpose of this section we additionally require information about
which vertices were chosen by the player. To this end, for each 1 ≤ i ≤ n/r,
in this section we append to Gi the set Bi of vertices chosen by the player
up to round i and consider Gi to be a grey-black r-matched graph.

Definition 18. Let (F, π) be an ordered graph with π = (u1, . . . , uf ). Then
we define the grey-black r-matched graph F π

r and a distinguished black copy
of (F, π), the central copy of (F, π) in F π

r , recursively as follows

• If v(F ) = 1, then F π
r consists of one r-set with a distinguished black

vertex. This vertex is the central copy of F in F π
r .

• If v(F ) 6= 1, then F π
r consists of the disjoint union of r copies of

(F \u1)
π\u1
r , denoted F π

−,1, . . . , F
π
−,r, an additional r-set (v1, . . . , vr),

and r degF (u1) many additional edges which for all 1 ≤ i ≤ r connect
vi to F π

−,i and extend the central copy of (F \ u1, π \ u1) in F π
−,i to

a copy of (F, π). The vertex v1 is chosen as black and the copy of
(F, π) containing it is the central copy of (F, π) in F π

r .

We refer to the additional r-set in the recursive step as the central r-set of
F π
r .

As explained above, if the r-sets of a copy of F π
r are presented to the player

in an ordering such that all r-sets deeper in the recursion are presented before
those at lower recursion depths, then the player is forced to create a copy
of F . As it turns out, the threshold for this to happen in the game coincides
with the threshold for the appearance of F π

r in the random r-matched graph
Gr(n, p) (as an r-matched graph without any ordering or coloring). This last
threshold is given by Theorem 16.
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Note that the ordering π on the vertices of F is crucial. For different
choices of π the corresponding grey-black r-matched graphs F π

r may have
very different thresholds for their appearance in Gr(n, p). As the player has
no influence over the order in which r-sets are presented to her, the threshold
for the game is bounded from above by, and indeed coincides with, the lowest
threshold for the appearance of F π

r over all choices of π. I.e., the threshold
stated in Theorems 3 and 4 can alternatively be written as

p0(F, r, n) = min
π∈Π(V (F ))

n−1/mr(Fπ
r ),

where mr(F π
r ) is as defined in Theorem 16.

At a high level, the proof is an induction over v(F ) and mirrors the
recursive definition of F π

r . At each step of the induction we divide the r-sets
presented to the player in 2 halves. We let the player play on the first half
and by induction we know that a.a.s. she must have created many copies of
(F \u1)

π\u1 (in the notation of Definition 18). Then we let the player play on
the second half of the r-sets and argue via first and second moment method
that, conditional on a “good” first round, a.a.s. enough r-sets presented in
the second round are connected to r copies of (F \u1)

π\u1 as in Definition 18.
To apply the second moment method we need the following lemma, which

essentially states that for p≫ n−θ′ , where θ′ is defined below, the expected
number of copies in Gr(n, p) of any subgraph of F π

r is ω(1), cf. the remark
after Theorem 17.

Lemma 19. Let r ≥ 2 be an integer, and let (F, π) be a nonempty ordered
graph. Let F π

r be as in Definition 18, and let θ′ = θ′(F, π, r) be the unique
solution of

(29) min
H⊆F

λr,θ(H,π|H)
!
= 0,

where λr,θ() is defined in (4). Then every r-matched subgraph J ⊆ F π
r

satisfies

(30) µr,θ′(J) ≥ 0,

where µr,θ′() is defined in (7).

The proof of this lemma is long and technical, and therefore postponed
to the next subsection.

The next lemma implements the inductive proof strategy outlined above.
The parameter t ensures that we can require inductively that r · t copies of

e.g. (F \ u1)
π\u1
r evolve into t copies of F π

r .

