A PROOF OF SUMNER'S UNIVERSAL TOURNAMENT CONJECTURE FOR LARGE TOURNAMENTS

DANIELA KÜHN, RICHARD MYCROFT, AND DERYK OSTHUS

Abstract

Sumner's universal tournament conjecture states that any tournament on $2 n-2$ vertices contains any directed tree on n vertices. In this paper we prove that this conjecture holds for all sufficiently large n. The proof makes extensive use of results and ideas from a recent paper by the same authors, in which an approximate version of the conjecture was proved.

1. Introduction

1.1. Introduction. A tournament is an orientation of a complete graph. Obviously one cannot guarantee any substructures which contain a cycle within an arbitrary tournament. On the other hand, Sumner's universal tournament conjecture states that one can find any directed tree T within an arbitrary tournament G, even if the order of T is rather large compared to that of G. More precisely, the conjecture states that any tournament on $2 n-2$ vertices contains any directed tree on n vertices. Many partial results towards this conjecture (made in 1971) have been proved - some of them are described below. Here we prove this conjecture for all large n.

Theorem 1.1. There exists n_{0} such that the following holds. Let T be a directed tree on $n \geq n_{0}$ vertices, and G a tournament on $2 n-2$ vertices. Then G contains a copy of T.

To see that the bound is best possible, let T be a star with all edges directed inwards, and let G be a regular tournament on $2 n-3$ vertices. Then every vertex of G has $n-2$ inneighbours and $n-2$ outneighbours, and so G does not contain a copy of T, whose central vertex has $n-1$ inneighbours. There are also 'near-extremal' examples which have a different structure to the one given above: let T be obtained from a directed path on $\ell \geq 1$ vertices by adding $y:=(n-\ell) / 2$ outneighbours to the terminal vertex of the path and y inneighbours to the initial vertex of the path. Let G consist of regular tournaments Y and Z, each on $2 y-1$ vertices, together with an arbitrary tournament X on $\ell-1$ vertices so that all edges are oriented from Z to X, from X to Y and from Z to Y. Then $|G|=2 n-\ell-3$ as well as $|T|=n$, and it is easy to see that G does not contain T. These examples will play a significant role in the proof (see Section 1.2).

In [10], we used a randomised embedding algorithm to prove an approximate version of Sumner's universal tournament conjecture, and also a stronger result for directed trees of bounded degree. Both of these results will be important tools in this paper.

Theorem 1.2 ([10], Theorem 1.4). Let $\alpha>0$. Then the following properties hold.
(i) There exists n_{0} such that for any $n \geq n_{0}$, any tournament G on $2(1+\alpha) n$ vertices contains any directed tree T on n vertices.
(ii) Let Δ be any positive integer. Then there exists n_{0} such that for any $n \geq n_{0}$, any tournament G on $(1+\alpha) n$ vertices contains any directed tree T on n vertices with $\Delta(T) \leq \Delta$.

[^0]Let $f(n)$ denote the smallest integer such that any tournament on $f(n)$ vertices contains any directed tree on n vertices. So Sumner's conjecture states that $f(n)=2 n-2$. Chung (see [16]) observed that $f(n) \leq n^{1+o(1)}$, and Wormald [16 improved this to $f(n) \leq O(n \log n)$. The first linear bound on $f(n)$ was established by Häggkvist and Thomason 4. Havet 5 then showed that $f(n) \leq 38 n / 5$, and later Havet and Thomassé [7] used their notion of median orders to improve this to $f(n) \leq 7 n / 2$. Finally El Sahili used the same notion to prove the best known bound for general n, namely that $f(n)=3 n-3$. We shall make extensive use of this result in this paper (actually, any linear bound would suffice for our purposes; the factor of 3 is not essential.)

Theorem 1.3 (El Sahili (3). Let T be a directed tree on n vertices, and let G be a tournament on $3 n-3$ vertices. Then G contains a copy of T.

Sumner's conjecture is also known to hold for special classes of trees (see e.g. [14]). In particular, Havet and Thomassé [7] proved it for 'outbranchings', again using median orders. Here an outbranching is a directed tree T in which we may choose a root vertex $t \in T$ so that for any vertex $t^{\prime} \in T$, the path between t and t^{\prime} in T is directed from t to t^{\prime}. (Outbranchings are also known as arborescences.)

Theorem 1.4 (Havet and Thomassé 7). Let T be an outbranching on n vertices, and let G be a tournament on $2 n-2$ vertices. Then G contains a copy of T.

For many types of trees, Sumner's conjecture holds with room to spare. A classical result of this type is Redei's theorem.

Theorem 1.5 (Redei [13]). Any tournament contains a spanning directed path.
This was generalised considerably by Thomason [15] who showed that whenever n is sufficiently large, every tournament on n vertices contains every orientation of the path on n vertices (this was a conjecture of Rosenfeld). Havet and Thomassé 8 proved that this even holds for all $n \neq 3,5,7$. They also proposed the following generalisation of Sumner's conjecture (see [6]): Let T be a directed tree on n vertices with k leaves. Then every tournament on $n+k-1$ vertices contains a copy of T. Some special cases are known (see e.g. [2]). It would be interesting to know whether our methods can be used to prove this conjecture.

As illustrated in the next section, our proof relies on all of the above theorems (i.e. Theorems 1.2 1.5), as well as a directed version of Szemerédi's regularity lemma and several structural results proved in [10.
1.2. Outline of the proof. In Section 2, we shall introduce some notation, before introducing some key ideas and lemmas. In particular we shall define the core tree T_{Δ} of a tree T. This is a subtree of T consisting of all the 'central' vertices of T, which has the important property that every component of $T-T_{\Delta}$ is small. This is useful for the problem of embedding T in a tournament G, as we may first embed T_{Δ} and then proceed to embed the components of $T-T_{\Delta}$ one by one, using the fact that each such component is small. We also introduce the notion of an 'almost-regular' tournament G, which is a tournament in which every vertex has in- and outdegree approximately equal to $|G| / 2$. Section 2 also contains three auxiliary lemmas for embedding a directed tree T in a tournament G which are derived from Theorems 1.2 and 1.3 and which we shall use extensively in later sections:

- Lemma 2.5 is designed to embed a directed tree T which is similar to an outstar, in the sense that T contains a vertex t with no inneighbours such that every component of $T-t$ is small.
- In Lemma 2.6, we consider a subtree T_{c} of T with the property that every component of $T-T_{c}$ is small, showing that a suitable embedding of T_{c} in G can be extended to an embedding of T in G.
- In Lemma 2.7 we consider the case where the vertices of G can be partitioned into disjoint sets Y and Z such that almost all edges between Y and Z are directed the same way. Here we show that if the vertices of T are partitioned appropriately between forests F^{-}and F^{+}, then to be able to embed T in G it is sufficient to embed the largest component of F^{+}within Y.
We begin the proof of Theorem 1.1 in Section 3, by proving the case where $\left|T_{\Delta}\right|=1$ (Lemma 3.1). Note that the extremal case when T is a star is covered by this case. To do this, we first embed the single vertex of T_{Δ} to a vertex of G with appropriate in- and outdegree. We then use Lemma [2.5, Lemma 2.6 and Theorem 1.4 to embed the components of $T-T_{\Delta}$ appropriately among the remaining vertices of G to obtain a copy of T in G.

Then in Section 4 we introduce the digraph regularity lemma, which yields a partition of the vertex set of G into clusters so that the edges between pairs of clusters of G form quasi-random bipartite subgraphs. We use the regularity lemma to prove

- Lemma 4.6, which states that Theorem 1.1 holds in the case where G is almostregular and T_{Δ} is small enough to be embedded within a single cluster of G.
To prove this, we first select an appropriate cluster or pair of clusters of G in which to embed T_{Δ}, and then use Lemma 2.6 to extend this embedding of T_{Δ} to an embedding of T in G. We also prove that if we additionally assume that $\left|T_{\Delta}\right| \geq 2$ then the result holds with room to spare, i.e. we can allow G to be of order $(2-\alpha) n$, where α is small.

Next, in Section 5 we consider the case when the tournament G is a 'robust outexpander'. The latter implies that every set S of reasonable size has a large outneighbourhood. A key lemma in [10] showed that if G is a robust outexpander tournament on at least $(2+\alpha) n$ vertices with large minimum semidegree, then G contains any directed tree T on n vertices. However, the αn error term was only required in the case where T_{Δ} is small. In Section 5 we modify the argument from [10] to prove

- Lemma 5.3, which states that if T_{Δ} is large, then any robust outexpander tournament on at least $(2-\alpha) n$ vertices with large minimum semidegree contains a copy of T.
(The proof relies on further results from [10].) It is easy to see that any almost-regular tournament is a robust outexpander tournament. So we can combine Lemmas 4.6 and 5.3 to deduce
- Lemma [5.8, which states that Theorem 1.1 holds with a little room to spare if G is a large almost-regular tournament and $\left|T_{\Delta}\right| \geq 2$.
We also prepare the ground for the proof of Theorem 1.1] by modifying an algorithm from [10] to prove Lemma 5.2, This states that any tournament G may be split into disjoint subtournaments, each of which is either small or a robust outexpander with large minimum semidegree. This will allow us to apply our results on robust outexpander tournaments to (subtournaments of) general tournaments G.

In Section 6 we prove Lemma 6.1, which states that Theorem 1.1 holds for all directed trees T for which T_{Δ} is small. In particular, the 'near extremal' construction described
in the introduction is dealt with in this part of the proof. Lemma 6.1 is proved in four steps. Firstly, in Lemma 6.2 we show that we may assume the tournament G contains two almost-regular subtournaments on vertex sets Y and Z which between them contain almost all of the vertices of G. Using this structural information, we show in Lemmas 6.3 and 6.4 that we may assume that T_{Δ} is a short directed path and that most of the remainder of T is attached to the endvertices of this path. (Lemma 5.8 is used as a tool here: we can apply it to embed a suitable subforest of T into Y or Z, and afterwards use Lemma 2.7 to embed the remainder of T.) We then consider the case $\left|T_{\Delta}\right|=2$ separately, proving that Theorem 1.1 holds for such T. This allows us to assume for the proof of Lemma 6.1 that $\left|T_{\Delta}\right| \geq 3$. Since T_{Δ} is a directed path, we can use Redei's theorem to embed T_{Δ} within a set W of $\left|T_{\Delta}\right|$ vertices which have high in- and outdegree, and then apply Lemmas 2.5 and 2.6 to complete the embedding again.

Finally, in Section 7 we complete the proof of Theorem 1.1. By Lemma 6.1we may assume for this that T_{Δ} is large. None of the extremal or near-extremal cases satisfy this condition, so we will always have a little room to spare in our calculations in this part of the proof. We proceed by using Lemma 5.2 to split the tournament G into disjoint robust outexpander subtournaments of large minimum semidegree. If there is just one such subtournament then this subtournament contains a copy of T by Lemma 5.3. By using Lemma 2.7 we prove Lemma 7.2, which shows that if there are two such subtournaments then these must also together contain a copy of T. We may therefore assume in the proof of Theorem 1.1 that there are at least three such subtournaments of G. In this case we use Lemma 5.3, Theorem 1.2 and Theorem 1.3 to embed T into these subtournaments.

2. Definitions and basic tools

2.1. Notation. For a graph G, we write $V(G)$ and $E(G)$ to denote the vertex set and edge set of G respectively. Then $|G|:=|V(G)|$ denotes the number of vertices of G, and $e(G):=|E(G)|$ is the number of edges of G. We shall sometimes write $v \in G$ to mean $v \in V(G)$. A tree is a connected graph which does not contain any cycles, and we say that a vertex of a tree is a leaf if it has degree one.

A directed graph G, or digraph, consists of a vertex set $V(G)$ and an edge set $E(G)$, where each edge $e \in E$ is an ordered pair (u, v) of vertices of G. For vertices $u, v \in V(G)$ we write $u \rightarrow v$ or $v \leftarrow u$ to denote that $(u, v) \in E(G)$. If $u \rightarrow v$ then we say that v is an outneighbour of u, that u is an inneighbour of v, and that the edge (u, v) is directed from u to v. Sometimes we shall use the term neighbour of v to mean a vertex which is either an inneighbour or an outneighbour of v. For any vertex $v \in G$, we denote the set of all outneighbours of v by $N_{G}^{+}(v)$, or simply $N^{+}(v)$ when G is clear from the context. Similarly we write $N_{G}^{-}(v)$ or $N^{-}(v)$ to denote the set of all inneighbours of v. Then the outdegree of v, denoted $d_{G}^{+}(v)$, is defined by $d_{G}^{+}(v):=\left|N_{G}^{+}(v)\right|$. Similarly the indegree of v, denoted $d_{G}^{-}(v)$, is defined by $d_{G}^{-}(v):=\left|N_{G}^{-}(v)\right|$. Again we may write $d^{+}(v)$ or $d^{-}(v)$ when G is clear from the context. We define the minimum outdegree of G, denoted $\delta^{+}(G)$, to be the minimum of $d^{+}(v)$ taken over all vertices $v \in G$, and the minimum indegree, denoted $\delta^{-}(G)$, to be the minimum of $d^{-}(v)$ taken over all vertices $v \in G$. Then the minimum semidegree of G, denoted $\delta^{0}(G)$, is the minimum of $\delta^{-}(G)$ and $\delta^{+}(G)$. We write $G[U \rightarrow V]$ to denote the bipartite subgraph of G formed by edges directed from U to V.

We say that a directed graph G is an oriented graph if for any $u, v \in G$ at most one of $u \rightarrow v$ and $u \leftarrow v$ holds. So an oriented graph may be obtained by assigning a direction to each
edge of an undirected graph. We call this undirected graph the underlying graph, and denote it by $G_{\text {under }}$. An oriented graph is a tournament if for any distinct $u, v \in V(G)$ precisely one of $u \rightarrow v$ and $u \leftarrow v$ holds. Equivalently, the underlying graph of a tournament is a complete graph. A directed tree is an oriented graph T for which the underlying graph $T_{\text {under }}$ is a tree. The maximum degree of T, denoted $\Delta(T)$, is defined to be equal to $\Delta\left(T_{\text {under }}\right)$. A tree or directed tree T may be rooted by identifying a specific vertex r as the root of T.

Let T be a directed tree, and let x be a vertex of T. Then for any edge $e \in E(T)$ incident to x, the weight of e at x, denoted $w_{e}(x)$, is the number of vertices y of T for which e (ignoring the orientation) is the first edge of the path in $T_{\text {under }}$ from x to y. We say that a component of $T-x$ is an incomponent of x if the unique edge between x and this component is directed towards x, and an outcomponent of x if this edge is directed away from x. The inweight of x, denoted $w^{-}(x)$, is then the number of vertices in incomponents of x, and the outweight of x, denoted $w^{+}(x)$, is the number of vertices in outcomponents of x. Equivalently, the inweight of x is the sum of $w_{e}(x)$ taken over all edges e incident to x which are directed towards x, and the outweight can be defined similarly.

In the same way we define incomponents and outcomponents for a subtree T_{c} of T. Indeed, for any component T^{\prime} of $T-T_{c}$ there is precisely one edge between T^{\prime} and T_{c}. If this edge is directed towards a vertex of T^{\prime} then we say that T^{\prime} is an outcomponent of T_{c}, whereas if this edge is directed towards T_{c} we say that T^{\prime} is an incomponent of T_{c}. As when T_{c} is a single vertex we define the inweight of T_{c}, denoted $w^{-}\left(T_{c}\right)$, to be the number of vertices in incomponents of T_{c}, and the outweight of T_{c}, denoted $w^{+}\left(T_{c}\right)$, to be the number of vertices in outcomponents of T_{c}. Again these inweights and outweights can equivalently be defined as the sum of the weights of the appropriate edges of T.

Throughout this paper we shall write $x \ll y$ to indicate that for any $y>0$ there exists $x_{0}>0$ such that for any $0<x \leq x_{0}$ the subsequent statements hold. Such statements with more variables are defined similarly.
2.2. The core tree. Let T be a tree on n vertices, and let $\Delta \geq 2$ be fixed. Then we say that a vertex x of T is Δ-core if every edge e incident to x has $w_{e}(x) \leq(1-1 / \Delta) n$. We call the subgraph of T induced by Δ-core vertices of T the core tree of T with parameter Δ, and denote it by T_{Δ}. With this definition, for any tree T, the core tree T_{Δ} is the same as the Δ-heart of T considered by Häggkvist and Thomason in 4]. The following proposition from [10] gives some important properties of the core tree (these properties are also stated in (4).
Proposition 2.1 ([10], Proposition 4.2). Let T be a tree on n vertices and let $\Delta \geq 2$. Then:
(i) T_{Δ} is a tree containing at least one vertex.
(ii) $w_{e}(x) \geq n / \Delta$ if $e=x y$ is an edge of T_{Δ}.
(iii) $\Delta\left(T_{\Delta}\right) \leq \Delta$.
(iv) Every component subtree T^{\prime} of $T-T_{\Delta}$ has $\left|T^{\prime}\right| \leq n / \Delta$.

Note that T_{Δ} is an undirected tree obtained from an undirected tree T. However we will frequently refer to the core tree of a directed tree T; this means the directed tree formed by taking the core tree T_{Δ} of the underlying graph $T_{\text {under }}$ (an undirected tree) of T and directing each edge of T_{Δ} as it is directed in T.

The following proposition is needed in the proof of Lemma 2.3. Essentially the latter states that if trees T^{1} and T^{2} almost partition a tree T, then the core tree T_{Δ} is not much larger than $T_{\Delta}^{1} \cup T_{\Delta}^{2}$.

Proposition 2.2. Let T be a tree on n vertices, let x be a leaf of T, and let $\Delta \geq 2$. Then $\left|(T-x)_{\Delta}\right| \geq\left|T_{\Delta}\right|-1$.

Proof. Let y be a vertex of $T_{\Delta}-(T-x)_{\Delta}$, and let z be an arbitrary vertex of $(T-x)_{\Delta}$. Then for some edge e incident to y we have $w_{e}(y)>(1-1 / \Delta)(n-1)$ in $T-x$. Since by Proposition 2.1 (iv) the component of $(T-x)-(T-x)_{\Delta}$ containing y contains at most $(n-1) / \Delta$ vertices, this edge must in fact be the first edge of the path in T from y to z. If e is also the first edge of the path in T from y to x then we have $w_{e}(y)>(1-1 / \Delta)(n-1)+1 \geq$ $(1-1 / \Delta) n$ in T, and so $y \notin T_{\Delta}$, giving a contradiction. So y must lie on the path in T from x to z. Since $y \in T_{\Delta}$ we must have $w_{e}(y) \leq(1-1 / \Delta) n$ in T, and so in T we have

$$
\left(1-\frac{1}{\Delta}\right) n-1 \leq\left(1-\frac{1}{\Delta}\right)(n-1)<w_{e}(y) \leq\left(1-\frac{1}{\Delta}\right) n .
$$

Clearly this can hold for at most one vertex y on the path from x to z. So $\left|T_{\Delta}-(T-x)_{\Delta}\right| \leq 1$, as desired.

Lemma 2.3. Let T be a tree on n vertices, let $\Delta \geq 2$ and let $\gamma, \alpha>0$. Also let T^{1} and T^{2} be subtrees of T such that $\left|T^{1} \cup T^{2}\right| \geq(1-\gamma) n$. Suppose also that $\left|T_{\Delta}^{1}\right|,\left|T_{\Delta}^{2}\right| \leq \alpha n$. Then $\left|T_{\Delta}\right| \leq \gamma n+2 \alpha n+2 n / \Delta$.

Proof. Arbitrarily choose vertices $x_{1} \in T_{\Delta}^{1}$ and $x_{2} \in T_{\Delta}^{2}$, and let P be the path from x_{1} to x_{2} (so P is also a subtree of T). Then let $T^{*}:=T^{1} \cup P \cup T^{2}$, so $\left|T^{*}\right| \geq(1-\gamma) n$. Furthermore, T^{*} can be formed from T by repeated leaf-deletions. So by Proposition 2.2 we must have $|T|-\left|T^{*}\right| \geq\left|T_{\Delta}\right|-\left|T_{\Delta}^{*}\right|$, and so

$$
\begin{equation*}
\left|T_{\Delta}\right| \leq|T|-\left|T^{*}\right|+\left|T_{\Delta}^{*}\right| \leq \gamma n-\left|P-\left(T^{1} \cup T^{2}\right)\right|+\left|T_{\Delta}^{*}\right| . \tag{1}
\end{equation*}
$$

Let $T_{c}^{*}:=T_{\Delta}^{1} \cup P \cup T_{\Delta}^{2}$. We claim that $T_{\Delta}^{*} \subseteq T_{c}^{*}$. Indeed, suppose for a contradiction that there exists a vertex $y \in T_{\Delta}^{*}-T_{c}^{*}$. Since T_{c}^{*} is a subtree of T, every vertex of T_{c}^{*} lies in the same component C of $T^{*}-y$. Note that $T^{*}-C$ is a tree. Now, T_{Δ}^{1} and T_{Δ}^{2} are subtrees of C, so by Proposition 2.1(iv) $T^{*}-C$ contains at most $\left|T^{1}\right| / \Delta$ vertices of T^{1} and at most $\left|T^{2}\right| / \Delta$ vertices of T^{2}. Let e be the edge of T^{*} between y and C. Then since $y \in T_{\Delta}^{*}$, $w_{e}(y) \leq(1-1 / \Delta)\left|T^{*}\right|$ in T^{*}. So at least $\left|T^{*}\right| / \Delta$ vertices of T^{*} lie in components of $T^{*}-y$ other than C. As every vertex of P lies in C, either at least $\left|T^{1}\right| / \Delta$ vertices of T^{1} lie in components of $T^{*}-y$ other than C, or at least $\left|T^{2}\right| / \Delta$ vertices of T^{2} lie in components of $T^{*}-y$ other than C. In the former case this implies that $T^{*}-C$ contains more than $\left|T^{1}\right| / \Delta$ vertices of T^{1}, and in the latter case this implies that $T^{*}-C$ contains more than $\left|T^{2}\right| / \Delta$ vertices of T^{2}. In either case this yields a contradiction.

Now, $\left|T_{c}^{*}\right| \leq 2 \alpha n+\left|P-\left(T_{\Delta}^{1} \cup T_{\Delta}^{2}\right)\right|$. Since $\left(P \cap T^{1}\right)-T_{\Delta}^{1}$ is contained within a single component of $T^{1}-T_{\Delta}^{1},\left|\left(P \cap T^{1}\right)-T_{\Delta}^{1}\right| \leq\left|T^{1}\right| / \Delta$, by Proposition 2.1(iv). Similarly $\mid(P \cap$ $\left.T^{2}\right)-T_{\Delta}^{2}\left|\leq\left|T^{2}\right| / \Delta\right.$. So

$$
\left|T_{\Delta}^{*}\right| \leq\left|T_{c}^{*}\right| \leq 2 \alpha n+\left(\left|T^{1}\right|+\left|T^{2}\right|\right) / \Delta+\left|P-\left(T^{1} \cup T^{2}\right)\right| .
$$

So by (1)

$$
\left|T_{\Delta}\right| \leq \gamma n+\left(\left|T^{1}\right|+\left|T^{2}\right|\right) / \Delta+2 \alpha n \leq \gamma n+2 n / \Delta+2 \alpha n .
$$

2.3. Almost-regular tournaments. In a regular directed graph G, every vertex v has $d^{+}(v)=d^{-}(v)=e(G) /|G|$. We say that a directed graph G is γ-almost-regular if every vertex $v \in G$ has $d^{+}(v), d^{-}(v) \geq(1-\gamma) e(G) /|G|$. In particular, if G is a tournament then G is γ-almost-regular if and only if every vertex $v \in G$ has $d^{+}(v), d^{-}(v) \geq(1-\gamma)(|G|-1) / 2$. The next proposition shows that for a large tournament G only one of these two bounds is needed to ensure that G contains an almost-spanning almost-regular tournament.

Proposition 2.4. Suppose that $1 / n \ll \alpha \ll \gamma \ll 1$. Let G be a tournament on n vertices in which at least one of the following holds:
(i) $d^{+}(v) \geq(1-\alpha)(n-1) / 2$ for every $v \in G$,
(ii) $d^{-}(v) \geq(1-\alpha)(n-1) / 2$ for every $v \in G$,
(iii) $d^{+}(v) \leq(1+\alpha)(n-1) / 2$ for every $v \in G$,
(iv) $d^{-}(v) \leq(1+\alpha)(n-1) / 2$ for every $v \in G$.

Then G contains a γ-almost-regular subtournament G^{\prime} on at least $(1-\gamma) n$ vertices.
Proof. We shall prove (i); then (ii), (iii) and (iv) follow immediately. Suppose that G has at least $\sqrt{\alpha} n$ vertices with $d^{+}(v)>(1+\sqrt{\alpha})(n-1) / 2$. Then

$$
\binom{n}{2}=e(G)=\sum_{v \in G} d^{+}(v)>(1-\alpha)\binom{n}{2}+\sqrt{\alpha} n \cdot \sqrt{\alpha}(n-1) / 2=\binom{n}{2}
$$

giving a contradiction. So there are at most $\sqrt{\alpha} n$ vertices of G with $d^{+}(v)>(1+\sqrt{\alpha})(n-$ $1) / 2$. Delete all of these vertices of G, and let G^{\prime} be the obtained subtournament. Then $n-\sqrt{\alpha} n \leq\left|G^{\prime}\right| \leq n$. Also, every vertex of G^{\prime} has

$$
d_{G^{\prime}}^{+}(v) \geq \frac{(1-\alpha)(n-1)}{2}-\sqrt{\alpha} n \geq \frac{(1-\gamma)\left(\left|G^{\prime}\right|-1\right)}{2}
$$

and

$$
d_{G^{\prime}}^{-}(v) \geq n-1-\sqrt{\alpha} n-\frac{(1+\sqrt{\alpha})(n-1)}{2} \geq \frac{(1-\gamma)\left(\left|G^{\prime}\right|-1\right)}{2}
$$

So G^{\prime} is a γ-almost-regular tournament on at least $(1-\gamma) n$ vertices, as desired.
2.4. Some embedding results. The following three lemmas will be the main tools we shall use to embed directed trees in tournaments. We use Theorem 1.3 in the proofs of all three lemmas, although the factor of 3 in Theorem 1.3 is not critical to our proof; any linear bound would suffice. For the proof of Lemma 2.7 we also require the use of Theorem 1.2 ,

Lemma 2.5. Let T be a directed tree on n vertices, rooted at t, such that t has no inneighbours in T, and every component of $T-t$ contains at most d vertices. Let G be a tournament whose vertex set is partitioned into three sets, $\{v\}, N$ and X, where $|N| \geq n-1$, every vertex of N is an outneighbour of v, and at least $3 d$ vertices of N each have at least $6 d$ inneighbours in X and at least $6 d$ outneighbours in X. Then T can be embedded in G in such a way that t is embedded to v and at most $4 d$ vertices of X are occupied by this embedding.
Proof. Let $N^{\prime} \subseteq N$ consist of all vertices of N with at least $6 d$ inneighbours in X and at least $6 d$ outneighbours in X. Then $\left|N^{\prime}\right| \geq 3 d$. We begin by embedding t to the vertex v. Now let T_{1}, \ldots, T_{r} be the components of $T-t$, in order of decreasing order. For each i, let t_{i} be the single vertex of T_{i} which is an outneighbour of t. Then we shall embed T_{1}, \ldots, T_{r} in turn in $N \cup X$, with each t_{i} embedded in N and each T_{i} embedded in the vertices not occupied by the embeddings of T_{1}, \ldots, T_{i-1}. This will give an embedding of T in G. So
suppose that we have embedded T_{1}, \ldots, T_{i-1} in this manner, and we now wish to embed T_{i}. Then at most $n-1$ vertices of T have been embedded. At least one of these vertices (namely t) was not embedded in N, so at least one vertex of N must be unoccupied.

Suppose that N^{\prime} contains at least one unoccupied vertex v_{i}, and also that fewer than $3 d$ vertices of X have been occupied. Then v_{i} has at least $3 d$ unoccupied inneighbours in X and at least $3 d$ unoccupied outneighbours in X. Embed t_{i} to v_{i}. We then proceed through the outcomponents of t_{i} in T_{i} in turn. Suppose that when we come to embed an outcomponent of t_{i} we have previously embedded m vertices of T_{i}. Then the current outcomponent has order at most $d-m$. Also, v_{i} has at least $3 d-m \geq 3(d-m)$ outneighbours in X which have not yet been occupied, so by Theorem 1.3 we may embed this outcomponent amongst the outneighbours of v_{i} in X. Similarly we may embed the incomponents of t_{i} in turn amongst the inneighbours of v_{i} in X, and so we obtain an embedding of T_{i} in the unoccupied vertices of G. Note that all vertices of T_{i} apart from t_{i} are embedded in X.

Now suppose instead that every vertex of N^{\prime} has been occupied, but still that fewer than $3 d$ vertices of X have been occupied. Then at least one of the T_{j} with $j<i$ must have had $\left|T_{j}\right|=1$, and so T_{i} consists of one single vertex, namely t_{i}. We may therefore embed t_{i} to any unoccupied vertex of N (recall that there is at least one such vertex).

Finally, suppose that at least $3 d$ vertices of X have been occupied. Then at least $3 d+1$ vertices of T have been embedded outside N, and so N contains at least $n-1-(n-(3 d+1))=$ $3 d$ unoccupied vertices. Since $\left|T_{i}\right| \leq d$, by Theorem 1.3 we may embed T_{i} among these unoccupied vertices.

By embedding each T_{i} in this fashion we obtain an embedding of T in G with t embedded to v. Furthermore, the only vertices embedded in X are those in some T_{i} such that when we came to embed T_{i}, N^{\prime} contained at least one unoccupied vertex v_{i}, and fewer than $3 d$ vertices of X had been occupied. The embedding of T_{i} occupied at most another d vertices of X, and so at most $4 d$ vertices of X can have been occupied in total.

Lemma 2.6. (a) Let T be a directed tree, and let T_{c} be a subtree of T such that every component of $T-T_{c}$ contains at most d vertices. Let G be a tournament whose vertices are partitioned into two sets S and N such that for every vertex $v \in S$ we have
(i) $\left|N^{+}(v) \cap N\right| \geq\left|T-T_{c}\right|+2 d$, and
(ii) $\left|N^{-}(v) \cap N\right| \geq\left|T-T_{c}\right|+2 d$.

Then any embedding of T_{c} in $G[S]$ can be extended to an embedding of T in G.
(b) Suppose that in addition to the above assumptions we choose a set $N^{\prime} \subseteq N$ and an integer $r \leq\left|T-T_{c}\right|$, so that every vertex $v \in S$ satisfies
(iii) $\left|N^{+}(v) \cap N^{\prime}\right| \geq r+2 d$, and
(iv) $\left|N^{-}(v) \cap N^{\prime}\right| \geq r+2 d$.

Then any embedding of T_{c} in $G[S]$ can be extended to an embedding of T in G such that at least r vertices of T are embedded in N^{\prime}.
(c) Suppose that no edges of T are directed from T_{c} to $T-T_{c}$. Then conditions (i) and (iii) may be dropped without affecting the validity of the above result. Likewise if no edges of T are directed from $T-T_{c}$ to T_{c}, then the above results hold even without conditions (ii) and (iv).
Proof. Let $n:=|T|$. We shall prove (b) and (c); for (a), apply (b) with $r:=\left|T-T_{c}\right|$ and $N^{\prime}:=N$. Let T_{1}, \ldots, T_{q} be the components of $T-T_{c}$, so $\left|T_{i}\right| \leq d$ for each i. Suppose
now that we have successfully extended the embedding of T_{c} in $G[S]$ to an embedding of $T_{c} \cup T_{1} \cup \cdots \cup T_{s-1}$ in G. We shall demonstrate how to extend this embedding to an embedding of $T_{c} \cup T_{1} \cup \cdots \cup T_{s}$ in G. Indeed, there is precisely one edge between T_{c} and T_{s}. Let $t \in T_{c}$ and $t_{s} \in T_{s}$ be the endvertices of this edge, and let v be the vertex in S to which t is embedded.

Suppose that t_{s} is an outneighbour of t. By (i), v has at least $\left|T-T_{c}\right|+2 d$ outneighbours in N. At most $\left|T_{1}\right|+\cdots+\left|T_{s-1}\right|$ of these outneighbours are occupied by the embedding of $T_{c} \cup T_{1} \cup \cdots \cup T_{s-1}$, and so v has at least $\left|T_{s}\right|+2 d \geq 3\left|T_{s}\right|$ outneighbours in N which are not occupied by this embedding. Now, by (iii), v has at least $r+2 d$ outneighbours in N^{\prime}. If at most $r-\left|T_{s}\right|$ of these outneighbours are occupied by the embedding of $T_{c} \cup T_{1} \cup \cdots \cup T_{s-1}$, then by Theorem 1.3 we may embed T_{s} amongst the at least $2 d+\left|T_{s}\right| \geq 3\left|T_{s}\right|$ unoccupied outneighbours of v in N^{\prime}. If instead $r-k$ of these outneighbours are occupied, for some $1 \leq k \leq\left|T_{s}\right|-1$, then by Theorem 1.3 we may embed T_{s} amongst the $2\left|T_{s}\right|+k$ unoccupied outneighbours in N^{\prime} and some arbitrary $\left|T_{s}\right|-k$ outneighbours of v in $N \backslash N^{\prime}$. Then at least k vertices of N^{\prime} will be occupied by this embedding of T_{s}. Finally, if at least r outneighbours of v in N^{\prime} have been occupied by this embedding, then we may embed T_{s} within the at least $3\left|T_{s}\right|$ unoccupied outneighbours of v in N.

If instead t_{s} is an inneighbour of t, then we may extend the embedding similarly, using (ii) and (iv) rather than (i) and (iii). So we may extend the embedding of T_{c} in $G[S]$ to an embedding of T in G by proceeding through each T_{i} in this manner. Also conditions (i) and (iii) will only be required if at least one edge of T is directed from T_{c} to $T-T_{c}$, and conditions (ii) and (iv) will only be required if at least one edge of T is directed from $T-T_{c}$ to T_{c}. Finally, note that after each T_{s} is embedded, either every vertex of $T_{1} \cup \cdots \cup T_{s}$ will have been embedded in N^{\prime}, or at least r vertices of $T_{1} \cup \cdots \cup T_{s}$ will have been embedded in N^{\prime}. Since $\left|T_{1} \cup T_{2} \cup \cdots \cup T_{q}\right|=\left|T-T_{c}\right| \geq r$, we can be sure that at least r vertices of N^{\prime} will be occupied by the embedding of T, as desired.

Lemma 2.7. Suppose that $1 / n \ll \gamma \ll \alpha \ll 1$. Let T be a directed tree on n vertices, and let forests F^{-}and F^{+}be induced subgraphs of T such that $V\left(F^{-}\right)$and $V\left(F^{+}\right)$partition $V(T)$ and every edge between F^{-}and F^{+}is directed from F^{-}to F^{+}. Let T_{1}^{+}and T_{2}^{+}be the largest and second largest components of F^{+}respectively. Also, let Y and Z be disjoint sets such that

$$
|Y| \geq\left|F^{+}\right|+\left|T_{2}^{+}\right|+\alpha n \text { and }|Z| \geq 2\left|F^{-}\right|+\alpha n .
$$

Let G be a tournament on vertex set $Y \cup Z$ such that every vertex of Y has at most γ n outneighbours in Z, and every vertex of Z has at most γn inneighbours in Y. Then any embedding of T_{1}^{+}in $G[Y]$ can be extended to an embedding of T in G.
Proof. Let T_{1}, \ldots, T_{r} be the components of F^{-}and F^{+}, ordered so that $T_{1}=T_{1}^{+}$and so that for each $2 \leq i \leq r$ there is exactly one edge of T between T_{i} and $T_{1} \cup \cdots \cup T_{i-1}$. Then we have an embedding of T_{1} in $G[Y]$. We shall proceed through the trees T_{i} in turn, embedding each T_{i} in $G[Y]$ if T_{i} is a component of F^{+}, or in $G[Z]$ if T_{i} is a component of F^{-}. Each T_{i} will be embedded so that the embeddings of T_{1}, \ldots, T_{i} form an embedding of the subtree of T induced by the vertices of T_{1}, \ldots, T_{i}. Suppose that we have successfully embedded T_{1}, \ldots, T_{i-1} in this manner, and we wish to extend this embedding to include T_{i}. Note that there is precisely one edge e between T_{i} and $T_{1} \cup \cdots \cup T_{i-1}$. Let t be the endvertex of e in $T_{1} \cup \cdots \cup T_{i-1}$, and let v be the vertex to which t was embedded.

If T_{i} is a component of F^{+}, then $t \in F^{-}$, so $v \in Z$. In this case we will embed T_{i} within the unoccupied outneighbours of v in Y. Since $v \in Z,\left|N^{+}(v) \cap Y\right| \geq|Y|-\gamma n \geq$
$\left|F^{+}\right|+\left|T_{2}^{+}\right|+\alpha n / 2$. At most $\left|F^{+}\right|-\left|T_{i}\right|$ of these vertices are occupied by the embeddings of T_{1}, \ldots, T_{i-1}. Since $i \geq 2, T_{i}$ is not the largest component of F^{+}, and so has order $\left|T_{i}\right| \leq\left|T_{2}^{+}\right|$. So at least $2\left|T_{i}\right|+\alpha n / 2$ outneighbours of v in Y remain unoccupied. So if $\left|T_{i}\right| \geq \alpha n / 2$ then by Theorem1.2(i) we may embed T_{i} in these unoccupied vertices of $N^{+}(v) \cap Y$. On the other hand, if $\left|T_{i}\right|<\alpha n / 2$ then by Theorem 1.3 we may embed T_{i} in these unoccupied vertices of $N^{+}(v) \cap Y$.

Now suppose instead that T_{i} is a component of F^{-}. Then $t \in F^{+}$, so $v \in Y$. Here we will embed T_{i} within the unoccupied inneighbours of v in Z. Since $v \in Y,\left|N^{-}(v) \cap Z\right| \geq$ $|Z|-\gamma n \geq 2\left|F^{-}\right|+\alpha n / 2$, and at most $\left|F^{-}\right|-\left|T_{i}\right|$ of these vertices are occupied by the embeddings of T_{1}, \ldots, T_{i-1}. So at least $2\left|T_{i}\right|+\alpha n / 2$ such vertices remain unoccupied. So as before, if $\left|T_{i}\right| \geq \alpha n / 2$ then by Theorem $1.2(\mathrm{i})$ we may embed T_{i} in these unoccupied vertices of $N^{-}(v) \cap Z$, whereas if $\left|T_{i}\right|<\alpha n / 2$ then by Theorem 1.3 we may embed T_{i} in these unoccupied vertices of $N^{-}(v) \cap Z$. By proceeding through all of the trees T_{i} in this manner we will obtain an embedding of T in G.

Observe that if in the statement of Lemma 2.7 we let T_{1}^{-}and T_{2}^{-}be the largest and second-largest components of F^{-}respectively, and replaced the conditions on the sizes of Z and Y by the conditions that $|Y| \geq 2\left|F^{+}\right|+\alpha n$ and $|Z| \geq\left|F^{-}\right|+\left|T_{2}^{-}\right|+\alpha n$, then we could conclude that any embedding of T_{1}^{-}in $G[Z]$ can be extended to an embedding of T in G. To see this, either note that the proof will still be valid with appropriate changes (switching inneighbours and outneighbours and so forth) or observe that this is the effect of reversing the direction of every edge of T and every edge of G, in which case the embedding problem is the same. Sometimes when referring to Lemma 2.7 we will implicitly mean this 'dual' of Lemma 2.7 instead.

3. Embedding trees whose core tree is a single vertex

In this section we shall verify that Sumner's universal tournament conjecture holds for large directed trees T whose core tree T_{Δ} contains only one vertex, that is, trees which are 'star-shaped'. Such trees can be embedded by selecting an appropriate vertex to which to embed the single vertex of T_{Δ}, and then embedding the components of $T-T_{\Delta}$ one by one.
Lemma 3.1. Suppose that $1 / n \ll 1 / \Delta \ll 1$. Let T be a directed tree on n vertices with $\left|T_{\Delta}\right|=1$, and let G be a tournament on $2 n-2$ vertices. Then G contains a copy of T.

Proof. Introduce constants α and γ with $1 / \Delta \ll \alpha \ll \gamma \ll 1$. Let t be the single vertex of T_{Δ}, let y be the outweight of T_{Δ}, and let z be the inweight of T_{Δ}. Also, let T_{1} be the subtree of T formed by t and all of its outcomponents, and let T_{2} be the subtree of T formed by t and all of its incomponents. Then $y+z=n-1,\left|T_{1}\right|=y+1$ and $\left|T_{2}\right|=z+1$. Now, suppose that G contains a vertex v such that
(i) either $d^{+}(v) \geq y+2 n / \Delta$ or $y=0$, and
(ii) either $d^{-}(v) \geq z+2 n / \Delta$ or $z=0$.

Then embed t to v. By Proposition 2.1 each component of $T-t$ contains at most n / Δ vertices. So by Lemma 2.6 we may extend the embedding of t in $\{v\}$ to an embedding of T_{1} in $\{v\} \cup N^{+}(v)$ (since if $y=0$ then T_{1} consists of the single vertex t). Also by Lemma 2.6, we may extend the embedding of t in $\{v\}$ to an embedding of T_{2} in $\{v\} \cup N^{-}(v)$ (since if $z=0$ then t is the only vertex of T_{2}). These two embeddings only overlap in the vertex v, and so combining these two embeddings gives an embedding of T in G.

So we may assume that every vertex $v \in G$ has either $d^{+}(v)<y+2 n / \Delta$ or $d^{-}(v)<$ $z+2 n / \Delta$. Let $Y:=\left\{v \in G: d^{+}(v)<y+2 n / \Delta\right\}$ and let $Z:=\left\{v \in G: d^{-}(v)<z+2 n / \Delta\right\}$. Then every vertex of G lies in precisely one of Y and Z, so $|Y|+|Z|=2 n-2$. Thus we must have either $|Y| \geq 2 y$ or $|Z| \geq 2 z$. Furthermore, if $y=0$ and $|Y| \geq 1$ then each $v \in Y$ has $d^{+}(v)<2 n / \Delta$ and therefore $d^{-}(v) \geq z+2 n / \Delta$, and so satisfies (ii). We may therefore assume that if $y=0$ then $|Y|=0$ and similarly that if $z=0$ then $|Z|=0$. So without loss of generality we may assume that $|Y| \geq 2 y$ and $y>0$ (otherwise reverse the direction of every edge of T and every edge of G; then we would have $|Y| \geq 2 y$ and $y>0$ at this stage, and the embedding problem is the same). Observe that by definition of Y we must also have $|Y| \leq 2 y+4 n / \Delta+1$.