Lemma 20. Let r ≥ 2 be an integer, and let (F, π) be a nonempty ordered
graph. Let t ≥ 1 be an integer, and let Fπ

r := t ·F π
r denote the disjoint union

of t copies of F π
r . If 1 ≫ p ≫ n−θ′, where θ′ = θ′(F, π, r) is the unique

solution of

(31) min
H⊆F

λr,θ(H,π|H)
!
= 0 ,

and λr,θ() is defined in (4), then a.a.s. the number of copies of Fπ
r (as a

grey-black r-matched graph) in Gn/r is

(32) Ω
(

nκ(Fπ
r )pe(F

π
r )
)
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regardless of the strategy of the player.

Before we prove this lemma, we show how it implies Theorem 3.

Proof of Theorem 3. By the equivalence stated in Theorem 4 (and proved

in Lemma 21 below), it suffices to prove that for p ≫ n−θ∗(F,r), the player
will a.a.s. create a copy of F no matter how she plays. Let π ∈ Π(V (F )) be
an ordering maximizing the right hand side of (5) for θ = θ∗(F, r), such that
θ∗(F, r) = θ′(F, π, r) for θ′ as in Lemmas 19 and 20. Applying Lemma 20
for t = 1, we obtain that Gn/r a.a.s. contains

Ω(nκ(Fπ
r )pe(F

π
r ))≫ nµr,θ∗(F ) ≥ 1,

many copies of F π
r , where the last inequality follows from Lemma 19. The

central copy of (F, π) in each of these copies of F π
r is black, i.e. all its vertices

were selected by the player. �

We now prove Lemma 20, giving the main inductive argument of our
upper bound proof.

Proof of Lemma 20. We prove this lemma by induction on v(F ) using the
second moment method.

To simplify the notation we drop all subscripts r from F π
r and Fπ

r .
As a base case for the induction we consider the case of an empty F .

The lemma does not apply to this case directly (as θ′ is not well-defined),
but a statement equivalent to (32) still holds and is all that we require for
the induction. If F contains no edges then Fπ contains no edges either
and consists only of κ(Fπ) many disjoint r-sets. It trivially holds that Gn/r

contains Θ(nκ(Fπ)) many copies of Fπ, regardless of the choice of p.
To discuss the induction step we first introduce some notation. Let π =

(u1, . . . , uf ), π− = π \ u1 and F− = F \ u1. Further let F
π
− denote the grey-

black r-matched graph (F−)
π− , and denote by Fπ

− the disjoint union of rt
copies of F π

−.
We use a two-round approach for the induction step. In the first round

we let the player make her choices for all r-sets in Gn/(2r). By the induction
hypothesis we obtain a lower bound on the number of copies of Fπ

− that the
player must have created which holds with high probability. Conditioning
on the fact that the bound from the first round holds, we then derive a
bound for the number of copies of Fπ which the player is forced to create
when she is presented the remaining r-sets in Gn/r.

Note that if F− is nonempty, then θ′(F−, π−, r) ≥ θ′(F, π, r) (cf. (29)), and
we can apply the induction hypothesis for t ← r · t and (F, π) ← (F−, π−)
to Gn/(2r). If F− is empty we apply the base case of the induction described
above.

We have that a.a.s. at least

(33) N := cnκ(Fπ
−
)pe(F

π
−
)

copies of Fπ
− are created in the first round for some appropriate constant

c > 0. For the second round we condition on this event (and also on (40)
below, which is however irrelevant for the time being). We fix a set of exactly
N copies of Fπ

− (say the N lexicographically first ones), and only consider
these throughout the following.
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Recall that by the construction given in Definition 18 we can extend r
copies of F π

− to one copy of F π. To do so we add one new r-set and r degF (u1)
edges (u1 is the last vertex of (F, π)). Each of the r central copies of (F−, π−)
is connected to a different vertex of the r-set by degF (u1) edges and becomes
a copy of (F, π).

By repeating the above t times in parallel, any t disjoint r-sets presented
in the second round together with one of the N copies of Fπ

− can be extended
to a copy of Fπ, provided that the required edges appear in the second round
of the game.