Now suppose that $y \geq \alpha n$. Since $y \in \mathbb{N}$ and $|Y| \geq 2 y, Y$ must contain a vertex v which satisfies $\left|N^{+}(v) \cap Y\right| \geq y$. Choose a subset $N^{\prime} \subseteq N^{+}(v) \cap Y$ of size y. For any vertex $u \in Y$,

$$
d_{G[Y]}^{+}(u)=\left|N^{+}(u) \cap Y\right| \leq d_{G}^{+}(u)<y+2 n / \Delta \leq(1+\alpha)(|Y|-1) / 2 .
$$

So by Proposition [2.4 $G[Y]$ contains a γ-almost-regular tournament on at least $2(1-\gamma) y$ vertices. So at most $|Y|-2(1-\gamma) y \leq 3 \gamma y$ vertices of Y have fewer than $(1-2 \gamma) y$ inneighbours in Y or fewer than $(1-2 \gamma) y$ outneighbours in Y. Since $\left|N^{\prime}\right|=y$, at most $6 \gamma y+1$ vertices of N^{\prime} have more than $(1-3 \gamma) y$ inneighbours in N^{\prime}, and at most $6 \gamma y+1$ vertices of N^{\prime} have more than $(1-3 \gamma) y$ inneighbours in N^{\prime}. So at least $(1-16 \gamma) y$ vertices of N^{\prime} have at least γy inneighbours in $Y \backslash N^{\prime}$ and at least γy outneighbours in $Y \backslash N^{\prime}$. Certainly therefore at least $3 n / \Delta$ vertices of N^{\prime} have at least $6 n / \Delta$ inneighbours in $Y \backslash\left(\{v\} \cup N^{\prime}\right)$ and at least $6 n / \Delta$ outneighbours in $Y \backslash\left(\{v\} \cup N^{\prime}\right)$. So by Lemma 2.5 we may embed T_{1} in Y, with t embedded to v, and at most $4 n / \Delta$ vertices embedded outside $N^{\prime} \cup\{v\}$. Let V^{\prime} be the set of vertices of G not occupied by this embedding of T_{1}. Since v has at least $|G|-1-(y+2 n / \Delta) \geq z+6 n / \Delta$ inneighbours in G, all outside $N^{\prime} \cup\{v\}, v$ must have at least $z+2 n / \Delta$ unoccupied inneighbours in V^{\prime}. So by Lemma 2.6 we may extend the embedding of t in $\{v\}$ to an embedding of T_{2} in $\{v\} \cup V^{\prime}$. These two embeddings only overlap in the vertex v, and so combine to give an embedding of T in G.

So we may assume that $1 \leq y<\alpha n$. Then every vertex $v \in Y$ has

$$
\begin{equation*}
d^{-}(v) \geq|G|-1-y-2 n / \Delta \geq n+2 n / \Delta . \tag{2}
\end{equation*}
$$

Let T_{3} be the subtree of T formed by every vertex $t^{\prime} \in T$ for which T contains a directed path from from t to t^{\prime}. Then $t \in T_{3}$, and (taking t as the root vertex) T_{3} is an outbranching. Also $T_{3} \subseteq T_{1}$, so $\left|T_{3}\right| \leq y+1$, and so by Theorem [1.4, we may embed T_{3} in $G[Y]$. Since $T_{\Delta} \subseteq T_{3}$, by Proposition 2.1(iv) each component of $T-T_{3}$ contains at most n / Δ vertices. So as every edge of T between $T-T_{3}$ and T_{3} is directed from $T-T_{3}$ to T_{3}, and also since by (21) every vertex of Y has at least $\left|T-T_{3}\right|+2 n / \Delta$ inneighbours which were not occupied by the embedding of T_{3}, we may extend the embedding of T_{3} in $G[Y]$ to an embedding of T in G by Lemma 2.6 .

4. The regularity lemma and its applications to embedding trees

In this section we shall present a degree form of the regularity lemma for directed graphs, and show how this may be used to embed trees. In particular, the regularity lemma is useful for embedding directed trees T for which T_{Δ} is substantially smaller than the size of a cluster obtained by applying the regularity lemma to a tournament G; our approach here is essentially to select an appropriate cluster in G in which to embed T_{Δ} so that we may then
embed the components of $T-T_{\Delta}$ in the remaining clusters of G. By using this method we shall prove Lemma 4.6, which states that Theorem 1.1 holds in the case where G is a large and almost-regular tournament, and T is a directed tree such that T_{Δ} is small.

Let U and V be disjoint sets, and let G be a directed graph on vertex set $U \cup V$. Recall that $G[U \rightarrow V]$ denotes the bipartite subgraph of G formed by edges directed from U to V. The density from U to V, denoted $d(G[U \rightarrow V])$, is then defined by

$$
d(G[U \rightarrow V]):=\frac{e(G[U \rightarrow V])}{|U||V|} .
$$

We say that $G[U \rightarrow V]$ is ε-regular if for any $U^{\prime} \subseteq U$ and $V^{\prime} \subseteq V$ with $\left|U^{\prime}\right|>\varepsilon|U|$ and $\left|V^{\prime}\right|>\varepsilon|V|$ we have $d\left(G\left[U^{\prime} \rightarrow V^{\prime}\right]\right)=d(G[U \rightarrow V]) \pm \varepsilon$.

The next lemma is the degree form of the regularity lemma which we shall use. A regularity lemma for digraphs was proven by Alon and Shapira [1]. The degree form follows from this in the same way as in the undirected case (see [11] for a sketch of the latter).

Lemma 4.1 (Regularity Lemma for directed graphs). Suppose that $1 / n \ll 1 / M \ll 1 / M^{\prime} \ll$ ε. Let G be a directed graph on n vertices. Then there exists a partition of $V(G)$ into V_{0}, \ldots, V_{k} and a spanning subgraph G^{\prime} of G such that
(1) $M^{\prime} \leq k \leq M$,
(2) $\left|V_{0}\right| \leq \varepsilon n$,
(3) $\left|V_{1}\right|=\cdots=\left|V_{k}\right|$,
(4) $d_{G^{\prime}}^{+}(x)>d_{G}^{+}(x)-\varepsilon n$ for all vertices $x \in V(G)$,
(5) $d_{G^{\prime}}^{-}(x)>d_{G}^{-}(x)-\varepsilon n$ for all vertices $x \in V(G)$,
(6) for all $i \in[k]$ the directed graph $G^{\prime}\left[V_{i}\right]$ is empty,
(7) for all $i, j \in[k]$ with $i \neq j$ the directed graph $G^{\prime}\left[V_{i} \rightarrow V_{j}\right]$ is ε-regular.

We say that an oriented graph G on clusters V_{1}, \ldots, V_{k} of equal size is an ε-regular cluster tournament if for any $i, j \in[k]$ with $i \neq j$ the subdigraph $G\left[V_{i} \rightarrow V_{j}\right]$ is ε-regular and for any $i \in[k]$ the subdigraph $G\left[V_{i}\right]$ is a tournament. If G is a cluster tournament on clusters V_{1}, \ldots, V_{k} then we shall denote the density of $G\left[V_{i} \rightarrow V_{j}\right]$ by $d_{i j}$ for any $i, j \in[k]$ (the tournament G will be clear from the context). The following corollary of the regularity lemma shows that any sufficiently large tournament G contains an almost-spanning ε-regular cluster tournament G^{*} such that vertices have similar in- and outdegrees in both G and G^{*}.

Corollary 4.2. Suppose that $1 / n \ll 1 / M \ll 1 / M^{\prime} \ll \varepsilon$. Let G be a tournament on n vertices. Then there exist disjoint subsets $V_{1}, \ldots, V_{k} \subseteq V(G)$ of equal size and a subgraph $G^{*} \subseteq G$ on vertex set $V_{1} \cup \cdots \cup V_{k}$ such that:
(i) $M^{\prime} \leq k \leq M$,
(ii) G^{*} is an ε-regular cluster tournament,
(iii) $\bigcup_{i \in[k]} V_{i} \geq(1-\varepsilon) n$,
(iv) $d_{G^{*}}^{+}(x)>d_{G}^{+}(x)-2 \varepsilon n$ for all vertices $x \in V(G)$, and
(v) $d_{G^{*}}^{-}(x)>d_{G}^{-}(x)-2 \varepsilon n$ for all vertices $x \in V(G)$.

Proof. Apply Lemma 4.1 to obtain a partition V_{0}, \ldots, V_{k} of $V(G)$ and a subgraph $G^{\prime} \subseteq G$ which satisfy the conditions of Lemma 4.1. In particular (i) and (iii) are satisfied. Now form G^{*} from $G^{\prime}\left[V_{1} \cup \cdots \cup V_{k}\right]$ by adding every edge of G for which both endvertices lie in the same cluster V_{i}. So $G^{*} \subseteq G$, and by (7) of Lemma 4.1 and the fact that $G^{*}\left[V_{i}\right]$ is a
tournament for each $i \in[k]$ we have (ii). Finally note that using (4) of Lemma 4.1] we have

$$
d_{G^{*}}^{+}(x) \geq d_{G^{\prime}}^{+}(x)-\left|V_{0}\right| \geq d_{G}^{+}(x)-2 \varepsilon n
$$

Similarly $d_{G^{*}}^{-}(x) \geq d_{G}^{-}(x)-2 \varepsilon n$ using (5) of Lemma 4.1.
It follows immediately from the definition of regularity that if U and V are sets of size m, and $G[U \rightarrow V]$ is ε-regular with density d, then all but at most $2 \varepsilon m$ vertices of U have $(d \pm \varepsilon) m$ outneighbours in V. The next lemma is a generalisation of this fact, considering the number of outneighbours of vertices in one cluster within a cluster tournament.

Lemma 4.3. Suppose that $1 / m \ll 1 / k \ll \varepsilon \ll \varepsilon^{\prime} \ll 1$. Let G be an ε-regular cluster tournament on clusters V_{1}, \ldots, V_{k}, each of size m. Let $V_{j}^{\prime} \subseteq V_{j}$ for each $j \in[k]$ be fixed. Then for any i, all but at most $\varepsilon^{\prime} m$ vertices of V_{i} have $\sum_{j \in[k] \backslash\{i\}} d_{i j}\left|V_{j}^{\prime}\right| \pm \varepsilon^{\prime} k m$ outneighbours in $\bigcup_{j \in[k] \backslash\{i\}} V_{j}^{\prime}$ and $\sum_{j \in[k] \backslash\{i\}} d_{j i}\left|V_{j}^{\prime}\right| \pm \varepsilon^{\prime} k m$ inneighbours in $\bigcup_{j \in[k] \backslash\{i\}} V_{j}^{\prime}$.
Proof. Fix some $i \in[k]$. Then let L be the set of all $j \in[k] \backslash\{i\}$ such that $\left|V_{j}^{\prime}\right| \geq \varepsilon m$ and $d_{i j} \geq \sqrt{\varepsilon}$. For each $j \in L$, let A_{j} denote the set of vertices of V_{i} which have fewer than $(1-\sqrt{\varepsilon}) d_{i j}\left|V_{j}^{\prime}\right|$ outneighbours in V_{j}^{\prime}. Then for each $j \in L$, the subdigraph of $G\left[V_{i} \rightarrow V_{j}\right]$ induced by A_{j} and V_{j}^{\prime} has density less than $(1-\sqrt{\varepsilon}) d_{i j} \leq d_{i j}-\varepsilon$. Since $G\left[V_{i} \rightarrow V_{j}\right]$ is ε-regular with density $d_{i j}$, and $\left|V_{j}^{\prime}\right| \geq \varepsilon m$, we must have $\left|A_{j}\right|<\varepsilon m$.

Now, fix a vertex $v \in V_{i}$. Suppose that v appears in at most $\sqrt{\varepsilon}|L|$ of the sets A_{j} with $j \in L$. Then

$$
\begin{aligned}
\left|N^{+}(v) \cap \bigcup_{j \in L} V_{j}^{\prime}\right| & \geq \sum_{j \in L: v \notin A_{j}}(1-\sqrt{\varepsilon}) d_{i j}\left|V_{j}^{\prime}\right| \\
& \geq \sum_{j \in[k] \backslash\{i\}}(1-\sqrt{\varepsilon}) d_{i j}\left|V_{j}^{\prime}\right|-\sum_{j \in[k] \backslash(L \cup\{i\})} d_{i j}\left|V_{j}^{\prime}\right|-\sum_{j \in L: v \in A_{j}} d_{i j}\left|V_{j}^{\prime}\right| \\
& \geq \sum_{j \in[k] \backslash\{i\}} d_{i j}\left|V_{j}^{\prime}\right|-\sqrt{\varepsilon} k m-\sqrt{\varepsilon} k m-\sqrt{\varepsilon}|L| m \\
& \geq \sum_{j \in[k] \backslash\{i\}} d_{i j}\left|V_{j}^{\prime}\right|-3 \sqrt{\varepsilon} k m .
\end{aligned}
$$

Since at most $\sqrt{\varepsilon} m$ vertices $v \in V_{i}$ appear in more than $\sqrt{\varepsilon}|L|$ of the sets A_{j} with $j \in L$, we may conclude that there are at most $\sqrt{\varepsilon} m$ vertices $v \in V_{i}$ with fewer than $\sum_{j \in[k] \backslash\{i\}} d_{i j}\left|V_{j}^{\prime}\right|-$ $3 \sqrt{\varepsilon} k m$ outneighbours in $\bigcup_{j \in[k] \backslash\{i\}} V_{j}^{\prime}$. A similar argument shows that there are at most $\sqrt{\varepsilon} m$ vertices $v \in V_{i}$ with more than $\sum_{j \in[k] \backslash\{i\}} d_{i j}\left|V_{j}^{\prime}\right|+3 \sqrt{\varepsilon} k m$ outneighbours in $\bigcup_{j \in[k] \backslash\{i\}} V_{j}^{\prime}$.

Now, let L^{\prime} be the set of all $j \in[k]$ such that $\left|V_{j}^{\prime}\right| \geq \varepsilon m$ and $d_{j i} \geq \sqrt{\varepsilon}$. Then the same argument applied to inneighbours rather than outneighbours shows that there are at most $\sqrt{\varepsilon} m$ vertices $v \in V_{i}$ with fewer than $\sum_{j \in[k] \backslash\{i\}} d_{j i}\left|V_{j}^{\prime}\right|-3 \sqrt{\varepsilon} k m$ inneighbours in $\bigcup_{j \in[k] \backslash\{i\}} V_{j}^{\prime}$ and at most $\sqrt{\varepsilon} m$ vertices $v \in V_{i}$ with more than $\sum_{j \in[k] \backslash i\}} d_{j i}\left|V_{j}^{\prime}\right|+3 \sqrt{\varepsilon} k m$ inneighbours in $\bigcup_{j \in[k] \backslash\{i\}} V_{j}^{\prime}$. Since $\varepsilon \ll \varepsilon^{\prime}$, this completes the proof.

The next two lemmas will be used in the proof of Lemma 4.6, we state them separately as we shall also refer to them in Section 6. Both of these consider an ε-regular cluster tournament G on k clusters with the property that for some cluster V_{i} the density of edges leaving V_{i} and the density of edges entering V_{i} are each roughly $1 / 2$. Lemma 4.4 considers
the case where for many clusters V_{j} the density of edges between V_{i} and V_{j} is large in both directions, showing that in this case G contains a copy of a directed tree T of the type considered. Lemma 4.5 considers the alternative, namely that for almost all clusters V_{j} the density of edges between V_{i} and V_{j} is small in one direction, showing that in this case G contains a copy of T provided that T_{Δ} has large inweight and large outweight.

Lemma 4.4. Suppose that $1 / n \ll 1 / \Delta^{\prime}, \beta \ll 1 / k \ll \varepsilon \ll \gamma \ll \alpha \ll 1 / \Delta \ll 1$. Let T be a directed tree on n vertices with $\left|T_{\Delta^{\prime}}\right| \leq \beta n$ and $\left|T_{\Delta}\right| \geq 2$, and let G be an ε-regular cluster tournament on clusters V_{1}, \ldots, V_{k}, each of size $m \geq 2(1-\gamma) n / k$. Suppose also that for some $i \in[k]$ we have

$$
\sum_{j \in[k \backslash \backslash\{i\}} d_{i j} \geq \frac{(1-3 \gamma) k}{2} \quad \text { and } \sum_{j \in[k] \backslash\{i\}} d_{j i} \geq \frac{(1-3 \gamma) k}{2} \text {, }
$$

and also that there are at least αk values of $j \in[k] \backslash\{i\}$ such that $d_{i j} \geq \alpha$ and $d_{j i} \geq \alpha$. Then G contains a copy of T.
Proof. Fix such a value of i, and introduce a new constant ε^{\prime} with $\varepsilon \ll \varepsilon^{\prime} \ll \gamma$. Since $\Delta \leq \Delta^{\prime}$, we must have $T_{\Delta} \subseteq T_{\Delta^{\prime}}$. Also, since $\left|T_{\Delta}\right| \geq 2$, we may choose an edge $t^{-} \rightarrow t^{+}$ of T_{Δ}, which therefore is also an edge of $T_{\Delta^{\prime}}$. Let T^{+}and T^{-}be the two components formed when this edge is deleted from T, labelled so that $t^{+} \in T^{+}$and $t^{-} \in T^{-}$. Similarly, let $T_{\Delta^{\prime}}^{+}$ and $T_{\Delta^{\prime}}^{-}$be the two components formed by the deletion of the edge $t^{-} \rightarrow t^{+}$from $T_{\Delta^{\prime}}$, labelled with $t^{+} \in T_{\Delta^{\prime}}^{+}$and $t^{-} \in T_{\Delta^{\prime}}^{-}$. Then T^{+}and T^{-}partition the vertices of T, and there is precisely one edge of T between T^{+}and T^{-}, which is directed towards T^{+}. Furthermore, since $t^{-} \rightarrow t^{+}$was an edge of T_{Δ}, by Proposition [2.1(ii) we have $\left|T^{+}\right|,\left|T^{-}\right| \geq n / \Delta$.

Let $J \subseteq[k] \backslash\{i\}$ satisfy $|J| \geq \alpha k$ and also that for any $j \in J$ we have $d_{i j} \geq \alpha$ and $d_{j i} \geq \alpha$. Then $\sum_{j \in J} d_{i j} \geq \alpha^{2} k$ and $\sum_{j \in J} d_{j i} \geq \alpha^{2} k$. By Lemma 4.3 (applied with $V_{j}^{\prime}=\emptyset$ for each $j \notin J)$ at most $\varepsilon^{\prime} m$ vertices of V_{i} have fewer than

$$
\begin{equation*}
\sum_{j \in J} d_{i j} m-\varepsilon^{\prime} k m \geq \alpha^{2} k m-\varepsilon^{\prime} k m \geq \frac{\alpha^{2} k m}{2} \tag{3}
\end{equation*}
$$

outneighbours in $\bigcup_{j \in J} V_{j}$ or fewer than $\sum_{j \in J} d_{j i} m-\varepsilon^{\prime} k m \geq \alpha^{2} k m / 2$ inneighbours in $\bigcup_{j \in J} V_{j}$. Also by Lemma 4.3 at most $\varepsilon^{\prime} m$ vertices of V_{i} have fewer than

$$
\begin{equation*}
\sum_{j \in[k] \backslash i\}} d_{i j} m-\varepsilon^{\prime} k m \geq \frac{\left(1-3 \gamma-2 \varepsilon^{\prime}\right) k m}{2} \geq(1-5 \gamma) n \tag{4}
\end{equation*}
$$

outneighbours in $\bigcup_{j \in[k] \backslash\{i\}} V_{j}$ or fewer than $\sum_{j \in[k] \backslash\{i\}} d_{j i} m-\varepsilon^{\prime} k m \geq(1-5 \gamma) n$ inneighbours in $\bigcup_{j \in[k] \backslash\{i\}} V_{j}$. Finally, at most $m / 2+1$ vertices of V_{i} have fewer than $m / 4$ inneighbours in V_{i}. So we may choose a set S^{+}of $m / 10$ vertices of V_{i} which do not fall into any of these categories. Since $\left|T_{\Delta^{\prime}}^{+}\right| \leq\left|T_{\Delta^{\prime}}\right| \leq \beta n \leq m / 30$, by Theorem 1.3 we may embed $T_{\Delta^{\prime}}^{+}$in S^{+}. Let $S_{\Delta^{\prime}}^{+}$be the set of vertices of S^{+}occupied by this embedding of $T_{\Delta^{\prime}}^{+}$, and let v^{+}be the vertex to which t^{+}was embedded. Recall that $\left|T^{-}\right| \geq n / \Delta$, so

$$
\left|T^{+}\right|=n-\left|T^{-}\right| \leq(1-1 / \Delta) n
$$

Furthermore, every component of $T^{+}-T_{\Delta^{\prime}}^{+}$is a component of $T-T_{\Delta^{\prime}}$ and thus has order at most n / Δ^{\prime} by Proposition 2.1. So by (3) and (4), and since $\gamma \ll 1 / \Delta$, we may apply Lemma 2.6(b) to extend the embedding of $T_{\Delta^{\prime}}^{+}$in $S_{\Delta^{\prime}}^{+}$to an embedding of T^{+}in $S_{\Delta^{\prime}}^{+} \cup$
$\bigcup_{j \in[k] \backslash\{i\}} V_{j}$ so that at least $\alpha^{2} n / 3$ vertices of $\bigcup_{j \in J} V_{j}$ are occupied by this embedding of T^{+}.

Now, at least $m / 4-m / 10=3 m / 20$ vertices of $V_{i} \backslash S_{\Delta^{\prime}}^{+}$are inneighbours of v^{+}. For each $j \in[k] \backslash\{i\}$, let o_{j} denote the number of vertices of V_{j} which are occupied by our embedding of T^{+}, and let $V_{j}^{\prime} \subseteq V_{j}$ consist of those vertices of V_{j} which are not occupied by this embedding. So $\left|V_{j}^{\prime}\right|=m-o_{j}$ for each j. Note that since $d_{i j}+d_{j i} \leq 1$ we have $d_{i j} \leq 1-\alpha$ for each $j \in J$. Then by Lemma 4.3, at most $\varepsilon^{\prime} m$ vertices of V_{i} have fewer than

$$
\sum_{j \in[k] \backslash\{i\}} d_{i j}\left(m-o_{j}\right)-\varepsilon^{\prime} k m \geq \sum_{j \in[k] \backslash\{i\}} d_{i j} m-\varepsilon^{\prime} k m-\sum_{j \in J} d_{i j} o_{j}-\sum_{j \in[k] \backslash(\{i\} \cup J)} d_{i j} o_{j}
$$

$$
\stackrel{(4)}{\geq}(1-5 \gamma) n-(1-\alpha) \sum_{j \in J} o_{j}-\sum_{j \in[k] \backslash(\{i\} \cup J)} o_{j}
$$

$$
\geq(1-5 \gamma) n-\sum_{j \in[k] \backslash\{i\}} o_{j}+\alpha \sum_{j \in J} o_{j}
$$

$$
\geq(1-5 \gamma) n-\sum_{j \in[k] \backslash\{i\}} o_{j}+\alpha^{3} n / 3 \geq n-\sum_{j \in[k] \backslash\{i\}} o_{j}+2 n / \Delta^{\prime}
$$

outneighbours in $\bigcup_{j \in[k] \backslash\{i\}} V_{j}^{\prime}$ or fewer than

$$
\sum_{j \in[k] \backslash\{i\}} d_{j i}\left(m-o_{j}\right)-\varepsilon^{\prime} k m \geq n-\sum_{j \in[k] \backslash\{i\}} o_{j}+2 n / \Delta^{\prime},
$$

inneighbours in $\bigcup_{j \in[k] \backslash\{i\}} V_{j}^{\prime}$. So we may choose a set S^{-}of $m / 10$ vertices of $V_{i} \backslash S_{\Delta^{\prime}}^{+}$, none of which fall into these two categories, and all of which are inneighbours of v^{+}. Since $\left|T_{\Delta^{\prime}}^{-}\right| \leq\left|T_{\Delta^{\prime}}\right| \leq \beta n \leq m / 30$, by Theorem 1.3 we may embed $T_{\Delta^{\prime}}^{-}$in S^{-}. Let $S_{\Delta^{\prime}}^{-}$be the set of vertices of S^{-}occupied by this embedding of $T_{\Delta^{\prime}}^{-}$. Then since

$$
\left|T^{-}\right|=n-\left|T^{+}\right| \leq n-\sum_{j \in[k] \backslash\{i\}} o_{j},
$$

the right hand side of (5) is at least $\left|T^{-}\right|+2 n / \Delta^{\prime}$. Also every component of $T^{-}-T_{\Delta^{\prime}}^{-}$ is a component of $T-T_{\Delta^{\prime}}$ (and so has order at most n / Δ^{\prime} by Proposition 2.1(iv)). So by Lemma 2.6 we may extend the embedding of $T_{\Delta^{\prime}}^{-}$in $S_{\Delta^{\prime}}^{-}$to an embedding of T^{-}in $S_{\Delta^{\prime}}^{-} \cup \bigcup_{j \in[k] \backslash\{i\}} V_{j}^{\prime}$. Then the embeddings of T^{+}and T^{-}do not overlap, and so together these embeddings form an embedding of T in G.

Given an ε-regular cluster tournament G on clusters V_{1}, \ldots, V_{k}, we define the reduced digraph of G with parameter d, denoted $R_{G}(d)$, to be the directed graph on vertex set $[k]$ in which $i \rightarrow j$ if and only if $d_{i j} \geq d$. Observe that since $d_{i j}+d_{j i} \leq 1$ for any i and j, if $d>1 / 2$ then $R_{G}(d)$ is an oriented graph.

Lemma 4.5. Suppose that $1 / n \ll 1 / \Delta^{\prime}, \beta \ll 1 / k \ll \varepsilon \ll \gamma \ll \alpha \ll 1$. Let T be a directed tree on n vertices with $\left|T_{\Delta^{\prime}}\right| \leq \beta n$, and let y and z be the outweight and inweight of $T_{\Delta^{\prime}}$ respectively. Let G be an ε-regular cluster tournament on clusters V_{1}, \ldots, V_{k}, each of size
$m \geq 2(1-\gamma) n / k$. Suppose that for some $i \in[k]$ we have

$$
\sum_{j \in[k] \backslash\{i\}} d_{i j} \geq \frac{(1-3 \gamma) k}{2} \quad \text { and } \sum_{j \in[k] \backslash\{i\}} d_{j i} \geq \frac{(1-3 \gamma) k}{2} \text {, }
$$

and also that there are at most αk values of $j \in[k] \backslash\{i\}$ such that $d_{i j} \geq \alpha$ and $d_{j i} \geq \alpha$. Then:
(i) There are at most $2 \alpha k$ values of $j \in[k] \backslash\{i\}$ such that $d_{i j}<1-2 \alpha$ and $d_{j i}<1-2 \alpha$.
(ii) Let $R:=R_{G}(1-2 \alpha)$. Then $\left|N_{R}^{+}(i)\right|,\left|N_{R}^{-}(i)\right| \geq(1-10 \alpha) k / 2$.
(iii) If $y, z \geq 14 \alpha n$, then G contains a copy of T.

Proof. Fix such an i, and introduce a new constant ε^{\prime} with $\varepsilon \ll \varepsilon^{\prime} \ll \gamma$. For (i), note that since $d_{i j}+d_{j i} \leq 1$ for any $j \in[k] \backslash\{i\}$, and

$$
\sum_{j \in[k] \backslash\{i\}}\left(d_{i j}+d_{j i}\right) \geq(1-3 \gamma) k,
$$

there are at most $3 \sqrt{\gamma} k \leq \alpha k$ values of $j \in[k] \backslash\{i\}$ for which $d_{i j}+d_{j i}<1-\sqrt{\gamma}$. So there are at most $2 \alpha k$ values of $j \in[k] \backslash\{i\}$ for which $d_{i j}<1-\alpha-\sqrt{\gamma}$ and $d_{j i}<1-\alpha-\sqrt{\gamma}$, so (i) holds.

For (ii), observe that by (i) we have

$$
\begin{aligned}
\frac{(1-3 \gamma) k}{2} & \leq \sum_{j \in[k] \backslash\{i\}} d_{i j} \leq \sum_{\substack{j \in[k] \backslash\{i\} \\
d_{i j} \geq 1-2 \alpha}} d_{i j}+\sum_{\substack{j \in[k] \backslash\{i\} \\
d_{i j}, d_{j i}<1-2 \alpha}} d_{i j}+\sum_{\substack{j \in[k] \backslash\{i\} \\
d_{i j} \leq 2 \alpha}} d_{i j} \\
& \leq\left|N_{R}^{+}(i)\right|+2 \alpha k+2 \alpha k,
\end{aligned}
$$

so $\left|N_{R}^{+}(i)\right| \geq(1-10 \alpha) k / 2$. A similar calculation shows that $\left|N_{R}^{-}(i)\right| \geq(1-10 \alpha) k / 2$.
For (iii), let N^{+}and N^{-}denote $N_{R}^{+}(i)$ and $N_{R}^{-}(i)$ respectively, and let $V^{+}:=\bigcup_{j \in N^{+}} V_{j}$ and $V^{-}:=\bigcup_{j \in N^{-}} V_{j}$, so V^{+}and V^{-}are disjoint. By Lemma 4.3, V_{i} contains at most $\varepsilon^{\prime} m$ vertices with fewer than

$$
\begin{aligned}
\sum_{j \in N^{+}} d_{i j} m-\varepsilon^{\prime} k m & \geq\left|N_{R}^{+}(i)\right|(1-2 \alpha) m-\varepsilon^{\prime} k m \geq(1-10 \alpha)(1-2 \alpha) k m / 2-\varepsilon^{\prime} k m \\
& \geq\left(1-12 \alpha-2 \varepsilon^{\prime}\right) k m / 2 \geq(1-13 \alpha) n
\end{aligned}
$$

outneighbours in V^{+}and at most $\varepsilon^{\prime} m$ vertices with fewer than $\sum_{j \in N^{-}} d_{j i} m-\varepsilon^{\prime} k m \geq$ $(1-13 \alpha) n$ inneighbours in V^{-}. Choose a set S of $m / 2$ vertices of V_{i}, not including any of these at most $2 \varepsilon^{\prime} m$ vertices. Since $\left|T_{\Delta^{\prime}}\right| \leq \beta n \leq m / 6$, by Theorem 1.3 we may embed $T_{\Delta^{\prime}}$ in S. Let $S_{\Delta^{\prime}}$ be the set of vertices of S occupied by this embedding of $T_{\Delta^{\prime}}$. Also let T_{1} be the tree formed by $T_{\Delta^{\prime}}$ and all of its outcomponents, and let T_{2} be the tree formed by $T_{\Delta^{\prime}}$ and all of its incomponents. Note that all of these out- and incomponents have order at most $n / \Delta^{\prime} \ll \alpha n$ by Proposition 2.1(iv). In addition $\left|T_{1}\right|=n-z \leq(1-14 \alpha) n$ and $\left|T_{2}\right|=n-y \leq(1-14 \alpha) n$. So by Lemma 2.6 we may extend the embedding of $T_{\Delta^{\prime}}$ in $S_{\Delta^{\prime}}$ to an embedding of T_{1} in $S_{\Delta^{\prime}} \cup V^{+}$. Similarly by Lemma 2.6 we may extend the embedding of $T_{\Delta^{\prime}}$ in $S_{\Delta^{\prime}}$ to an embedding of T_{2} in $S_{\Delta^{\prime}} \cup V^{-}$. Then these embeddings do not overlap outside $T_{\Delta^{\prime}}$, so we may combine them to form an embedding of T in G.

To finish this section we shall show how Lemma 4.1 can be used to show that Sumner's universal tournament conjecture holds for any large and almost-regular tournament with a small core tree. Actually we shall prove a slightly stronger result in this case, considering a tournament on fewer than $2 n-2$ vertices. Later on we shall make use of the fact that we have a little room to spare in the order of the tournament. Much of the work for this lemma is done by the two previous lemmas.

Lemma 4.6. Suppose that $1 / n \ll 1 / \Delta^{\prime}, \beta \ll \gamma \ll 1 / \Delta \ll 1$. Let T be a directed tree on n vertices such that $\left|T_{\Delta^{\prime}}\right| \leq \beta n$ and $\left|T_{\Delta}\right| \geq 2$. Let G be a γ-almost-regular tournament on at least $(2-\gamma) n$ vertices. Then G contains a copy of T.
Proof. Introduce new constants $\varepsilon, \varepsilon^{\prime}, \alpha, M$, and M^{\prime} with

$$
1 / n \ll 1 / \Delta^{\prime}, \beta \ll 1 / M \ll 1 / M^{\prime} \ll \varepsilon \ll \varepsilon^{\prime} \ll \gamma \ll \alpha \ll 1 / \Delta \ll 1
$$

If $|G| \geq(2+\gamma) n$, then G contains a copy of T by Theorem 1.2(i). So we may assume that $|G|=(2 \pm \gamma) n$. Observe that $d^{+}(v), d^{-}(v) \geq(1-\gamma)(|G|-1) / 2 \geq(1-2 \gamma) n$ for all $v \in G$.

Since $\Delta \leq \Delta^{\prime}$, we must have $T_{\Delta} \subseteq T_{\Delta^{\prime}}$. Also, since $\left|T_{\Delta}\right| \geq 2$, we may choose an edge $t^{-} \rightarrow t^{+}$of T_{Δ}, which must also lie in $T_{\Delta^{\prime}}$. Let T^{+}and T^{-}be the two components formed when this edge is deleted from T, labelled so that $t^{+} \in T^{+}$and $t^{-} \in T^{-}$. Similarly, let $T_{\Delta^{\prime}}^{+}$and $T_{\Delta^{\prime}}^{-}$be the two components formed by the deletion of the edge $t^{-} \rightarrow t^{+}$from $T_{\Delta^{\prime}}$, labelled with $t^{+} \in T_{\Delta^{\prime}}^{+}$and $t^{-} \in T_{\Delta^{\prime}}^{-}$. Then T^{+}and T^{-}partition the vertices of T, and there is precisely one edge of T between T^{+}and T^{-}, which is directed towards T^{+}. Furthermore, $\left|T^{+}\right|,\left|T^{-}\right| \geq n / \Delta$.

Let disjoint subsets V_{1}, \ldots, V_{k} and a subgraph $G^{*} \subseteq G$ satisfy the conditions of Corollary 4.2. So $M^{\prime} \leq k \leq M$, and G^{*} is an ε-regular cluster tournament on clusters V_{1}, \ldots, V_{k} of equal size m, where

$$
\begin{equation*}
\frac{2(1-\gamma) n}{k} \leq \frac{(2-\gamma) n-3 \varepsilon n}{k} \leq m \leq \frac{(2+\gamma) n}{k} \tag{6}
\end{equation*}
$$

Also, for each $v \in G^{*}$ we have $d_{G^{*}}^{+}(v) \geq d_{G}^{+}(v)-2 \varepsilon|G| \geq d_{G}^{+}(v)-5 \varepsilon n$ and $d_{G^{*}}^{-}(v) \geq$ $d_{G}^{-}(v)-5 \varepsilon n$. So for each $i \in[k]$ we have

$$
\begin{align*}
\sum_{j \in[k] \backslash\{i\}} d_{i j} & =\sum_{j \in[k] \backslash\{i\}} \frac{e_{G^{*}}\left(V_{i} \rightarrow V_{j}\right)}{m^{2}} \geq \sum_{v \in V_{i}} \frac{d_{G^{*}}^{+}(v)-m}{m^{2}} \tag{7}\\
& \geq \sum_{v \in V_{i}} \frac{d_{G}^{+}(v)-5 \varepsilon n-m}{m^{2}} \geq \frac{(1-2 \gamma) n-5 \varepsilon n-m}{m} \stackrel{\text { (6) }}{\geq} \frac{(1-3 \gamma) k}{2},
\end{align*}
$$

and similarly $\sum_{j \in[k] \backslash\{i\}} d_{j i} \geq(1-3 \gamma) k / 2$.
So if there exists some $i \in[k]$ for which there are at least αk values of $j \in[k] \backslash\{i\}$ such that $d_{i j} \geq \alpha$ and $d_{j i} \geq \alpha$, then by Lemma 4.4 we may embed T in G^{*}, and therefore in G. So we may assume that for each $i \in[k]$ fewer than αk values of $j \in[k] \backslash\{i\}$ satisfy $d_{i j} \geq \alpha$ and $d_{j i} \geq \alpha$. Then by Lemma 4.5 we may assume that $R:=R_{G}(1-2 \alpha)$ has

$$
\begin{equation*}
\delta^{0}(R) \geq(1-10 \alpha) k / 2 \tag{8}
\end{equation*}
$$

Let y be the number of vertices in outcomponents of $T_{\Delta^{\prime}}$, and let z be the number of vertices in incomponents of $T_{\Delta^{\prime}}$, so $y+z+\left|T_{\Delta^{\prime}}\right|=n$. So if $y, z \geq 14 \alpha n$ then G^{*} (and therefore G) contains a copy of T by Lemma 4.5. We may therefore assume without loss of generality that $z<14 \alpha n$.

Now, since $|R|=k$ we may choose a vertex $i \in R$ with $d_{R}^{+}(i) \leq k / 2$. Then we may choose a vertex $j \in N_{R}^{+}(i)$ with at most $d_{R}^{+}(i) / 2$ outneighbours in $N_{R}^{+}(i)$. So $i \rightarrow j$ and $\left|N_{R}^{+}(i) \cap N_{R}^{+}(j)\right| \leq k / 4$. For this choice of i and j, let

$$
\begin{aligned}
& A:=N_{R}^{+}(i) \cap N_{R}^{+}(j), \\
& B:=N_{R}^{+}(i) \backslash N_{R}^{+}(j), \\
& C:=N_{R}^{+}(j) \backslash N_{R}^{+}(i) .
\end{aligned}
$$

Then A, B and C are disjoint, and $|B|,|C| \geq k / 2-5 \alpha k-|A| \geq k / 4-5 \alpha k$ by (8). Now, choose a set S^{+}of $m / 2$ vertices of V_{j} such that each vertex $v \in S^{+}$has
(i) at least $m / 2$ inneighbours in V_{i},
(ii) at least $\sum_{\ell \in A} d_{j \ell} m-\varepsilon^{\prime} k m \geq(1-2 \alpha) m|A|-\varepsilon^{\prime} k m$ outneighbours in $\bigcup_{\ell \in A} V_{\ell}$, and
(iii) at least $\sum_{\ell \in C} d_{j \ell} m-\varepsilon^{\prime} k m \geq(1-2 \alpha) m|C|-\varepsilon^{\prime} k m$ outneighbours in $\bigcup_{\ell \in C} V_{\ell}$.

We can be sure that such a choice is possible, as by Lemma 4.3 there are at most $2 \varepsilon^{\prime} m$ vertices of V_{j} which fail either of (ii) and (iii), and since $G^{*}\left[V_{i} \rightarrow V_{j}\right]$ is ε-regular with density $d_{i j} \geq 1-2 \alpha$ there are at most εm vertices of V_{j} which fail (i). Then since $\left|T_{\Delta^{\prime}}^{+}\right| \leq \beta n \leq m / 6$, by Theorem 1.3 we can embed $T_{\Delta^{\prime}}^{+}$in S^{+}. Let v^{+}be the vertex to which t^{+}is embedded. Then v^{+}has at least $m / 2$ inneighbours in V_{i}. Choose a set S^{-}of $m / 3$ of these inneighbours so that every vertex $v \in S^{-}$has at least

$$
\begin{equation*}
\sum_{\ell \in A \cup B=N_{R}^{+}(i)} d_{i \ell} m-\varepsilon^{\prime} k m \geq(1-2 \alpha) m\left|N_{R}^{+}(i)\right|-\varepsilon^{\prime} k m \stackrel{81}{\geq}(1-13 \alpha) n \tag{9}
\end{equation*}
$$

outneighbours in $\bigcup_{\ell \in A \cup B} V_{\ell}$. Again we can be sure that such a choice is possible, since by Lemma 4.3 at most $\varepsilon^{\prime} m$ vertices of V_{i} fail this condition. Then since $\left|T_{\Delta^{\prime}}^{-}\right| \leq \beta n \leq m / 9$, by Theorem 1.3 we can embed $T_{\Delta^{\prime}}^{-}$in S^{-}. Let $S_{\Delta^{\prime}}^{+}$and $S_{\Delta^{\prime}}^{-}$, be the sets of vertices of G occupied by $T_{\Delta^{\prime}}^{+}$and $T_{\Delta^{\prime}}^{-}$respectively.

Let T_{3} be the tree formed by $T_{\Delta^{\prime}}$ and all of its incomponents. Let T_{4} be the tree formed by $T_{\Delta^{\prime}}^{+}$and all of its outcomponents, and let T_{5} be the tree formed by $T_{\Delta^{\prime}}^{-}$and all of its outcomponents in T^{-}(i.e. all of its outcomponents except T^{+}). Note that $T_{3} \cup T_{4} \cup T_{5}=T$. Then $\left|T_{3}\right|=\left|T_{\Delta^{\prime}}\right|+z<15 \alpha n,\left|T_{4}\right| \leq\left|T^{+}\right| \leq n-\left|T^{-}\right| \leq(1-1 / \Delta) n$, and similarly $\left|T_{5}\right| \leq(1-1 / \Delta) n$. Every vertex of G has at least $(1-2 \gamma) n$ inneighbours in G, so by Lemma [2.6(c) we may extend the embedding of $T_{\Delta^{\prime}}$ in $S_{\Delta^{\prime}}^{+} \cup S_{\Delta^{\prime}}^{-}$to an embedding of T_{3} in G. For each $\ell \in[k] \backslash\{i\}$, let $V_{\ell}^{\prime} \subseteq V_{\ell}$ consist of the vertices of V_{ℓ} which are not occupied by this embedding.