Let M be the number of possible pairs of t disjoint r-sets and one copy
of Fπ

−. We index these pairs with i = 1, . . . ,M . For each such pair there
may be several possible edge sets which extend the pair to a copy of Fπ as
described. We fix one arbitrarily and denote this edge set by Ti. We denote
with Fπ

i the copy of Fπ that is created if all edges of Ti appear during the
second round. Note that |Ti| = t · r degF (u1) for all i. By Ki we denote the
family of t disjoint r-sets that belongs to pair i. Note that each such family
belongs to N pairs in total.

There are Θ(nt) possible ways to choose the r-sets, so we have

(34) M = Θ
(

nt
)

·N
(33)
= Θ

(

nt+κ(Fπ
−
)pe(F

π
−
)
)

= Θ
(

nκ(Fπ)pe(F
π
−
)
)

.

For i = 1, . . . ,M we define the indicator variable Zi for the event that Ti

is contained in Gn/r. Set Z =
∑M

i=1 Zi. Note that Z is a lower bound on
the number of copies of Fπ created during the second round.

For each Zi we have

(35) E[Zi] = P[Zi = 1] = prtdegF (u1).

For the expected value of Z, conditioned on (33), we thus obtain

(36) E[Z] =
M
∑

i=1

E[Zi]
(35)
= MprtdegF (u1) (34)

= Θ
(

nκ(Fπ)pe(F
π)
)

.

To apply the second moment method, we need to bound the variance
of Z. Denote by I ⊆ {1, . . . ,M}2 the set of pairs of indices (i, j) such that
Ti ∩ Tj 6= ∅. For (i, j) ∈ I let κij = Ki ∩ Kj and tij = |Ti ∩ Tj |. For such
pairs of indices we have

(37) E[ZiZj] = p2rtdegF (u1)−tij .

For indices i, j with Ti∩Tj = ∅ on the other hand Zi and Zj are independent
and can be dropped from the variance calculation. We obtain

Var[Z] =
M
∑

i,j=1

(

E[ZiZj ]− E[Zi]E[Zj ]
)

≤
∑

(i,j)∈I

E[ZiZj]

=
∑

(i,j)∈I

p2rtdegF (u1)−tij .

(38)

Let J ⊆ Fπ be a subgraph that contains at least one of the t central r-
sets of the t copies of F π in Fπ. Denote with KJ the family of these central
r-sets in J , and with κJ := |KJ | their number. Let J− be the r-matched
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graph obtained from J by removing KJ and all incident edges. Let TJ be
the graph induced by the edges of J between KJ and J− .

Let MJ denote the number of pairs (i, j) for which the intersection of Fπ
i

and Fπ
j is isomorphic to J . Note that then tij = e(TJ ) and |Ki ∪ Kj | =

2t− κJ .
We will bound MJ by the number of (uncolored) copies of Fπ

− ∪J−
Fπ
−

which are created in the first round times the Θ(n2t−κJ ) choices for Ki and
Kj from all r-sets of the second round. Here Fπ

−∪J−
Fπ
− denotes an uncolored

r-matched graph formed by the union of two copies of Fπ
− which intersect

in J−.
Let thus M ′

J denote the number of copies of Fπ
− ∪J−

Fπ
− contained in

Gn/(2r), multiplied with the number of choices for Ki and Kj from the r-sets
of the second round. Note that M ′

J is a random variable that depends only
on the edges of the first round, and that MJ ≤M ′

J . We have

E[M ′
J ] = Θ(n2κ(Fπ

−
)−κ(J−)p2e(F

π
−
)−e(J−)) ·Θ(n2t−κJ )

= Θ(n2κ(Fπ)p2e(F
π
−
))n−κ(J−)−κJ p−e(J−) (34)

= Θ(M2)n−κ(J )p−e(J−)

= Θ(M2)n−κ(J )p−e(J )+e(TJ ).