By (ii) and (iii), every vertex of $S_{\Delta^{\prime}}^{+}$then has at least $(1-2 \alpha)(|A|+|C|) m-2 \varepsilon^{\prime} k m-$ $\left|T_{3}\right| \geq(1-28 \alpha) n$ outneighbours in $\bigcup_{\ell \in A \cup C} V_{\ell}^{\prime}$ (here we also use the fact that $|A|+|C|=$ $\left|N_{R}^{+}(j)\right| \geq(1-10 \alpha) k / 2$ by (8)). Since also $1 / \Delta^{\prime} \ll \alpha \ll 1 / \Delta$ and every component of $T_{4}-T_{\Delta^{\prime}}^{+}$has order at most n / Δ^{\prime}, by Lemma 2.6 we may extend the embedding of $T_{\Delta^{\prime}}^{+}$in $S_{\Delta^{\prime}}^{+}$to an embedding of T_{4} in $S_{\Delta^{\prime}}^{+} \cup \bigcup_{\ell \in A \cup C} V_{\ell}^{\prime}$. Furthermore, since every vertex of $S_{\Delta^{\prime}}^{+}$has at least $(1-2 \alpha)|C| m-\varepsilon^{\prime} k m-\left|T_{3}\right| \geq n / \Delta$ outneighbours in $\bigcup_{\ell \in C} V_{\ell}^{\prime}$, and $\left|T_{4}-T_{\Delta^{\prime}}^{+}\right|=\left|T^{+}-T_{3}\right| \geq n / 2 \Delta$, by Lemma 2.6(b) we can ensure that this embedding of T_{4} occupies at least $n / 2 \Delta$ vertices of $\bigcup_{\ell \in C} V_{\ell}^{\prime}$. So crucially at most $\left|T_{4}\right|-n / 2 \Delta$ vertices of T_{4} are embedded in $\bigcup_{\ell \in A \cup B} V_{\ell}$. For each $\ell \in A \cup B$, let $V_{\ell}^{\prime \prime} \subseteq V_{\ell}$ consist of those vertices which are not occupied by the embedding of T_{3} and T_{4}.

Finally, by (9), every vertex of $S_{\Delta^{\prime}}^{-}$has at least

$$
(1-13 \alpha) n-\left(\left|T_{4}\right|-n / 2 \Delta\right)-\left|T_{3}\right| \geq n-\left|T_{4}\right|+n / 3 \Delta
$$

outneighbours in $\bigcup_{\ell \in A \cup B} V_{\ell}^{\prime \prime}$. Since $\left|T_{5}-T_{\Delta^{\prime}}^{-}\right| \leq n-\left|T_{4}\right|$, by Lemma 2.6(c) we can extend the embedding of $T_{\Delta^{\prime}}^{-}$in $S_{\Delta^{\prime}}^{-}$to an embedding of T_{5} in $S_{\Delta^{\prime}}^{-} \cup \bigcup_{\ell \in A \cup B} V_{\ell}^{\prime \prime}$. Then the embeddings of T_{3}, T_{4} and T_{5} do not overlap outside $S_{\Delta^{\prime}}^{+} \cup S_{\Delta^{\prime}}^{-}$, and so together form an embedding of T in G.

5. Embedding trees in robust outexpander tournaments

Let G be a tournament on n vertices, and let $\mu \leq \nu$ be positive constants. Then the robust outneighbourhood $R N_{\mu}^{+}(S)$ of a set $S \subseteq V(G)$ is the set of vertices of G with at least μn inneighbours in S. We say that G is a robust (μ, ν)-outexpander if for any $S \subseteq V(G)$ with $\nu n \leq|S| \leq(1-\nu) n$ we have $\left|R N_{\mu}^{+}(S)\right| \geq|S|+\mu n$.

If a tournament G is not a robust outexpander, then the following lemma shows that G contains two subtournaments which partition the vertices of G and which have almost all edges between them directed the same way.

Lemma 5.1 ([10), Lemma 2.8). Suppose that $1 / n \ll \mu \ll \nu$, that G is a tournament on n vertices and that G is not a robust (μ, ν)-outexpander. Then we can partition $V(G)$ into sets S and $S^{\prime \prime}$ such that $\nu n<|S|,\left|S^{\prime}\right|<(1-\nu) n$ and $e\left(G\left[S \rightarrow S^{\prime}\right]\right) \leq 4 \mu n^{2}$.

By iterating this split, we obtain a decomposition of G into sets S_{i} which either induce robust expanders or are small, and where for all $i<j$, almost all edges are directed from S_{i} to S_{j}. (So if all the S_{i} are small, then G is close to being a transitive tournament.) We will use this decomposition in Section 7 to prove Theorem 1.1.

Lemma 5.2. Suppose that $1 / n \ll \mu \ll \nu \ll \eta \ll \gamma \ll 1$. Let G be a tournament on n vertices. Then we may choose disjoint subsets S_{1}, \ldots, S_{r} of $V(G)$ such that:
(i) $\left|\bigcup_{i \in[r]} S_{i}\right| \geq(1-\gamma) n$,
(ii) for each $i \in[r]$, any vertex $v \in S_{i}$ has at most γn inneighbours in $\bigcup_{j>i} S_{j}$ and at most γn outneighbours in $\bigcup_{j<i} S_{j}$, and
(iii) for each $i \in[r]$, either $G\left[S_{i}\right]$ is a robust (μ, ν)-outexpander with $\delta^{0}\left(G\left[S_{i}\right]\right) \geq \eta n$ or $\left|S_{i}\right|<\gamma n$.
Proof. We shall use a modified version of an algorithm from [10], which keeps track of an ordered family \mathcal{S}^{τ} of disjoint subsets of $V(G)$, and a set B^{τ} of bad edges of G, at each time τ. The analysis of this algorithm is also similar to the analysis in [10]. Initially, let $\mathcal{S}^{1}:=(V(G))$, and let $B^{1}:=\emptyset$. Then at time $\tau \geq 1$, we have $\mathcal{S}^{\tau}=\left(S_{1}^{\tau}, \ldots, S_{\tau}^{\tau}\right)$, and the algorithm proceeds as follows.
(1) Let S_{ℓ}^{τ} be the largest member of \mathcal{S}^{τ} which is not a robust (μ, ν)-outexpander with $\delta^{0}\left(G\left[S_{\ell}^{\tau}\right]\right) \geq \eta n$. If there is no such member of \mathcal{S}^{τ}, or if $\left|S_{\ell}^{\tau}\right|<\gamma n$, then terminate. If there is more than one largest such member, then choose one of these arbitrarily.
(2) If some $v \in S_{\ell}^{\tau}$ has $d_{G\left[S_{\ell}^{\tau}\right]}^{+}(v)<\eta n$, then let

$$
\mathcal{S}^{\tau+1}:=\left(S_{1}^{\tau}, \ldots, S_{\ell-1}^{\tau}, S_{\ell}^{\tau} \backslash\{v\},\{v\}, S_{\ell+1}^{\tau}, \ldots, S_{\tau}^{\tau}\right),
$$

let $B^{\tau+1}:=B^{\tau} \cup E\left(\{v\} \rightarrow S_{\ell}^{\tau} \backslash\{v\}\right)$, and proceed to step (5).
(3) Similarly, if some $v \in S_{\ell}^{\tau}$ has $d_{G\left[S_{\ell}^{\tau}\right]}^{-}(v)<\eta n$, then let

$$
\mathcal{S}^{\tau+1}:=\left(S_{1}^{\tau}, \ldots, S_{\ell-1}^{\tau},\{v\}, S_{\ell}^{\tau} \backslash\{v\}, S_{\ell+1}^{\tau}, \ldots, S_{\tau}^{\tau}\right),
$$

let $B^{\tau+1}:=B^{\tau} \cup E\left(S_{\ell}^{\tau} \backslash\{v\} \rightarrow\{v\}\right)$, and proceed to step (5).
(4) If $G\left[S_{\ell}^{\tau}\right]$ is not a robust (μ, ν)-outexpander then apply Lemma 5.1 to partition the vertices of S_{ℓ}^{τ} into sets S^{\prime} and $S^{\prime \prime}$ such that $\nu\left|S_{\ell}^{\tau}\right| \leq\left|S^{\prime}\right|,\left|S^{\prime \prime}\right| \leq(1-\nu)\left|S_{\ell}^{\tau}\right|$ and at most $4 \mu\left|S_{\ell}^{\tau}\right|^{2}$ edges of $G\left[S_{\ell}^{\tau}\right]$ are directed from $S^{\prime \prime}$ to S^{\prime}. Then let

$$
\mathcal{S}^{\tau+1}:=\left(S_{1}^{\tau}, \ldots, S_{\ell-1}^{\tau}, S^{\prime}, S^{\prime \prime}, S_{\ell+1}^{\tau}, \ldots, S_{\tau}^{\tau}\right)
$$

and let $B^{\tau+1}:=B^{\tau} \cup E\left(S^{\prime \prime} \rightarrow S^{\prime}\right)$.
(5) Finally, for each $i \in[\tau+1]$, delete from $S_{i}^{\tau+1}$ any vertex v which lies in more than $\sqrt{\eta} n$ edges of $B^{\tau+1}$.
At any time τ, if the algorithm does not terminate at step (1) then S_{ℓ}^{τ} will be split in precisely one of steps (2), (3) and (4). So at each time τ, either the algorithm terminates or $\left|\mathcal{S}^{\tau}\right|$ increases from τ to $\tau+1$ (in forming $\mathcal{S}^{\tau+1}$) by reducing the size of the largest piece. Therefore the algorithm must terminate at some time $\tau_{\text {end }} \leq n$. Take $r:=\tau_{\text {end }}$, and $S_{i}:=S_{i}^{r}$ for each i. Then since the algorithm terminated at step (1) of time r, (iii) must hold.

To see (i), observe that the split in step (4) will occur for at most $1 / \gamma \nu$ times $\tau<\tau_{\text {end }}$. This is because any set obtained by a split in step (4) must have size at least $\gamma \nu n$ (since $\left|S_{\ell}^{\tau}\right| \geq \gamma n$, and the sets $S^{\prime}, S^{\prime \prime}$ obtained have $\left.\left|S^{\prime}\right|,\left|S^{\prime \prime}\right| \geq \nu\left|S_{\ell}^{\tau}\right|\right)$. Also, at each time $\tau \leq \tau_{\text {end }}$, the number of edges added to form $B^{\tau+1}$ from B^{τ} is at most ηn if the algorithm carried out the split in step (2) or (3), and at most $4 \mu n^{2}$ if the algorithm carried out the split in step (4). Since $\tau_{\text {end }} \leq n$, and the split in step (4) is carried out in at most $1 / \gamma \nu$ steps, we must have

$$
\left|B^{\tau_{\text {end }}}\right| \leq \eta n^{2}+4 \mu n^{2} / \nu \gamma \leq 2 \eta n^{2}
$$

Since $B^{1} \subseteq \cdots \subseteq B^{\tau_{e n d}}$, any vertex of G which was ever deleted in step (5) must lie in at least $\sqrt{\eta} n$ edges of $B^{\tau_{\text {end }}}$, and so at most $4 \sqrt{\eta} n \leq \gamma n$ vertices of G can have been deleted in step (5) over the entire course of the algorithm. But any vertex which was not deleted lies in some S_{i}, and so (i) holds.

Finally, for (ii) fix any $i \in[r]$ and any $v \in S_{i}$. Observe that all edges directed from v to $\bigcup_{j<i} S_{j}$ and all edges directed from $\bigcup_{j>i} S_{j}$ to v are contained in B^{r}. This means that there are at most $\sqrt{\eta} n$ such edges, as otherwise v would have been deleted in step (5) at some point. Since i and v were arbitrary, (ii) must hold.

We now consider the case when G is a robust outexpander. Lemma 4.1 of [10] stated that if T is a directed tree on n vertices, and G is a robust outexpander tournament on at least $(2+\alpha) n$ vertices with large minimum semidegree, then G contains a copy of T. However, in the proof of this lemma, the αn error term was only needed in the case when T_{Δ} is small. Indeed, in this section we modify this proof to show that Sumner's universal tournament conjecture holds for such G in the case when T_{Δ} is large. This is the following lemma.

Lemma 5.3. Suppose that $1 / n \ll 1 / \Delta \ll \mu \ll \nu \ll \eta \ll \gamma \ll \beta \ll 1$. Let T be a directed tree on n vertices such that $\left|T_{\Delta}\right| \geq \beta n$, and let G be a robust (μ, ν)-outexpander tournament on at least $(2-\gamma) n$ vertices, with $\delta^{0}(G) \geq \eta|G|$. Then G contains a copy of T.

Before we can present the proof of this lemma, we must give some definitions from [10]. Let V_{1}, \ldots, V_{k} be disjoint sets of equal size. A digraph G on vertex set V_{1}, \ldots, V_{k} is a ε-regular
d-dense cycle of cluster tournaments if for each $i, G\left[V_{i}\right]$ is a tournament and $G\left[V_{i} \rightarrow V_{i+1}\right]$ is ε-regular with density at least d (where addition on the index of V_{i+1} is taken modulo k). The following lemma from [10] (an immediate consequence of two results from [12]) will help us to find such digraphs.

Lemma 5.4 ([10], Lemma 2.7). Suppose that $1 / n \ll 1 / M \ll 1 / M^{\prime} \ll \varepsilon \ll d \ll \mu \ll$ $\nu \ll \eta \ll 1$. Let G be a tournament on n vertices which is a robust (μ, ν)-outexpander with $\delta^{0}(G) \geq \eta n$. Then G contains an ε-regular d-dense cycle of cluster tournaments on clusters V_{1}, \ldots, V_{k}, where $\left|\bigcup_{i=1}^{k} V_{i}\right|>(1-\varepsilon) n$, and $M^{\prime} \leq k \leq M$.

Let T be a directed tree. Then the distance between vertices $u, v \in T$, denoted $d(u, v)$, is the length of the shortest path connecting u and v in the underlying graph $T_{\text {under }}$. Similarly for a set X of vertices of T, the distance $d(u, X)$ is the minimum of $d(u, x)$ taken over all vertices $x \in X$. If T is a rooted tree with root r, then the children of a vertex $u \in T$ are those neighbours v of u for which $d(r, u)=d(r, v)+1$.

Let T be a tree on n vertices, rooted at t_{1}, and let $H \subseteq V(T)$. Also let k be a positive integer. For any vertex $x \in T$, there is a unique path in T from x to t_{1}; let P_{x} denote the set of the first k vertices of this path, starting from x. Let $H^{1}:=\bigcup_{x \in H} P_{x}$, and then for each $i \geq 1$ let H^{i+1} be formed from H^{i} by adding the vertices of P_{x} for any $x \in H^{i}$ with at least two children in H^{i}. After at most n steps we must have $H^{i}=H^{i+1}$, when we terminate the process. We refer to this final H^{i} as H with leading paths included, denoted $\mathcal{P}_{k}(H)$. So $H \subseteq \mathcal{P}_{k}(H) \subseteq V(T)$. Note that $\mathcal{P}_{k}(H)$ depends on both the value of k and the root t_{1} of T.

We may now present the key lemma from [10] we shall use to prove Lemma [5.3. This says that a directed tree of bounded degree can be embedded in a robust outexpander tournament of large minimum semidegree such that the vertices in a small set H of vertices of T are embedded within a chosen set $U \subseteq V(G)$.

Lemma 5.5 (10, Lemma 4.6). Suppose that $1 / n \ll 1 / \Delta, 1 / k \ll \varepsilon \ll d \ll \alpha, \lambda \leq 1 / 2$, that $m:=n / k$, that $\lambda \leq \alpha / 4$ and that $\delta:=d \lambda / 8 k$. Let T be a directed tree on n vertices rooted at t_{1} and with $\Delta(T) \leq \Delta$. Let $H \subseteq V(T)$ be such that $|H| \leq \delta n / 7 k$ and $\mid\{x \in T: 1 \leq$ $\left.d\left(x, \mathcal{P}_{k}(H)\right) \leq k^{3}\right\} \mid \leq \delta n$. Let G be an ε-regular d-dense cycle of cluster tournaments on clusters V_{1}, \ldots, V_{k}, each of size $(1+\alpha) m$, and let $U \subseteq V_{1} \cup \cdots \cup V_{k}$ have size $|U| \geq \lambda n$. Then T can be embedded in G so that each vertex $t \in H$ is embedded to some $u \in U$.

We will also use the following lemma, again from [10. This shows that we can extend T_{Δ} to an 'extended tree' $T_{\text {ext }}$, with desired properties. We will apply Lemma 5.5 to $T_{\text {ext }}$ and embed H within a set U of vertices of high in- and outdegree.

Proposition 5.6 ([10], Lemma 4.5). Suppose that $1 / n, 1 / \Delta^{*} \ll 1 / \Delta, 1 / k, \omega \ll 1$. Let T be a directed tree on n vertices. Choose any vertex $t_{1} \in T_{\Delta}$ as the root of T. Then there exists a subtree $T_{\text {ext }}$ of T and a subset $H \subseteq V\left(T_{\text {ext }}\right)$ which satisfy the following properties.
(i) $T_{\Delta} \subseteq T_{\text {ext }}$.
(ii) $\Delta\left(T_{\text {ext }}\right) \leq \Delta^{*}$.
(iii) For any edge e between $T-T_{\text {ext }}$ and $T_{\text {ext }}$, the endvertex of e in $T_{\text {ext }}$ lies in H.
(iv) The number of vertices $v \in T_{\text {ext }}$ which satisfy $1 \leq d\left(v, \mathcal{P}_{k}(H)\right) \leq k^{3}$ is at most ωn.
(v) $|H| \leq n / \Delta^{k^{1 / \omega}}$.

The final lemma we shall need to prove Lemma 5.3 gives standard Chernoff-type bounds for the binomial and hypergeometric distributions. The binomial random variable X with
parameters (n, p) is defined to be the number of successes in n independent trials, each of which has probability p of success. So $\mathbb{E} X=n p$. The hypergeometric random variable Y with parameters (n, m, k) is defined as follows. Let N be a set of size n, and fix a set $S \subseteq N$ of size $|S|=m$. Now choose a set $T \subseteq N$ of size $|T|=k$ uniformly at random. Then $Y=|T \cap S|$. Note that $\mathbb{E} Y=k m / n$.

Proposition 5.7 ([9], Corollary 2.3 and Theorem 2.10). Suppose X has binomial or hypergeometric distribution and $0<a<3 / 2$. Then $\mathbb{P}(|X-\mathbb{E} X| \geq a \mathbb{E} X) \leq 2 e^{-\frac{a^{2}}{3} \mathbb{E} X}$.

Proof of Lemma 5.3. We begin by introducing new constants $\Delta^{*}, M, M^{\prime}, \varepsilon, d$ and α which satisfy

$$
1 / n \ll 1 / \Delta^{*} \ll 1 / M \ll 1 / M^{\prime}, 1 / \Delta \ll \varepsilon \ll d \ll \mu \ll \nu \ll \eta \ll \gamma \ll \alpha \ll \beta \ll 1
$$

Now, if $|G| \geq(2+\gamma) n$, then by Theorem $1.2(\mathrm{i}), G$ contains a copy of T. So we may assume that $|G|=(2 \pm \gamma) n$. Since G is a robust (μ, ν)-outexpander with $\delta^{0}(G) \geq \eta|G|$, Lemma 5.4 implies that G contains an ε-regular d-dense cycle of cluster tournaments on clusters V_{1}, \ldots, V_{k} each of equal size between $(1-\varepsilon)|G| / k \geq(1-\varepsilon)(2-\gamma) m \geq 2(1-\gamma) m$ and $|G| / k \leq(2+\gamma) m$, where $m:=n / k$ and $M^{\prime} \leq k \leq M$. So we may remove vertices from each V_{i} to obtain a 2ε-regular $(d / 2)$-dense cycle of cluster tournaments G^{\prime} on clusters $V_{1}^{\prime}, \ldots, V_{k}^{\prime}$ each of size $2(1-\gamma) m$. So $\left|G^{\prime}\right|=2(1-\gamma) n$. Let

$$
\delta:=d \alpha \beta / 160 k
$$

Choose any vertex $t_{1} \in T_{\Delta}$ as the root of T. Then let $T_{\text {ext }}$ and H satisfy the properties of Proposition 5.6, with $\omega:=\delta \beta$. Let T_{1} denote the subtree of T formed by $T_{\text {ext }}$ and all of its outcomponents, and let T_{2} denote the subtree of T formed by $T_{\text {ext }}$ and all of its incomponents. Since $T_{\Delta} \subseteq T_{e x t}$ (this is (i) of Proposition 5.6), all of these incomponents and outcomponents have order at most n / Δ by Proposition 2.1. Let $x:=\left|T_{e x t}\right|, y:=$ $\left|T_{1}-T_{e x t}\right|, z:=\left|T_{2}-T_{e x t}\right|$, so $x+y+z=n$. Since $T_{\Delta} \subseteq T_{e x t}$, we have $x \geq \beta n$. Also, all but at most $2 y+x-\alpha n / 2$ vertices of G have at least $y+x / 2-\alpha n / 4$ outneighbours, and all but at most $2 z+x-\alpha n / 2$ vertices of G have at least $z+x / 2-\alpha n / 4$ inneighbours. So at least $(2-\gamma) n-2 y-2 z-2 x+\alpha n \geq \alpha n / 2$ vertices of G satisfy both of these conditions. Let U_{0} be the set of these vertices, so $\left|U_{0}\right| \geq \alpha n / 2$, and each $v \in U_{0}$ has at least $y+x / 2-\alpha n / 4$ outneighbours and at least $z+x / 2-\alpha n / 4$ inneighbours.