(39)

As Fπ consists of t disjoint copies of F π we can apply Lemma 19 once for
each intersection of J ⊆ Fπ with one of the copies of F π. For every such
intersection J ⊆ F π, as p≫ n−θ′ , we have by Lemma 19 that

n−κ(J)p−e(J) ≪ n−κ(J)+θe(J) (7)
= n−µr,θ(J) = O(1).

As t is a fixed constant the same holds if we replace J by J . Together with
(39) and Markov’s inequality this implies that a.a.s.

(40) M ′
J ≪M2pe(TJ )

(i.e., for an approriate function f(n) = o(1) a.a.s. we haveM ′
J ≤ f(n)M2pe(TJ )).

As the number of ways of choosing J ⊆ Fπ is a constant depending only on
F , r and π, (40) holds a.a.s. for every possible choice of J simultaneously.
For the second round we condition on the first one satisfying (33) and (40)
for all J ⊆ Fπ. With this we obtain from (38) that

Var[Z] =
∑

(i,j)∈I

p2rtdegF (u1)−tij =
∑

J⊆Fπ:
κJ≥1

MJ p
2rtdegF (u1)−e(TJ )

≤
∑

J⊆Fπ:
κJ≥1

M ′
J p

2rtdegF (u1)−e(TJ ) ≪ (MprtdegF (u1))2
(36)
= E[Z]2.

By the second moment method this implies that a.a.s. Z = Θ
(

nκ(Fπ)pe(F
π)
)

,
and that thus at least this number of copies of Fπ are created in the second
round. �

6.2. Proofs of the technical lemmas. The proofs in this section are es-
sentially line-by-line translations of the analogous proofs in Mütze et al. [7]
from the edge to the vertex case.

Together with Theorem 3 the following lemma proves Theorem 4.
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Lemma 21. Let F be a fixed nonempty graph, and let r ≥ 2 be a fixed
integer. Let θ∗ = θ∗(F, r) be the unique solution of

(41) Λr,θ(F )
!
= 0,

where Λr,θ(F ) is defined in (4) and (5). Then we have

mr∗(F ) =
1

θ∗(F, r)
.

Proof. For any nonempty ordered graph (F, π), set

(42) ~H(F, π) :=
{

~H =
(

(H1, σ),H2, . . . ,Hh) | H1 ⊆ F

∧ σ = π|H1 = (u1, . . . , uh)

∧ ∀i ≥ 2 : (Hi ⊆ H1 \ {u1, . . . , ui−1} ∧ ui ∈ Hi)
}

(cf. the maximizations in (2) and (3)). For all ~H ∈ ~H(F, π) we define

er∗( ~H) :=

h
∑

i=1

cie(Hi),

vr∗( ~H) := 1 +
h

∑

i=1

ci
(

v(Hi)− 1
)

,

(43)

where the coefficients ci = ci( ~H, r) are defined as in (1). Furthermore, we
define

(44) µ∗
r,θ(

~H) := vr∗( ~H)− θ · er∗( ~H).

Note that by the definitions in (3) and (2), we have

mr∗(F, π) = min
π∈Π(V (F ))

max
H1⊆F

dr∗(H1, π|H1)

= min
π∈Π(V (F ))

max
~H∈ ~H(F,π)

er∗( ~H)

vr∗( ~H)
=

1

θ∗∗(F, r)
,

where θ∗∗(F, r) is the unique solution of

max
π∈Π(V (F ))

min
~H∈ ~H(F,π)

µ∗
r,θ(

~H)
!
= 0.

To prove Lemma 21, it suffices to show that the left hand side of the last
equation equals Λr,θ(F ) as defined in (5). We will do so by showing that for
any nonempty ordered graph (F, π) and any r ≥ 2 and 0 ≤ θ ≤ 2 we have

(45) min
~H∈ ~H(F,π)

µ∗
r,θ(

~H) = min
H⊆F

λr,θ(H,π|H ).

The remainder of the proof is devoted to establishing (45). To simplify the
notation we consider r and θ fixed and drop all corresponding sub- and
superscripts. In the following equations we define the quantities ẽ, ṽ and
µ̃, which depend on the choice of an ordered graph (H1, σ). In principle we
should write ẽ(H1,σ), ṽ(H1,σ) and µ̃(H1,σ), but we omit this dependency from
the notation as well.
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Consider the following recursive definitions for 1 ≤ i ≤ h:

ẽ(Hi, . . . ,Hh) := e(Hi) + (r − 1) ·
h
∑

j=i+1

1{uj∈Hi}ẽ(Hj , . . . ,Hh)

ṽ(Hi, . . . ,Hh) := v(Hi)− 1 + (r − 1) ·
h

∑

j=i+1

1{uj∈Hi}ṽ(Hj, . . . ,Hh).

(46)

We can now write e∗( ~H) and v∗( ~H) as

e∗( ~H) = r · ẽ(H1, . . . ,Hh)

v∗( ~H) = 1 + r · ṽ(H1, . . . ,Hh).
(47)

This can be verified by induction, using the definition of ci in (1) and noting
that for 1 ≤ k ≤ h we have

e∗( ~H) =

k
∑

i=1

cie(Hi) + (r − 1) ·
h

∑

j=k+1

(

k
∑

i=1

ci1{uj∈Hi}

)

ẽ(Hj , . . . ,Hh)

v∗( ~H) = 1 +

k
∑

i=1

ci
(

v(Hi)− 1
)

+ (r − 1) ·
h
∑

j=k+1

(

k
∑

i=1

ci1{uj∈Hi}

)

ṽ(Hj, . . . ,Hh),

which is equivalent to (43) for k = h and to (47) for k = 1. Combining (46)
and (47) via (44) also yields that

(48) µ∗( ~H) = 1 + rµ̃(H1, . . . ,Hh),

where
(49)

µ̃(Hi, . . . ,Hh) := (v(Hi)−1)−θe(Hi)+(r−1)
h

∑

j=i+1

1{uj∈Hi}µ̃(Hj , . . . ,Hh).

It follows that for any fixed subgraphH1 ⊆ F and σ := π|H1 = (u1, . . . , uh)
the following holds: for 1 ≤ i ≤ h and any graph Hi ⊆ H1 \ {u1, . . . , ui−1}
with ui ∈ Hi, the value

(50) λ̃(H1,σ)(Hi, i) := min
Hi+1,...,Hh

∀j≥i+1:Hj⊆H1\{u1,...,uj−1}∧uj∈Hj

µ̃(Hi, . . . ,Hh)

can be computed recursively via

(51) λ̃(H1,σ)(Hi, i) = (v(Hi)− 1)− θe(Hi)

+ (r − 1) ·
h

∑

j=i+1

1{uj∈Hi} · min
Hj⊆H1\{u1,...,uj−1}: uj∈Hj

λ̃(H1,σ)(Hj, j).

In the remainder of the proof we simplify the recursion on the right side
to relate it to λ() as defined in (4). First we show that we can get rid of

the dependency on (H1, σ), and that the value of λ̃(H1,σ)(Hi, i) in fact only
depends on the isomorphism class of (Hi, σ|Hi

). To this end, we prove that
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for any fixed ordered graph (H1, σ) there exists a sequence H2, . . . ,Hh ⊆ H1

as in (42) minimizing µ̃(H1, . . . ,Hh) with the additional property that

(52) uj ∈ Hi ⇒ Hj ⊆ Hi.