From each cluster V_{i}^{\prime} of G^{\prime} choose a set X_{i} of $(1+\alpha) x / k$ vertices uniformly at random, and let $X:=X_{1} \cup \cdots \cup X_{k}$. Then $|X|=(1+\alpha) x$. For any single vertex $u \in G^{\prime}$, the probability that u is included in X is $(1+\alpha) x /\left|G^{\prime}\right| \geq x / 2 n$, so by Proposition 5.7, with probability at least $2 / 3$ the set $U:=X \cap U_{0}$ satisfies $|U| \geq \alpha x / 5 \geq \alpha \beta n / 5$. Also, for any vertex $v \in U$, the expected number of outneighbours of v outside X is at least

$$
\begin{aligned}
\left(y+\frac{x}{2}-\frac{\alpha n}{4}\right)\left(1-\frac{(1+\alpha) x}{\left|G^{\prime}\right|}\right) & \geq y-\frac{\alpha n}{4}+\frac{x}{2}-\frac{(1+\alpha) x y}{2(1-\gamma) n}-\frac{(1+\alpha) x^{2}}{4(1-\gamma) n} \\
& \geq y-\frac{\alpha n}{4}+\frac{2 x n-2 x y-x^{2}-2 \gamma x n-2 \alpha x y-\alpha x^{2}}{4(1-\gamma) n} \\
& \geq y+\frac{x^{2}}{4 n}-2 \alpha n \geq y+\frac{\beta^{2} n}{4}-2 \alpha n \geq y+2 \alpha n
\end{aligned}
$$

where in the first inequality of the third line we used the fact that $2 n-2 y-x \geq x$. A similar calculation shows that for each $v \in U$, the expected number of inneighbours of v outside X
is at least $z+2 \alpha n$. So by Proposition 5.7 we find that with probability at least $2 / 3$, every vertex $v \in U$ has at least $y+\alpha n$ outneighbours outside X and at least $z+\alpha n$ inneighbours outside X. Fix a choice of X such that both these events of probability at least $2 / 3$ occur.

Since every vertex of U has either at least $(|G|-|X|) / 2 \geq y+z+\alpha n$ inneighbours outside X or at least $y+z+\alpha n$ outneighbours outside X, we may choose a set $U^{\prime} \subseteq U$ of size $\left|U^{\prime}\right| \geq|U| / 2 \geq \alpha \beta n / 10$ such that either
$\left(\alpha_{1}\right)$ every $v \in U^{\prime}$ has at least $y+\alpha n$ outneighbours outside X and at least $y+z+\alpha n$ inneighbours outside X, or
$\left(\alpha_{2}\right)$ every $v \in U^{\prime}$ has at least $y+z+\alpha n$ outneighbours outside X and at least $z+\alpha n$ inneighbours outside X.
So $G^{\prime}[X]$ is a $(2 \varepsilon / \beta)$-regular $(d / 2)$-dense cycle of cluster tournaments on clusters X_{1}, \ldots, X_{k} of size $(1+\alpha) x / k$, and $U^{\prime} \subseteq X_{1} \cup \cdots \cup X_{k}$ has size $\left|U^{\prime}\right| \geq \alpha \beta x / 10$. Also $T_{\text {ext }}$ is a directed tree on x vertices rooted at t_{1} and with $\Delta\left(T_{\text {ext }}\right) \leq \Delta^{*}$, and $H \subseteq V\left(T_{\text {ext }}\right)$ has $|H| \leq n / \Delta^{k^{1 / \beta \delta}} \leq \delta x / 7 k$ and $\left|\left\{t \in T_{\text {ext }}: 1 \leq d\left(t, \mathcal{P}_{k}(H)\right) \leq k^{3}\right\}\right| \leq \delta \beta n \leq \delta x$. So by Lemma 5.5 (with $\alpha \beta / 10, \Delta^{*}$ and $d / 2$ in place of λ, Δ and d respectively), $G^{\prime}[X]$ contains a copy of $T_{\text {ext }}$ in which every vertex of H is embedded to a vertex of U^{\prime}.

So every vertex $t \in H$ has been embedded to some vertex $v(t) \in U^{\prime}$. Suppose that $\left(\alpha_{1}\right)$ holds. Then for every $t \in H, v(t)$ has at least $y+2 n / \Delta$ outneighbours outside X (and so unoccupied by vertices of $T_{\text {ext }}$). Since the only vertices of $T_{\text {ext }}$ which may have neighbours in $T_{1}-T_{e x t}$ are the vertices of H, we may use Theorem 1.3 to extend the embedding of $T_{\text {ext }}$ in $G[X]$ to an embedding of T_{1} in G in the same way as in the proof of Lemma 2.6 (we cannot just apply Lemma 2.6 as vertices of G to which we embedded $T_{e x t}-H$ may not have sufficiently many outneighbours, but since vertices of $T_{\text {ext }}-H$ do not have any outneighbours outside $T_{\text {ext }}$ this does not cause any problems). Then for every $t \in H, v(t)$ has at least $z+2 n / \Delta$ inneighbours outside X which are not occupied by this embedding of T_{1}. So in the same way we may extend the embedding of $T_{\text {ext }}$ in $G[X]$ to an embedding of T_{2} in the vertices of G not occupied by $T_{1}-T_{\text {ext }}$. So the embeddings of T_{1} and T_{2} only overlap in $T_{e x t}$, and so together form an embedding of T in G. If instead (α_{2}) holds we may embed T in G similarly by first embedding T_{2} then T_{1}.

We can now deduce that if G is a large almost-regular tournament and if $\left|T_{\Delta}\right|>1$, then Sumner's conjecture holds with a little room to spare (we shall need this extra room in the proof of Lemmas 6.2 and 6.3). Indeed, we shall see that a large almost-regular tournament G is also a robust outexpander, and so if T_{Δ} is large, then we can embed T in G by Lemma 5.3, On the other hand, if T_{Δ} is small but has more than one vertex, then we may embed T in G by Lemma 4.6.

In particular, together with Lemma 3.1 (which deals with the case $\left|T_{\Delta}\right|=1$), this means that at this stage, we have proved that Sumner's conjecture holds for all large almost-regular tournaments.

Lemma 5.8. Suppose that $1 / n \ll \gamma \ll 1 / \Delta \ll 1$. Let T be a directed tree on n vertices with $\left|T_{\Delta}\right|>1$. Then every γ-almost-regular tournament G on at least $(2-\gamma) n$ vertices contains a copy of T.

Proof. Introduce constants $\mu, \nu, \eta, \Delta^{\prime}, \beta, \gamma^{\prime}$ such that

$$
1 / n \ll 1 / \Delta^{\prime} \ll \mu \ll \nu \ll \eta \ll \gamma \ll \beta \ll \gamma^{\prime} \ll 1 / \Delta \ll 1
$$

Let G be a γ-almost-regular tournament on at least $(2-\gamma) n$ vertices. Then we shall show that G is a robust (μ, ν)-outexpander. Indeed, let $S \subseteq V(G)$ satisfy $\nu|G| \leq|S| \leq 2|G| / 3$. Then at least $(1-\gamma)|S|(|G|-1) / 2$ edges originate in S. At most $\binom{|S|}{2}$ of these have both endvertices in S, so at least $(1-\gamma)|S|(|G|-1) / 2-\binom{|S|}{2} \geq|S|((1-\gamma)(|G|-1)-|S|) / 2 \geq \nu|G|^{2} / 10$ edges leave S. So at least $\nu|G| / 20 \geq 3 \mu|G|$ vertices outside S have at least $\nu|G| / 20 \geq 3 \mu|G|$ inneighbours in S. At most $2 \mu|G|$ vertices of S have fewer than $\mu|G|$ inneighbours in S, and so $\left|R N_{\mu}^{+}(S)\right| \geq|S|+\mu|G|$, as desired. On the other hand, if $S \subseteq V(G)$ satisfies $2|G| / 3<|S| \leq(1-\nu)|G|$, every vertex of G has at least $|G| / 7 \geq \mu|G|$ inneighbours in S. So $\left|R N_{\mu}^{+}(S)\right|=|G| \geq|S|+\mu|G|$, as desired.

So G is indeed a robust (μ, ν)-outexpander. Clearly $\delta^{0}(G) \geq \eta|G|$. So if $\left|T_{\Delta^{\prime}}\right| \geq \beta n$, then by Lemma 5.3, G contains a copy of T. So we may assume that $\left|T_{\Delta^{\prime}}\right| \leq \beta n$. But G is also a γ^{\prime}-almost-regular tournament on at least $\left(2-\gamma^{\prime}\right) n$ vertices, and so by Lemma 4.6, G contains a copy of T.

6. Embedding trees whose core tree is small

We now turn our attention to the general case of the problem. As when considering almost-regular tournaments, we consider the problem of embedding directed trees whose core trees are small separately from the case when the core trees are large. In this section we shall consider directed trees with small core trees, proving the following lemma.

Lemma 6.1. Suppose $1 / n \ll \beta, 1 / \Delta^{\prime} \ll 1$. Let T be a directed tree on n vertices with $\left|T_{\Delta^{\prime}}\right| \leq \beta n$, and let G be a tournament on $2 n-2$ vertices. Then G contains a copy of T.

We begin by showing that we may assume that the tournament G consists of two large disjoint almost-regular tournaments, with almost all of the edges between them directed the same way.

Lemma 6.2. Suppose that $1 / n \ll \beta, 1 / \Delta \ll \gamma \ll \eta \ll 1$. Let T be a directed tree on n vertices with $\left|T_{\Delta}\right| \leq \beta n$, and let G be a tournament on $2 n-2$ vertices. Let y be the outweight of T_{Δ}, and let z be the inweight of T_{Δ}. Then the following properties hold.
(i) If $z<\eta n$ or $y<\eta n$ then G contains a copy of T.
(ii) Either G contains a copy of T, or we can find disjoint sets $Y, Z \subseteq V(G)$ such that $|Y| \geq(2-\gamma) y$ and $|Z| \geq(2-\gamma) z, G[Y]$ and $G[Z]$ are γ-almost-regular, any vertex of Y has at most $3 \gamma n$ outneighbours in Z and any vertex of Z has at most $3 \gamma n$ inneighbours in Y.

Proof. Introduce new constants $M, M^{\prime}, \varepsilon, \varepsilon^{\prime}, \alpha, \gamma^{*}$ and Δ^{*} such that

$$
1 / n \ll \beta, 1 / \Delta \ll 1 / M \ll 1 / M^{\prime} \ll \varepsilon \ll \varepsilon^{\prime} \ll \gamma \ll \alpha \ll \eta \ll \gamma^{*} \ll 1 / \Delta^{*} \ll 1 .
$$

Partition the vertex set of G into sets A, B, C, D, E such that:

$$
\begin{aligned}
& A \subseteq\left\{v \in G: d^{+}(v) \leq y+\varepsilon n\right\}, \\
& B \subseteq\left\{v \in G: y+\varepsilon n<d^{+}(v)<n-\varepsilon n\right\}, \\
& C \subseteq\left\{v \in G: d^{+}(v), d^{-}(v) \geq n-\varepsilon n\right\}, \\
& D \subseteq\left\{v \in G: z+\varepsilon n<d^{-}(v)<n-\varepsilon n\right\}, \\
& E \subseteq\left\{v \in G: d^{-}(v) \leq z+\varepsilon n\right\} .
\end{aligned}
$$

These subset relations may not all be equality, for example in the case where z is very small, when we have $y+\varepsilon n \geq n-\varepsilon n$. However, it is clear that each vertex $v \in G$ lies in at least one of these five sets, so we may choose such a partition of $V(G)$. Let $x:=\left|T_{\Delta}\right|$, so $x+y+z=n$ and $x \leq \beta n$.

Suppose that $|B| \geq 3 x$. Then by Theorem 1.3 we may embed T_{Δ} in $G[B]$. Let $S_{\Delta} \subseteq B$ be the set of vertices occupied by this embedding of T_{Δ}. Then every vertex of S_{Δ} has at least $y+\varepsilon n-x \geq y+2 n / \Delta$ outneighbours outside S_{Δ} and at least $|G|-x-(n-\varepsilon n) \geq y+z+2 n / \Delta$ inneighbours outside S_{Δ}. Let T_{1} be the subtree of T formed by T_{Δ} and all outcomponents of T_{Δ}, and let T_{2} be the subtree of T formed by T_{Δ} and all incomponents of T_{Δ}. Then $\left|T_{1}\right|=x+y$ and $\left|T_{2}\right|=x+z$. By Proposition 2.1(iv), all incomponents and outcomponents of T_{Δ} contain at most n / Δ vertices, so by Lemma [2.6(c) we may extend our embedding of T_{Δ} in S_{Δ} to an embedding of T_{1} in G. Then each vertex of S_{Δ} still has at least $z+2 n / \Delta$ inneighbours outside S_{Δ} which are not occupied by this embedding of T_{1}, so by Lemma 2.6(c) we may also extend our embedding of T_{Δ} in S_{Δ} to an embedding of T_{2} in G which avoids vertices occupied by the embedding of $T_{1}-T_{\Delta}$. Then these embeddings of T_{1} and T_{2} do not overlap outside T_{Δ}, and so together form an embedding of T in G. We may therefore assume that $|B|<3 x \leq 3 \beta n$. By the same argument (embedding first T_{2} and then T_{1} in G) we may assume that $|D|<3 x \leq 3 \beta n$.

If $\left|T_{\Delta^{*}}\right|=1$, then G contains a copy of T by Lemma 3.1. So we may assume that $\left|T_{\Delta^{*}}\right| \geq 2$. Now, if $z<\eta n$, then every $v \in E$ satisfies $d^{-}(v)<(\eta+\varepsilon) n<2 \eta n$, so $|E| \leq 4 \eta n+1$, and so $|B \cup D \cup E| \leq 4 \eta n+1+6 \beta n \leq 5 \eta n$. Let $G^{\prime}:=G[A \cup C]$. Then $\left|G^{\prime}\right| \geq 2 n-2-5 \eta n$, and every vertex $v \in G^{\prime}$ has $d^{+}(v) \leq n+\varepsilon n$. So by Proposition 2.4, G^{\prime} contains a γ^{*}-almost-regular subtournament G^{\prime} on at least $\left(2-\gamma^{*}\right) n$ vertices. Since $\left|T_{\Delta^{*}}\right| \geq 2$, by Lemma $5.8 G^{\prime}$ contains a copy of T, so G contains a copy of T also. If instead we have $y<\eta n$, then we may similarly embed T in $G[C \cup E]$. So if $z<\eta n$ or $y<\eta n$ then G contains a copy of T, completing the proof of (i). So for (ii), we may assume that $y, z \geq \eta n$.

Suppose now that $|C| \geq 5 \varepsilon^{\prime} n$. Let disjoint subsets V_{1}, \ldots, V_{k} and a subgraph $G^{*} \subseteq G$ satisfy the conditions of Corollary 4.2. So $M^{\prime} \leq k \leq M$, and G^{*} is an ε-regular cluster tournament on clusters V_{1}, \ldots, V_{k} of equal size m, where

$$
\frac{(1-\varepsilon)|G|}{k} \leq m \leq \frac{|G|}{k}
$$

We shall show that G^{*} has the property that for some $i \in[k]$ we have

$$
\begin{equation*}
\sum_{j \in([k \backslash \backslash\{i\})} d_{i j} \geq \frac{\left(1-3 \varepsilon^{\prime}\right) k}{2} \quad \text { and } \sum_{j \in([k] \backslash\{i\})} d_{j i} \geq \frac{\left(1-3 \varepsilon^{\prime}\right) k}{2} . \tag{10}
\end{equation*}
$$

Indeed, if for some $i \in[k]$ we have $\sum_{j \in([k] \backslash i\})} d_{i j}<\left(1-3 \varepsilon^{\prime}\right) k / 2$, then by Lemma 4.3 all but at most $\varepsilon^{\prime} m$ vertices of V_{i} have at most

$$
\sum_{j \in([k] \backslash\{i\})} d_{i j} m+\varepsilon^{\prime} k m<\frac{\left(1-\varepsilon^{\prime}\right) k m}{2}<n-8 \varepsilon n
$$

outneighbours in $\bigcup_{j \in([k] \backslash\{i\})} V_{j}$ (in the graph G^{*}), and hence at most $n-8 \varepsilon n+\left(|G|-\left|G^{*}\right|\right)+$ $\left|V_{i}\right|+2 \varepsilon|G|<n-\varepsilon n$ outneighbours in G. So at most $\varepsilon^{\prime} m$ vertices of V_{i} lie in C. Similarly if for some $i \in[k]$ we have $\sum_{j \in([k] \backslash\{i\})} d_{j i}<\left(1-3 \varepsilon^{\prime}\right) k / 2$ then again at most $\varepsilon^{\prime} m$ vertices of V_{i} lie in C. Since $|C| \geq 5 \varepsilon^{\prime} n>2 \varepsilon^{\prime} m k+\left(|G|-\left|G^{*}\right|\right)$, there must be some $i \in[k]$ which satisfies (10). Fix such an i. Then if at least αk values of $j \in[k] \backslash\{i\}$ have $d_{i j} \geq \alpha$ and $d_{j i} \geq \alpha$ then
G^{*} contains a copy of T by Lemma 4.4 (applied with ε^{\prime} in the place of γ). Alternatively, if at most αk values of $j \in[k] \backslash\{i\}$ have $d_{i j} \geq \alpha$ and $d_{j i} \geq \alpha$ then since $y, z \geq \eta n, G^{*}$ contains a copy of T by Lemma 4.5)(iii) (again applied with ε^{\prime} in the place of γ). So in either case G contains a copy of T, and so we may assume that $|C|<5 \varepsilon^{\prime} n$.

So to prove (ii), observe that we must therefore have $|B \cup C \cup D| \leq 5 \varepsilon^{\prime} n+6 \beta n \leq 6 \varepsilon^{\prime} n$. Trivially $|A| \leq 2 y+2 \varepsilon n+1$ and $|E| \leq 2 z+2 \varepsilon n+1$, and so we must have

$$
\begin{aligned}
& |A| \geq 2 n-2-6 \varepsilon^{\prime} n-2 z-2 \varepsilon n-1 \geq 2 y-7 \varepsilon^{\prime} n, \text { and } \\
& |E| \geq 2 n-2-6 \varepsilon^{\prime} n-2 y-2 \varepsilon n-1 \geq 2 z-7 \varepsilon^{\prime} n .
\end{aligned}
$$

So by Proposition [2.4, $G[A]$ contains a γ-almost-regular subtournament on at least $(2-\gamma) y$ vertices, and $G[E]$ contains a γ-almost-regular subtournament on at least $(2-\gamma) z$ vertices. Let Y and Z be the vertex sets of these subtournaments respectively. Then any vertex of Y has at least $(1-2 \gamma) y$ outneighbours in Y, and so has at most $y+\varepsilon n-(1-2 \gamma) y \leq 3 \gamma n$ outneighbours in Z. Similarly any vertex of Z has at least $(1-2 \gamma) z$ inneighbours in Z, and so has at most $3 \gamma n$ inneighbours in Y. So Y and Z are as required for (ii).

The next lemma builds on the previous lemma and will in turn be used in the proof of Lemma 6.4.

Lemma 6.3. Suppose that $1 / n \ll \beta, 1 / \Delta^{\prime} \ll \alpha \ll 1 / \Delta \ll 1$. Let T be a directed tree on n vertices with $\left|T_{\Delta^{\prime}}\right| \leq \beta n$. Let y and z be the outweight and inweight of $T_{\Delta^{\prime}}$ respectively. Suppose that forests F^{-}and F^{+}are induced subgraphs of T which partition the vertices of T, such that $\left|F^{+}\right| \leq y+2 \alpha n,\left|F^{-}\right| \leq z-\alpha n$, and every edge of T between F^{-}and F^{+}is directed from F^{-}to F^{+}. Suppose also that either
(i) no component of F^{+}has order greater than $y-\alpha n$, or
(ii) the largest component T_{1} of F^{+}has $\left|\left(T_{1}\right)_{\Delta}\right| \geq 2$.

Then any tournament G on $2 n-2$ vertices contains a copy of T.
Proof. Let G be a tournament on $2 n-2$ vertices, and let T_{1} and T_{2} be the largest and second largest components of F^{+}respectively. Introduce new constants γ and η with

$$
1 / n \ll \beta, 1 / \Delta^{\prime} \ll \gamma \ll \alpha \ll 1 / \Delta \ll \eta \ll 1
$$

Then by Lemma 6.2 we may assume that $y, z \geq \eta n$. Also by Lemma 6.2 we may find subsets $Y, Z \subseteq V(G)$ such that $|Y| \geq(2-\gamma) y,|Z| \geq(2-\gamma) z, G[Y]$ is γ-almost-regular, each vertex of Y has at most $3 \gamma n$ outneighbours in Z, and each vertex of Z has at most $3 \gamma n$ inneighbours in Y. Then $|Y| \geq 3\left|F^{+}\right| / 2+\alpha n \geq\left|F^{+}\right|+\left|T_{2}\right|+\alpha n$, and $|Z| \geq 2\left|F^{-}\right|+\alpha n$, and so by Lemma 2.7 any embedding of T_{1} in $G[Y]$ may be extended to an embedding of T in G.