Let H2, . . . ,Hh ⊆ H1 be graphs minimizing µ̃(H1, . . . ,Hh) such that every
Hi is inclusion-maximal, and assume for the sake of contradiction that there
exist indices 2 ≤ i < j with uj ∈ Hi but Hj * Hi. Our choice of H2, . . . ,Hh

implies that for H ′
i := Hi ∪Hj and H ′

j := Hi ∩Hj we have

µ̃(H ′
i, . . . ,Hh)− µ̃(Hi, . . . ,Hh) > 0,

µ̃(Hj, . . . ,Hh)− µ̃(H ′
j, . . . ,Hh) ≤ 0,

where the first inequality is strict due to the inclusion-maximality of Hi.
Expanding the above equations according to (49) yields that both terms are
equal to

(

v(Hj)−v(H
′
j)
)

−θ
(

e(Hj)−e(H
′
j)
)

+(r−1)
h

∑

k=j+1

1{uk∈Hj\Hi}µ̃(Hk, . . . ,Hh),

which is a contradiction. W.l.o.g. we may therefore assume that (52) holds,
and that in (51) we can minimize over subgraphs of Hi \ {ui, . . . , uj−1}
instead of subgraphs of H1 \ {u1, . . . , uj−1}.

Observe that in (51) the context (H1, σ) is now irrelevant, and that we
only require the ordering σ|Hi

on the right hand side. Setting

(53) λ̃(H1,σ)(Hi, i) =: λ̃(Hi, σ|Hi
).

and changing notations accordingly, we obtain from (51)

(54) λ̃(H, τ =: (u1, . . . , uh)) =
(

v(H)− 1
)

− θe(H)

+ (r − 1) ·
h
∑

j=2

min
J⊆H\{u1,...,uj−1}:uj∈J

λ̃(J, τ |J ).

Next we get rid of the sum in the equation above as follows:

λ̃(H, τ) =
(

v(H)− 1
)

− θe(H)

+ (r − 1) min
J⊆H\u1:u2∈J

λ̃(J, τ |J )

+ (r − 1) ·
h
∑

j=3

min
J⊆H\{u1,...,uj−1}:uj∈J

λ̃(J, τ |J ).

= (v(H \ u1)− 1) + 1− θe(H \ u1)− θ degH(u1)

+ (r − 1) min
J⊆H\u1:u2∈J

λ̃(J, τ |J )

+ (r − 1) ·
h
∑

j=3

min
J⊆H\{u1,...,uj−1}:uj∈J

λ̃(J, τ |J ).

= 1 + λ̃(H \ u1, τ |H\u1
)− θ degH(u1) + (r − 1) min

J⊆H\u1:
u2∈J

λ̃(J, τ |J ).

(55)
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Substituting
(56)

λ̃(H, τ) =: λ̄(H\u1, τ\u1)−θ degH(u1), (H\u1, τ\u1) =: (H̄, τ̄), u2 =: ū1

we see that the last line of (55) is equivalent to

λ̄(H̄, τ̄ ) = 1 + λ̄(H̄ \ ū1, τ̄ \ ū1)− θ degH̄(ū1)

+ (r − 1) min
J⊆H̄:
ū1∈J

(

λ̄(J \ ū1, τ̄ |J\ū1
)− θ degJ(ū1)

)

,

which is the recursive step in the definition of λ() in (4). Moreover if (H̄, τ̄) =
(H\u1, τ \u1) contains no vertices (i.e. H is a graph on 1 vertex and therefore
no edges) we have

λ̄(H̄, τ̄)
(56)
= λ̃(H, τ) + θ degH(u1) = λ̃(H, τ)

(54)
= 0 = λ(H̄, τ̄ ).

This takes care of the base case and implies that λ̄(H, τ) = λ(H, τ) for all or-
dered graphs (H, τ). Thus we have for every fixed (H1, σ), σ = (u1, . . . , uh),
that

(57) min
H2,...,Hh

∀j≥2:Hj⊆H1\{u1,...,uj−1}∧uj∈Hj

µ̃(H1, . . . ,Hh)
(50)
= λ̃(H1,σ)(H1, 1)

(53)
= λ̃(H1, σ)

(56)
= λ̄(H1 \ u1, σ \ u1)− θ degH1

(u1)

= λ(H1 \ u1, σ \ u1)− θ degH1
(u1).

Still using the notation π|H1 = σ = (u1, . . . , uh) (cf. (42)), equation (45)
now follows from

min
~H∈ ~H(F,π)

µ∗
r,θ(

~H)

(42),(48)
= min

H1⊆F

{

1 + r · min
H2,...,Hh

∀j≥2:Hj⊆H1\{u1,...,uj−1}∧uj∈Hj

µ̃(H1, . . . ,Hh)
}

(57)
= min

H1⊆F

{

1 + r
(

λ(H1 \ u1, σ \ u1)− θ degH1
(u1)

)

}

(13)
= min

H1⊆F
λr,θ(H1, σ) = min

H⊆F
λr,θ(H,π|H),

where in the last step we applied Lemma 9 to the family of all ordered
subgraphs of (F, π). �

It remains to prove Lemma 19.

Proof of Lemma 19. For this proof we require an extension of the definition
of connectedness to r-matched graphs. We call an r-matched graph H =
(V,E,K) connected if for any 2 vertices u, v ∈ V which are not part of
the same r-set, there exists a sequence of r-sets K1, . . . ,Kt ∈ K such that
u ∈ K1, v ∈ Kt and there exists an edge between at least one vertex in
Ki and one in Ki+1 for all 1 ≤ i ≤ t − 1. Since the value of µr,θ() for a
disconnected r-matched graph H is simply the sum of the values of µr,θ()
for all connected components of H, it suffices to prove the claim for all
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connected r-matched subgraphs J ⊆ F π
r , i.e. to prove that for any integer

r ≥ 2 and any 0 ≤ θ ≤ 2 we have

(58) min
J⊆Fπ

r :
J connected

µr,θ(J) = min
H⊆F

λr,θ(H,π|H ).

For the remainder of the proof we consider r and θ fixed and drop the
corresponding subscripts from the notation.

Let π = (u1, . . . , uf ), and define Fi− := F \{u1, . . . , ui} and πi− := π|Fi−
.

For any grey-black r-matched graph (Fi−)
πi− we call the r-set containing

the vertex ui+1 of its central copy of Fi− the central r-set.
Let J be a connected subgraph of F π, and let 0 ≤ i ≤ f −1 be the largest

index such that J is also contained in a copy of (Fi−)
πi− . By the maximal

choice of i and the connectedness of J , the graph J contains the central r-set
of this copy. With this we can reformulate equation (58) to

(59) min
0≤i≤f−1

min
J⊆(Fi−)πi− :

K(ui+1) ∈ J ∧ J connected

µ(J) = min
0≤i≤f−1

min
H⊆Fi−:
ui+1∈H

λ(H,π|H).

where we use K(ui+1) ∈ J as a shorthand notation to indicate that J
contains the central r-set K(ui+1) of (Fi−)

πi− . We now show that the inner
minimizations of (59) are equivalent. By changing variables (F ← Fi− and
π ← πi) this reduces to showing that for any ordered graph (F, π) we have

(60) min
J⊆Fπ:K(u1)∈J
J connected

µ(J) = min
H⊆F :
u1∈H

λ(H,π|H).

For any r-matched graph H we refer to a subgraph J ⊆ H that minimizes
µ(J) as a rarest subgraph of H. To determine a rarest subgraph of F π we
can make use of its recursive structure.