It therefore suffices to embed T_{1} in $G[Y]$. If $\left|T_{1}\right|<y / 2$ then we may do this by Theorem 1.3. If instead $\left|T_{1}\right| \geq y / 2 \geq \eta n / 2$ and we also have (i), then $\left|T_{1}\right| \leq y-\alpha n$. Since $|Y| \geq(2-\gamma) y \geq 2\left|T_{1}\right|+\alpha n$ we may embed T_{1} in $G[Y]$ by Theorem [1.2(i). Finally, if $\left|T_{1}\right| \geq \eta n / 2$ and we also have (ii), then $\left|T_{1}\right| \leq\left|F^{+}\right| \leq y+2 \alpha n$ and $\left|\left(T_{1}\right)_{\Delta}\right| \geq 2$. Since $\gamma \leq 9 \alpha / \eta, G[Y]$ is a $9 \alpha / \eta$-almost-regular tournament on at least $(2-\gamma) y \geq(2-9 \alpha / \eta)\left|T_{1}\right|$ vertices, and so we may embed T_{1} in $G[Y]$ by Lemma [5.8. So in any case we may embed T_{1} in $G[Y]$, completing the proof.

Observe that as with Lemma 2.7 a 'dual' form of Lemma 6.3 can be proved similarly. For this we instead require that $\left|F^{+}\right| \leq y-\alpha n$ and $\left|F^{-}\right| \leq z+2 \alpha n$, and also either that no component of F^{-}has order greater than $z-\alpha n$ or that the largest component T_{1} of F^{-} has $\left|\left(T_{1}\right)_{\Delta}\right| \geq 2$. If these conditions are met then we may conclude that G contains a copy of T. As with Lemma [2.7, we shall sometimes implicitly refer to this 'dual' when referring to Lemma 6.3.

In the next lemma we show that Lemma 6.1 holds for any directed tree T whose core tree T_{Δ} is not a directed path in which most of the outweight and inweight of T_{Δ} lies at the endvertices of T_{Δ}. We say that a vertex t of a directed tree T is an outleaf if t has one inneighbour and no outneighbours, or an inleaf if t has one outneighbour and no inneighbours.

Lemma 6.4. Suppose that $1 / n \ll \beta, 1 / \Delta^{\prime} \ll 1 / \Delta \ll \sigma \ll 1$. Let T be a directed tree on n vertices with $\left|T_{\Delta^{\prime}}\right| \leq \beta n$, and let y and z be the outweight and inweight of $T_{\Delta^{\prime}}$ respectively. Let G be a tournament on $2 n-2$ vertices. Then either G contains a copy of T, or T_{Δ} is a directed path whose outleaf has outweight at least $y-\sigma n$ and whose inleaf has inweight at least $z-\sigma n$.

Proof. Introduce new constants α and η with

$$
1 / n \ll \beta, 1 / \Delta^{\prime} \ll \alpha \ll 1 / \Delta \ll \sigma \ll \eta \ll 1 .
$$

Then by Lemma 6.2 we may assume that $y, z \geq \eta n$. Also, if $\left|T_{\Delta}\right|=1$ then G contains a copy of T by Lemma 3.1, so we may assume that $\left|T_{\Delta}\right| \geq 2$.

Suppose that some vertex $t \in T$ has the property that $w^{-}(t) \leq z-\alpha n-1$, and also that every outcomponent of t contains at most $w^{+}(t)-3 \alpha n=\left|V^{+}\right|-3 \alpha n$ vertices. Then let the set V^{-}consist of t and every vertex in an incomponent of t, and let $V^{+}:=V(T) \backslash V^{-}$. Then $\left|V^{-}\right| \leq w^{-}(t)+1 \leq z-\alpha n$, and every edge of T between V^{-}and V^{+}is directed from V^{-}to V^{+}. Also, each component of $T\left[V^{+}\right]$contains at most $w^{+}(t)-3 \alpha n$ vertices. Now, select a source vertex from the largest component of $T\left[V^{+}\right]$, delete this vertex from V^{+}, and add it to V^{-}. Repeat this step until we have $\left|V^{+}\right| \leq y+2 \alpha n$ and $\left|V^{-}\right| \leq z-\alpha n$. For these final V^{+}and V^{-}, let $F^{+}:=T\left[V^{+}\right]$and let $F^{-}:=T\left[V^{-}\right]$. Then F^{-}and F^{+}are forests which partition the vertices of T, with $\left|F^{+}\right| \leq y+2 \alpha n$ and $\left|F^{-}\right| \leq z-\alpha n$. Also, every edge of T between F^{-}and F^{+}is directed from F^{-}to F^{+}. Finally, since we always deleted a vertex from the largest component of $T\left[V^{+}\right]$, no component of F^{+}contains more than $\left|F^{+}\right|-3 \alpha n \leq y-\alpha n$ vertices. So by Lemma 6.3 (i) G contains a copy of T. So we may assume that
there is no vertex $t \in T$ such that $w^{-}(t) \leq z-\alpha n-1$ and every outcomponent of t contains at most $w^{+}(t)-3 \alpha n$ vertices. In particular, this implies that for every inleaf t of T_{Δ}, at least $n / 2 \Delta$ vertices of T lie in incomponents of t.

Indeed, if T_{Δ} contains some inleaf t such that fewer than $n / 2 \Delta \leq z-\alpha n-1$ vertices of T lie in incomponents of t, then by the definition of T_{Δ} at least $n / 2 \Delta-1$ vertices of T lie in outcomponents of t other than the outcomponent containing the remaining vertices of T_{Δ}. Moreover, the definition of T_{Δ} also implies that at least n / Δ vertices of T lie in the one component of $T-t$ containing $T_{\Delta}-t$. Altogether this shows that every outcomponent of t contains at most $w^{+}(t)-n / 2 \Delta+1 \leq w^{+}(t)-3 \alpha n$ vertices, a contradiction. By the same argument with the roles of incomponents and outcomponents switched, we may assume that
there is no vertex $t \in T$ such that $w^{+}(t) \leq y-\alpha n-1$ and every incomponent of t contains at most $w^{-}(t)-3 \alpha n$ vertices. It follows from this that for every outleaf t of T_{Δ}, at least $n / 2 \Delta$ vertices of T lie in outcomponents of t.

Claim. If T_{Δ} has at least two inleaves or at least two outleaves, then G contains a copy of T.
To prove the claim, suppose that T_{Δ} has two outleaves t and t^{\prime} (the proof for inleaves is similar). Then we shall form a set V^{+}of size between $n-z+\alpha n$ and $y+2 \alpha n$ such that any edge of T between V^{+}and $V^{-}:=V(G) \backslash V^{+}$is directed from V^{-}to V^{+}. We may do this by repeatedly selecting a sink vertex of T, adding it to V^{+}and removing it from T. Now, by ($\dagger \dagger$) at least $n / 2 \Delta$ vertices lie in outcomponents of t, and at least $n / 2 \Delta$ vertices lie in outcomponents of t^{\prime}. Furthermore, if T^{\prime} is an outcomponent of t, then any sink vertex in T^{\prime} is a sink vertex in T, and the same is true if T^{\prime} is instead an outcomponent of t^{\prime}. So we may form V^{+}and V^{-}as described above so that additionally V^{+}contains at least $n / 2 \Delta$ vertices from outcomponents of t and at least $n / 2 \Delta$ vertices from outcomponents of t^{\prime}. Fix such a choice of V^{+}and V^{-}, and let $F^{+}:=T\left[V^{+}\right]$and $F^{-}:=T\left[V^{-}\right]$be the induced forests. Then $\left|F^{+}\right| \leq y+2 \alpha n$ and $\left|F^{-}\right|=n-\left|F^{+}\right| \leq z-\alpha n$, and every edge of T between F^{-} and F^{+}is directed from F^{-}to F^{+}. So if every component of F^{+}contains at most $y-\alpha n$ vertices, then G contains a copy of T by Lemma 6.3(i). We may therefore assume that the largest component T^{+}of F^{+}contains more than $y-\alpha n \geq\left|F^{+}\right|-n / 4 \Delta$ vertices. Since F^{+} includes at least $n / 2 \Delta$ vertices from outcomponents of t and at least $n / 2 \Delta$ vertices from outcomponents of t^{\prime}, it follows that T^{+}contains at least $n / 4 \Delta$ vertices from outcomponents of t and at least $n / 4 \Delta$ vertices from outcomponents of t^{\prime}. As a consequence T^{+}must contain t and t^{\prime}. Furthermore, we must have $t, t^{\prime} \in\left(T^{+}\right)_{4 \Delta}$, and so $\left|\left(T^{+}\right)_{4 \Delta}\right| \geq 2$. So G contains a copy of T by Lemma 6.3(ii), which proves the claim.

We may therefore assume that T_{Δ} has at most one outleaf and at most one inleaf. So T_{Δ} is a path with one inleaf and one outleaf. Let t_{1}, \ldots, t_{x} be the vertices of this path, labelled so that t_{1} is the inleaf of T_{Δ} (so $t_{1} \rightarrow t_{2}$), t_{x} is the outleaf of T_{Δ} (so $t_{x-1} \rightarrow t_{x}$), and for each $i \in[x-1]$ there is an edge of T_{Δ} between t_{i} and t_{i+1}.

Now suppose that the inweight of T_{Δ} is less than $z-2 \alpha n$. Let the set V^{-}consist of all vertices of T which lie in T_{Δ} or in incomponents of T_{Δ}. Then $\left|V^{-}\right| \leq z-2 \alpha n+\left|T_{\Delta}\right| \leq z-\alpha n$ (since $\left|T_{\Delta}\right| \leq\left|T_{\Delta^{\prime}}\right| \leq \beta n$). Also, every edge of T between V^{-}and $V^{+}:=V(T) \backslash V^{-}$is directed from V^{-}to V^{+}. Choose a source vertex of $T\left[V^{+}\right]$, delete it from V^{+}, and add it to V^{-}, and repeat this step until we have $\left|V^{-}\right| \leq z-\alpha n$ and $\left|V^{+}\right| \leq y+2 \alpha n$. For these final V^{-}and V^{+}, let $F^{+}:=T\left[V^{+}\right]$and $F^{-}:=T\left[V^{-}\right]$be the induced forests. Then $\left|F^{-}\right| \leq z-\alpha n,\left|F^{+}\right| \leq y+2 \alpha n$, and every edge of T between F^{-}and F^{+}is directed from F^{-}to F^{+}. Also, every component of F^{+}is contained within a component of $T-T_{\Delta}$, and so has order at most $n / \Delta \leq y-\alpha n$ by Proposition [2.1. So G contains a copy of T by Lemma 6.3(i). We may therefore assume that the inweight of T_{Δ} is at least $z-2 \alpha n$, and by a similar argument we may also assume that the outweight of T_{Δ} is at least $y-2 \alpha n$. It follows that the outweight of T_{Δ} is at most $n-(z-2 \alpha n) \leq y+3 \alpha n$ and that the inweight of T_{Δ} is at most $n-(y-2 \alpha n) \leq z+3 \alpha n$.

We now suppose that fewer than $y-\sigma n$ vertices of T lie in outcomponents of t_{x}. Let T_{1} be the subtree of T formed by T_{Δ} and all of its outcomponents. Initially let the set $V^{+}:=V\left(T_{1}\right)$, so $\left|V^{+}\right| \leq y+4 \alpha n$, and every edge of T between V^{+}and $V^{-}:=V(G) \backslash V^{+}$ is directed from V^{-}to V^{+}. Choose a sink vertex of $T\left[V^{-}\right]$, delete it from V^{-}and add
it to V^{+}, and repeat this step until we have $\left|V^{+}\right| \leq y+4 \alpha n$ and $\left|V^{-}\right| \leq z-2 \alpha n$. Fix these final V^{+}and V^{-}and let $F^{-}:=T\left[V^{-}\right]$and $F^{+}:=T\left[V^{+}\right]$be the induced forests. So $\left|F^{+}\right| \leq y+4 \alpha n,\left|F^{-}\right| \leq z-2 \alpha n$, and every edge of T between F^{-}and F^{+}is directed from F^{-}to F^{+}. Also $T_{1} \subseteq F^{+}$, so T_{1} is contained within a single component T^{+}of F^{+}. Since at least $y-2 \alpha n$ vertices of T lie in outcomponents of T_{Δ}, at least $\sigma n / 2$ vertices of T lie in outcomponents of T_{Δ} other than the outcomponents of t_{x}. Moreover, since t_{x} is an outleaf of T_{Δ}, by ($\dagger \dagger$) at least $n / 2 \Delta$ vertices lie in outcomponents of t_{x}. So $t_{x-1} \in\left(T^{+}\right)_{2 \Delta}$ and $t_{x} \in\left(T^{+}\right)_{2 \Delta}$, and so $\left|\left(T^{+}\right)_{2 \Delta}\right| \geq 2$. But since the outweight of T_{Δ} is at least $y-2 \alpha n$ we have $\left|T^{+}\right| \geq\left|T_{1}\right| \geq y-2 \alpha n$, and so T^{+}must be the largest component of F^{+}. So G contains a copy of T by Lemma 6.3(ii).

So we may assume that at least $y-\sigma n$ vertices of T lie in outcomponents of t_{x}, as desired. If fewer than $z-\sigma n$ vertices of T lie in incomponents of t_{1}, then we may similarly embed T in G, so we may also assume that at least $z-\sigma n$ vertices of T lie in incomponents of t_{1}. So at most $3 \sigma n$ vertices of T do not lie in incomponents of t_{1} or outcomponents of t_{x}. It remains only to show that T_{Δ} is a directed path. So suppose for a contradiction that T_{Δ} is not a directed path. Then there is some $i \in[x-1]$ such that $t_{i} \leftarrow t_{i+1}$. Choose the minimal such i (note $i>1$ as t_{1} is an inleaf of T_{Δ}). Then t_{i} has two inneighbours and no outneighbours in T_{Δ}. So at least two incomponents of t_{i} contain at least n / Δ vertices, and so no incomponent of t_{i} contains more than $w^{-}\left(t_{i}\right)-n / \Delta \leq w^{-}\left(t_{i}\right)-3 \alpha n$ vertices. Also, at most $3 \sigma n \leq y-\alpha n-1$ vertices of T lie in outcomponents of t_{i}, contradicting ($\dagger \dagger$).

We can now prove that Sumner's universal tournament conjecture holds for any large directed tree T whose core tree T_{Δ} contains precisely two vertices.

Lemma 6.5. Suppose that $1 / n \ll 1 / \Delta^{\prime} \ll 1$. Let T be a directed tree on n vertices with $\left|T_{\Delta^{\prime}}\right|=2$, and let G be a tournament on $2 n-2$ vertices. Then G contains a copy of T.

Proof. Introduce new constants $\Delta, \varepsilon, \gamma$ and η with

$$
1 / n \ll \beta, 1 / \Delta^{\prime} \ll 1 / \Delta \ll \varepsilon \ll \gamma \ll \eta \ll 1
$$

Then $\left|T_{\Delta^{\prime}}\right|=2 \leq \beta n$. Also, since $\Delta \leq \Delta^{\prime}$ we have $T_{\Delta} \subseteq T_{\Delta^{\prime}}$. If $\left|T_{\Delta}\right|=1$, then by Lemma 3.1 G contains a copy of T. So we may assume that $T_{\Delta}=T_{\Delta^{\prime}}$. Let t_{2} and t_{1} be the vertices of T_{Δ}, labelled so that $t_{2} \rightarrow t_{1}$. Let y be the outweight of T_{Δ}, and let z be the inweight of T_{Δ}, so $y+z=n-2$. Then by Lemma 6.4 (with ε in the place of σ), we may assume that t_{2} has inweight at least $z-\varepsilon n$, and also that t_{1} has outweight at least $y-\varepsilon n$. Let T_{1} be the subtree of T consisting of all vertices which lie in T_{Δ} or in outcomponents of T_{Δ}, and let T_{2} be the subtree of T consisting of all vertices which lie in T_{Δ} or in incomponents of T_{Δ}. So $\left|T_{1}\right|=y+2$ and $\left|T_{2}\right|=z+2$. By Lemma 6.2 (i) we may assume that $y, z \geq \eta n$.

As in the proof of Lemma 6.2, we partition the vertices of G into sets A, B, C, D and E, where:

$$
\begin{aligned}
& A:=\left\{v \in G: d^{+}(v) \leq y+\varepsilon n\right\} \\
& B:=\left\{v \in G: y+\varepsilon n<d^{+}(v)<n-\varepsilon n\right\}, \\
& C:=\left\{v \in G: d^{+}(v), d^{-}(v) \geq n-\varepsilon n\right\}, \\
& D:=\left\{v \in G: z+\varepsilon n<d^{-}(v)<n-\varepsilon n\right\}, \\
& E:=\left\{v \in G: d^{-}(v) \leq z+\varepsilon n\right\} .
\end{aligned}
$$

Since $y, z \geq \eta n$ and $\varepsilon \ll \eta$ this is indeed a partition. Suppose first that $|B| \geq 2$. Then we may embed T_{Δ} in $G[B]$. Let $S_{\Delta} \subseteq B$ be the set of vertices occupied by T_{Δ}. Then every vertex of S_{Δ} has at least $y+\varepsilon n-1 \geq y+2 n / \Delta$ outneighbours outside S_{Δ} and at least $|G|-2-(n-\varepsilon n) \geq y+z+2 n / \Delta$ inneighbours outside S_{Δ}. So by Lemma [2.6(c) we may extend the embedding of T_{Δ} in S_{Δ} to an embedding of T_{1} in G. This embedding of T_{1} occupies at most y vertices of G outside S_{Δ}, and so we may apply Lemma [2.6(c) again to extend the embedding of T_{Δ} in S_{Δ} to an embedding of T_{2} in G so that the embeddings of T_{1} and T_{2} do not overlap outside T_{Δ}. Then together the embeddings of T_{1} and T_{2} form an embedding of T in G. So we may assume that $|B| \leq 1$. If $|D| \geq 2$ we may embed T in G in the same way by embedding T_{Δ} in D and then extending this embedding to embeddings of first T_{2} and then T_{1} in G which do not overlap outside T_{Δ}. So we may also assume that $|D| \leq 1$.

Now suppose that $|C| \geq 3$. Then we may choose vertices $v_{2}, v_{1} \in C$ with $v_{2} \rightarrow v_{1}$ and $\left|N^{+}\left(v_{1}\right) \cap N^{+}\left(v_{2}\right)\right| \geq \eta n \geq \eta n / 2+2 n / \Delta$. Embed t_{1} to v_{1} and t_{2} to v_{2}. Then since $\left|N^{+}\left(v_{1}\right)\right|,\left|N^{+}\left(v_{2}\right)\right| \geq n-\varepsilon n \geq y+2 n / \Delta$, by Lemma [2.6(b) and (c) we may extend the embedding of T_{Δ} in $\left\{v_{1}, v_{2}\right\}$ to an embedding of T_{1} in G so that at least $\eta n / 2$ vertices of T_{1} are embedded in $N^{+}\left(v_{1}\right) \cap N^{+}\left(v_{2}\right)$. Then at most $y+2-\eta n / 2$ vertices of $N^{-}\left(v_{1}\right) \cup N^{-}\left(v_{2}\right)$ are occupied by this embedding, and so in each of $N^{-}\left(v_{1}\right)$ and $N^{-}\left(v_{2}\right)$ at least $n-\varepsilon n-(y+$ $2-\eta n / 2) \geq z+2 n / \Delta$ vertices remain unoccupied. So by Lemma 2.6(a) and (c) we may extend the embedding of T_{Δ} in $\left\{v_{1}, v_{2}\right\}$ to an embedding of T_{2} in G which does not overlap with the embedding of T_{1} outside T_{Δ}. Then together these embeddings form an embedding of T in G. So we may assume that $|C| \leq 2$, and hence that $|A \cup E| \geq 2 n-6$.
Claim. Either some vertex of A has at least y outneighbours in $A \cup B \cup D$ or some vertex of E has at least z inneighbours in $B \cup D \cup E$.
Indeed, suppose for a contradiction that both of these statements are false. Then certainly every vertex of A has fewer than y outneighbours in A and every vertex of E has fewer than z inneighbours in E. So $|A| \leq 2 y-1$ and $|E| \leq 2 z-1$. Since $y+z=n-2$ and $|A \cup E| \geq 2 n-6$, we must have $|A|=2 y-1$ and $|E|=2 z-1$, and also $|B|=1,|D|=1$ and $|C|=2$. Then every vertex of A must have $y-1$ outneighbours in A, and so no vertex of A can have an outneighbour in B or in D. Likewise, every vertex of E must have $z-1$ inneighbours in E, and so no vertex of E can have an inneighbour in B or in D. But then if we let b be the vertex in B and d be the vertex in D we have $d^{+}(b)=d^{+}(d) \pm 3$, contradicting the definition of B and D. So either some vertex of A has at least y outneigbours in $A \cup B \cup D$ or some vertex of E has at least z inneighbours in $B \cup D \cup E$. This completes the proof of the claim.