Let 1 ≤ i ≤ f − 1, and consider a fixed copy (F̂i−)
πi− of (Fi−)

πi− in

F π. By F̂i− we denote the central copy of (Fi−, πi−) in (F̂i−)
πi− , and by

ûi the vertex that completes F̂i− to a copy of (F(i−1)−, π(i−1)−). Moreover,

let (F̂(i−1)−)
π(i−1)− denote the copy of (F(i−1)−)

π(i−1)− that is formed by

(F̂i−)
πi− , K(ûi) and r − 1 other copies of (Fi−)

πi− .
Note that the r copies of (Fi−)

πi− joined at the central r-set K(ûi) =

(ui,1, . . . , ui,r) of (F̂(i−1)−)
π(i−1)− are essentially independent: For each ui,ℓ,

1 ≤ ℓ ≤ r, we consider the graph obtained by removing from (F̂(i−1)−)
π(i−1)−

the r−1 copies of (Fi−)
πi− that are not associated with ui,ℓ, i.e., whose cen-

tral copy of (Fi−, πi−) is not connected by degF(i−1)−
(ui) edges to ui,ℓ. (If

degF(i−1)−
(ui) = 0 we associate the copies of (Fi−)

πi− with the vertices of

K(ûi) arbitrarily.) We call this graph the branch of (F̂(i−1)−)
π(i−1)− corre-

sponding to ui,ℓ. Note that this is still an r-matched graph and that all r
branches contain the central r-set K(ûi). By the linearity of µ(H) in e(H)

and κ(H), a rarest connected subgraph of (F̂(i−1)−)
π(i−1)− containing K(ûi)

can be found by determining a rarest connected subgraph containing K(ûi)

in each branch of (F̂(i−1)−)
π(i−1)− independently. Let Ĵi denote an arbitrary

fixed such rarest subgraph. Note that in particular we can compute µ(J) as
on the left hand side of (60) as

(61) µ(J) = 1 + r(µ(Ĵ1)− 1).
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Similarly, we can find a rarest connected subgraph Ji containing K(ûi) for

a branch of (F̂(i−1)−)
π(i−1)− by determining an optimal choice for Hi :=

Ji ∩ F̂(i−1)−. For any choice of Hi, by recursion, for each vertex u′j of Hi,

i + 1 ≤ j ≤ f , we already know a rarest subgraph containing K(u′j) for all

the r − 1 remaining branches of the copy of (F(j−1)−)
π(j−1)− corresponding

to the other r − 1 vertices of K(u′j). Letting Ĵj , i+ 1 ≤ j ≤ f denote such

rarest subgraphs, we obtain that the value of µ(Ji) resulting from a given

choice of Hi ⊆ F̂(i−1)− is

(62) µ(Ji) = v(Hi)− θe(Hi) +

f
∑

j=i+1

1{ui∈Hj}(r − 1)(µ(Ĵj)− 1).

Here we used that for i + 1 ≤ j ≤ f all r − 1 many copies of Ĵj share one
r-set, and that each such r-set also contains one vertex of v(Hi).

Substituting µ(Ji) − 1 =: λ̃(F,π)(Hi, i) in the above equation yields for
1 ≤ i ≤ f the recursion

λ̃(F,π)(Hi, i) = (v(Hi)− 1)− θe(Hi)

+ (r − 1)

f
∑

j=i+1

1{uj∈Hi} min
Hj⊆H1\{u1,...,uj−1}:

uj∈Hj

λ̃(F,π)(Hj, j).

This is essentially the same recursion as (51) in the proof of Lemma 21.
Analogously to the proof of Lemma 21 one can show that

(63) λ̃(F,π)(H1, 1) = λ(H1 \ u1, σ \ u1)− θ degH1
(u1),

where σ := π|H1 (cf. (57)). Finally

min
J⊆Fπ:K(u1)∈J
∧J connected

µ(J)
(61)
= r

(

µ(Ĵ1)− 1
)

+ 1 = min
H1⊆F :u1∈H

1 + r · λ̃(H1, 1)

(63)
= min

H1⊆F :u1∈H1

1 + r ·
(

λ(H1 \ u1, σ \ u1)− θ degH1
(u1)

)

(13)
= min

H1⊆F :u1∈H1

λ(H1, σ) = min
H⊆F :u1∈H

λ(H,π|H).

In the last line we applied Lemma 9 to the family of all ordered subgraphs of
(F, π) that contain the vertex u1. This shows (60) and finishes the proof. �
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