If some $v \in A$ has at least y outneighbours in $A \cup B \cup D$, then we shall embed T_{1} in $G[A]$ so that we may then embed the incomponents of t_{2} and t_{1} in the unoccupied vertices of E and A respectively. For this, note that $|E| \leq 2(z+\varepsilon n)+1$, so $|A| \geq 2 n-2 z-2 \varepsilon n-7 \geq 2 y-3 \varepsilon n$ (and similarly we have $|E| \geq 2 z-3 \varepsilon n$). Since every $a \in A$ has at most $y+\varepsilon n$ outneighbours in A, by Proposition 2.4 $G[A]$ contains a γ-almost-regular subtournament on at least $(2-\gamma) y$ vertices. Let Y be the vertex set of this subtournament. Now,

$$
|(A \cup B \cup D) \backslash Y| \leq 2+(2 y+2 \varepsilon n+1)-(2-\gamma) y \leq 2 \gamma y,
$$

so v must have at least $(1-2 \gamma) y$ outneighbours in Y. Also, since $v \in A$ we have

$$
(1-2 \gamma) y \leq\left|N^{+}(v) \cap Y\right| \leq y+\varepsilon n \leq(1+2 \gamma) y .
$$

So at most $10 \gamma y$ vertices of $N^{+}(v) \cap Y$ have more than $(1-3 \gamma) y$ outneighbours in $N^{+}(v) \cap Y$, and at most $10 \gamma y$ vertices of $N^{+}(v) \cap Y$ have more than $(1-3 \gamma) y$ inneighbours in $N^{+}(v) \cap Y$. Since every vertex of Y has at least $(1-2 \gamma) y$ inneighbours in Y and at least $(1-2 \gamma) y$ outneighbours in Y, this means that at least $\left|N^{+}(v) \cap Y\right|-20 \gamma y \geq 3 n / \Delta$ vertices of $N^{+}(v) \cap Y$ have at least $\gamma y \geq 6 n / \Delta$ outneighbours in $Y \backslash N^{+}(v)$ and at least $6 n / \Delta$ inneighbours in $Y \backslash N^{+}(v)$. Let T^{+}be the tree formed by t_{1} and its outcomponents, so $\left|T^{+}\right| \leq y+1$. Then every component of $T^{+}-t_{1}$ is a component of $T-T_{\Delta}$ and so has order at most n / Δ by Proposition 2.1. So by Lemma 2.5 (applied with $N:=N^{+}(v) \cap(A \cup B \cup D)$ and $\left.X:=Y \backslash N^{+}(v)\right)$, we may embed T^{+}in $G[A \cup B \cup D]$ so that t_{1} is embedded to v and at most $4 n / \Delta$ vertices are embedded outside $N^{+}(v)$.

Since $v \in A$ we have $d^{+}(v) \leq y+\varepsilon n$, and so v has at least

$$
\begin{equation*}
|Y|-1-(y+\varepsilon n)-4 n / \Delta \geq 7 \varepsilon n \tag{11}
\end{equation*}
$$

inneighbours in Y which are not occupied by the embedding of T^{+}. Let T^{*} be the tree formed by all vertices of T which do not lie in outcomponents of t_{1} or incomponents of t_{2}. Then every edge incident to t_{1} in T^{*} is directed towards t_{1}. Also, $\left|T^{*}\right| \leq n-(y-\varepsilon n)-(z-\varepsilon n)=2 \varepsilon n+2$, so certainly every component of $T^{*}-t_{1}$ has order at most $2 \varepsilon n+1$. Together with (11) and Theorem 1.3 this shows that we may extend the embedding of t_{1} in $\{v\}$ to an embedding of T^{*} in $\{v\} \cup\left(N^{-}(v) \cap Y\right)$ so that the embeddings of T^{+}and T^{*} only overlap in the vertex t_{1}. Then in particular t_{2} is embedded to some vertex $v_{2} \in Y$.

To complete the embedding, observe that every vertex of Y has at least $(1-2 \gamma) y$ outneighbours in Y, and therefore at most $3 \gamma y$ outneighbours outside Y. So v_{2} has at least $|E|-3 \gamma y \geq z+2 n / \Delta$ inneighbours in E, none of which have been occupied by the embeddings of T^{+}and T^{*}. Let T^{-}be the subtree of T consisting of t_{2} and all of its incomponents. Then $\left|T^{-}\right| \leq z+1$, and each component of $T^{-}-t_{2}$ is a component of $T-T_{\Delta}$ and so has order at most n / Δ by Proposition 2.1. So by Lemma 2.6(c) we may extend the embedding of t_{2} in $\left\{v_{2}\right\}$ to an embedding of T^{-}in $\left\{v_{2}\right\} \cup E$. These embeddings together form an embedding of T in G.

If instead some $v \in E$ has at least z inneighbours in $B \cup D \cup E$ then we may similarly embed T in G by choosing Z to be the vertex set of a γ-almost-regular subtournament of $G[E]$ on at least $(2-\gamma) z$ vertices and embedding T^{-}in $G[B \cup D \cup E]$, then embedding $T^{*}-t_{2}$ in the unoccupied vertices of Z, before finally embedding $T^{+}-t_{1}$ in $G[A]$.

We can now give the proof of Lemma 6.1 It was necessary to prove Lemma 6.5 separately from this as the method of proof does not hold for $\left|T_{\Delta}\right|=2$ (we cannot obtain the partition of $V(G)$ into Y^{*} and Z^{*} in this case).

Proof of Lemma 6.1. Introduce new constants γ, α, Δ and η with

$$
1 / n \ll \beta, 1 / \Delta^{\prime} \ll 1 / \Delta \ll \gamma \ll \alpha \ll \eta \ll 1 .
$$

Let y^{\prime} be the outweight of $T_{\Delta^{\prime}}$ and let z^{\prime} be the inweight of $T_{\Delta^{\prime}}$. Then by Lemma 6.2 we may assume that $y^{\prime}, z^{\prime} \geq \eta n$. Similarly let y and z be the outweight and inweight of T_{Δ} respectively. If $\left|T_{\Delta}\right|=1$, then G contains a copy of T by Lemma 3.1. If instead $\left|T_{\Delta}\right|=2$ then G contains a copy of T by Lemma 6.5. So we may assume that $\ell:=\left|T_{\Delta}\right| \geq 3$, and by Lemma 6.4 we may assume that T_{Δ} is a directed path. Let t_{1}, \ldots, t_{ℓ} be the vertices of T_{Δ}, labelled so that $t_{i} \rightarrow t_{i+1}$ for each $i \in[\ell-1]$. Then by Lemma 6.4 we may also assume that the inweight of t_{1} is at least $z^{\prime}-\gamma n$ and that the outweight of t_{ℓ} is at least $y^{\prime}-\gamma n$. This
implies that $z \geq z^{\prime}-\gamma n$ and $y \geq y^{\prime}-\gamma n$. Since $y^{\prime}+z^{\prime}+\left|T_{\Delta^{\prime}}\right|=y+z+\left|T_{\Delta}\right|=n$ it follows that we must have

$$
\begin{equation*}
y=y^{\prime} \pm 2 \gamma n \text { and } z=z^{\prime} \pm 2 \gamma n . \tag{12}
\end{equation*}
$$

Finally, by Lemma 6.2 we may assume that there are disjoint sets $Y, Z \subseteq V(G)$ such that:
(a) $|Y| \geq(2-\gamma) y^{\prime}$ and $|Z| \geq(2-\gamma) z^{\prime}$,
(b) $G[Y]$ and $G[Z]$ are γ-almost-regular, and
(c) any vertex of Y has at most $3 \gamma n$ outneighbours in Z and any vertex of Z has at most $3 \gamma n$ inneighbours in Y.
Let $X:=V(G) \backslash(Y \cup Z)$, so $|X| \leq 2 \gamma n$. Let T^{*} be the subtree of T formed by deleting from T all vertices in outcomponents of t_{ℓ} or incomponents of t_{1}. So $\left|T^{*}\right| \leq n-\left(z^{\prime}-\gamma n\right)-\left(y^{\prime}-\gamma n\right) \leq$ $3 \gamma n$. Let T^{+}be the subtree of T formed by t_{ℓ} and its outcomponents, and let T^{-}be the subtree of T formed by t_{1} and its incomponents. So $\left|T^{+}\right| \leq y+1$ and $\left|T^{-}\right| \leq z+1$. Also, each component of $T^{+}-t_{\ell}$ and each component of $T^{-}-t_{1}$ is a component of $T-T_{\Delta}$ and so has order at most n / Δ by Proposition 2.1.

Suppose that some vertex $v \in X$ has at least αn inneighbours in Y and at least αn outneighbours in Z. Since $\ell \geq 3$, we may choose i with $1<i<\ell$. Embed t_{i} to v. Let T_{a} be the subtree of T^{*} consisting of t_{i} and all of its outcomponents, and let T_{b} be the subtree of T^{*} consisting of t_{i} and all of its incomponents. Then $\left|T_{a}\right|,\left|T_{b}\right| \leq\left|T^{*}\right| \leq 3 \gamma n$. So by Lemma 2.6 we may extend the embedding of t_{i} in $\{v\}$ to an embedding of T_{a} in $Z \cup\{v\}$, and similarly we may extend the embedding of t_{i} in $\{v\}$ to an embedding of T_{b} in $Y \cup\{v\}$. Then in particular t_{1} is embedded to some $v_{1} \in Y$ and t_{ℓ} is embedded to some $v_{\ell} \in Z$. So v_{1} has at least $|Z|-3 \gamma n \geq z+3 \gamma n+2 n / \Delta$ inneighbours in Z, at most $3 \gamma n$ of which are occupied by the embedding of T_{a}. Similarly v_{ℓ} has at least $|Y|-3 \gamma n \geq y+3 \gamma n+2 n / \Delta$ outneighbours in Y, at most $3 \gamma n$ of which are occupied by the embedding of T_{b}. So by Lemma [2.6 we may extend the embedding of t_{1} in $\left\{v_{1}\right\}$ to an embedding of T^{-}in $\left\{v_{1}\right\} \cup Z$ and also extend the embedding of t_{ℓ} in $\left\{v_{\ell}\right\}$ to an embedding of T^{+}in $\left\{v_{\ell}\right\} \cup Y$ so that these embeddings together form a copy of T in G.

So we may assume that no vertex of X has at least αn inneighbours in Y and at least αn outneighbours in Z. Let $X^{+} \subseteq X$ consist of all vertices of X with fewer than αn inneighbours in Y, and let $X^{-} \subseteq X \backslash X^{+}$consist of all vertices of $X \backslash X^{+}$with fewer than αn outneighbours in Z. Let $Y^{*}:=Y \cup X^{-}$and let $Z^{*}:=Z \cup X^{+}$, so Y^{*} and Z^{*} partition the vertices of G. Then any vertex of Y^{*} has at most αn outneighbours in Z, and thus at least $z+\alpha n$ inneighbours in Z^{*} (by (a), (12) and the fact that $z^{\prime} \geq \eta n$). Similarly any vertex of Z^{*} has at most αn inneighbours in Y, and therefore at least $y+\alpha n$ outneighbours in Y^{*}. Let $W \subseteq V(G)$ consist of all vertices in Y^{*} with at least $y+\alpha n$ outneighbours in Y^{*} and all vertices in Z^{*} with at least $z+\alpha n$ inneighbours in Z^{*}.

Now suppose that $|W| \geq\left|T_{\Delta}\right|$. Since T_{Δ} is a directed path, by Theorem 1.5 we may embed T_{Δ} in $G[W]$. Let $S_{\Delta} \subseteq W$ be the set of vertices occupied by this embedding. Then $\left|S_{\Delta}\right|=\left|T_{\Delta}\right| \leq\left|T_{\Delta^{\prime}}\right| \leq \beta n$. So every vertex of S_{Δ} has at least $y+\alpha n / 2 \geq y+2 n / \Delta$ outneighbours in $Y^{*} \backslash S_{\Delta}$ and at least $z+\alpha n / 2 \geq z+2 n / \Delta$ inneighbours in $Z^{*} \backslash S_{\Delta}$. Let T_{1} be the subtree of T consisting of T_{Δ} and all of its outcomponents, and let T_{2} be the subtree of T consisting of T_{Δ} and all of its incomponents. So $\left|T_{1}\right|=\ell+y$ and $\left|T_{2}\right|=\ell+z$. Also, each component of $T_{1}-T_{\Delta}$ and each component of $T_{2}-T_{\Delta}$ is a component of $T-T_{\Delta}$, and so has order at most n / Δ by Proposition 2.1. So by Lemma [2.6 we may extend the embedding of T_{Δ} in S_{Δ} to an embedding of T_{1} in $Y^{*} \cup S_{\Delta}$. Similarly by Lemma 2.6 we may extend the
embedding of T_{Δ} in S_{Δ} to an embedding of T_{2} in $Z^{*} \cup S_{\Delta}$. These embeddings of T_{1} and T_{2} do not overlap outside T_{Δ}, and so together form an embedding of T in G.

We may therefore assume that $|W|<\left|T_{\Delta}\right|$, and hence that $|G-W| \geq 2 n-1-\ell$. Since $y+z=n-\ell$, we must have either $\left|Y^{*} \backslash W\right| \geq 2 y$ or $\left|Z^{*} \backslash W\right| \geq 2 z$. Suppose that $\left|Y^{*} \backslash W\right| \geq 2 y$. Then $Y^{*} \backslash W$ contains a vertex v_{ℓ} with at least y outneighbours in Y^{*}. So we may choose a set $N \subseteq N^{+}\left(v_{\ell}\right) \cap Y^{*}$ with $|N|=y$. Then $|N \cap Y| \geq y-\left(\left|Y^{*}\right|-|Y|\right) \geq y-2 \gamma n$. Now, by (a), (b) and (12) every vertex of Y has at least $(1-2 \sqrt{\gamma}) y$ inneighbours in Y and at least ($1-2 \sqrt{\gamma}$) y outneighbours in Y. Since $|N|=y$, at most $6 \sqrt{\gamma} y$ vertices of $N \cap Y$ have more than $(1-3 \sqrt{\gamma}) y$ inneighbours in $N \cap Y$, and at most $6 \sqrt{\gamma} y$ vertices of $N \cap Y$ have more than $(1-3 \sqrt{\gamma}) y$ outneighbours in $N \cap Y$. So at least $|N \cap Y|-12 \sqrt{\gamma} n \geq 3 n / \Delta$ vertices of N have at least $6 n / \Delta$ inneighbours in $Y^{*} \backslash\left(N \cup\left\{v_{\ell}\right\}\right)$ and at least $6 n / \Delta$ outneighbours in $Y^{*} \backslash\left(N \cup\left\{v_{\ell}\right\}\right)$. This means that by Lemma 2.5 (applied with $Y^{*} \backslash\left(N \cup\left\{v_{\ell}\right\}\right)$ playing the role of X) we may embed T^{+}in Y^{*} with t_{ℓ} embedded to v_{ℓ}, and at most $4 n / \Delta$ vertices of T^{+}embedded outside N. Since $v_{\ell} \notin W, v_{\ell}$ has at most $y+\alpha n$ outneighbours in Y^{*}, and so v_{ℓ} has at least $|Y|-1-(y+\alpha n)-4 n / \Delta \geq 9 \gamma n$ inneighbours in Y which are not occupied by the embedding of T^{+}. Since $\left|T^{*}\right| \leq 3 \gamma n$, by Lemma 2.6 we may extend the embedding of t_{ℓ} in v_{ℓ} to an embedding of T^{*} in Y which only overlaps the embedding of T^{+}in t_{ℓ}. The vertex t_{1} of T will therefore be embedded to some vertex $v_{1} \in Y$. By (3), v_{1} then has at least $|Z|-3 \gamma n \geq z+2 n / \Delta$ inneighbours in Z, none of which will have been occupied by the embeddings of T^{*} and T^{+}so far. So by Lemma 2.6 we may extend the embedding of t_{1} in $\left\{v_{1}\right\}$ to an embedding of T^{-}in $Z \cup\left\{v_{1}\right\}$. Then the embeddings of T^{+}, T^{-}and T^{*} combine to form an embedding of T in G. If instead we have $\left|Z^{*} \backslash W\right| \geq 2 z$, then we may embed T in G similarly, first embedding T^{-}in Z^{*}, then embedding T^{*} in the unoccupied vertices of Z, and finally embedding T^{+}in Y. So in either case G contains a copy of T, completing the proof.

7. Proof of Theorem 1.1

Having proved that Sumner's conjecture holds for directed trees of small core, we now show that the same is true for directed trees of large core, which will complete the proof of Theorem 1.1. We begin with an embedding result similar to Lemma 6.3,

Lemma 7.1. Suppose that $1 / n \ll 1 / \Delta \ll \mu \ll \nu \ll \eta \ll \gamma \ll \alpha \ll \beta \ll 1$. Let T be a directed tree on n vertices, and let forests F^{-}and F^{+}be induced subgraphs of T which partition the vertices of T such that $\left|F^{+}\right| \geq 6 \alpha n$. Suppose also that every edge of T between F^{-}and F^{+}is directed from F^{-}to F^{+}. Let Y and Z be disjoint sets with $|Y| \geq$ $2\left|F^{+}\right|-2 \alpha n$ and $|Z| \geq 2\left|F^{-}\right|+\alpha n$, and let G be a tournament on vertex set $Y \cup Z$ such that every vertex of Y has at most $\gamma|G|$ outneighbours in Z and every vertex of Z has at most $\gamma|G|$ inneighbours in Y. Finally, let T_{1}^{+}be the largest component of F^{+}, and suppose that either
(i) $\left|T_{1}^{+}\right| \leq\left|F^{+}\right|-3 \alpha n$,
(ii) $G[Y]$ is a robust (μ, ν)-outexpander with $\delta^{0}(G[Y]) \geq \eta|Y|$ and $\left|\left(T_{1}^{+}\right)_{\Delta}\right| \geq \beta n$, or
(iii) $\Delta\left(T_{1}^{+}\right) \leq \Delta$.

Then G contains a copy of T.
Proof. First observe that if $|G| \geq 3 n$, then G contains a copy of T by Theorem 1.3. So we may assume that $|G|<3 n$, and hence that every vertex of Y has at most $3 \gamma n$ outneighbours
in Z and every vertex of Z has at most $3 \gamma n$ inneighbours in Y. Let T_{2}^{+}be the second largest component of F^{+}. Then $\left|F^{+}\right|-\left|T_{2}^{+}\right| \geq\left|F^{+}\right| / 2 \geq 3 \alpha n$, so $|Y| \geq\left|F^{+}\right|+\left|T_{2}^{+}\right|+\alpha n$. Since $|Z| \geq 2\left|F^{-}\right|+\alpha n$, by Lemma 2.7 any embedding of T_{1}^{+}in $G[Y]$ may be extended to an embedding of T in G. So it is sufficient to embed T_{1}^{+}in $G[Y]$.

Note that $|Y| \geq 10 \alpha n$, so if $\left|T_{1}^{+}\right|<\alpha n$, then $G[Y]$ contains a copy of T_{1}^{+}by Theorem 1.3, Alternatively, suppose that $\left|T_{1}^{+}\right| \geq \alpha n$. If (i) holds, then $\left|T_{1}^{+}\right| \leq|Y| / 2-2 \alpha n$, and so $|Y| \geq(2+\alpha)\left|T_{1}^{+}\right|$. So $G[Y]$ contains a copy of T_{1}^{+}by Theorem 1.2(i). If instead (ii) holds then G contains a copy of T_{1}^{+}by Lemma 5.3, Finally, if (iii) holds then G contains a copy of T_{1}^{+}by Theorem 1.2(ii), completing the proof.

Observe that as with Lemma 2.7 and Lemma 6.3, a 'dual' form of Lemma 7.1 can be proved similarly. For this we instead require that that $\left|F^{-}\right| \geq 6 \alpha n,|Y| \geq 2\left|F^{+}\right|+\alpha n$ and $|Z| \geq 2\left|F^{-}\right|-2 \alpha n$, and also either that the largest component $\left(T_{1}^{-}\right)_{\Delta}$ of F^{-}contains at most $\left|F^{-}\right|-3 \alpha n$ vertices, or that $G[Z]$ is a robust (μ, ν)-outexpander with $\delta^{0}(G[Z]) \geq \eta|Z|$ and $\left|\left(T_{1}^{-}\right)_{\Delta}\right| \geq \beta n$, or that $\Delta\left(T_{1}^{-}\right) \leq \Delta$. If these conditions are met we may conclude that G contains a copy of T. As with Lemma [2.7, we shall sometimes implicitly refer to this 'dual' when referring to Lemma 7.1 .

The next lemma is our final result we need to proof Theorem 1.1. It states that if we can find disjoint subsets $Y, Z \subseteq V(G)$ containing almost all of the vertices of G, so that $G[Y]$ and $G[Z]$ are robust outexpanders of large minimum semidegree with almost all edges between Y and Z directed the same way, then G contains a copy of T.

Lemma 7.2. Suppose that $1 / n \ll 1 / \Delta \ll \mu \ll \nu \ll \eta \ll \gamma \ll \alpha \ll \beta \ll 1$. Let T be a directed tree on n vertices with $\left|T_{\Delta}\right| \geq \beta n$. Let Y and Z be disjoint sets with $|Y \cup Z| \geq$ $(2-\alpha) n$, and let G be a tournament on vertex set $Y \cup Z$ such that
(i) $G[Y]$ is a robust (μ, ν)-outexpander with $\delta^{0}(G[Y]) \geq \eta|Y|$,
(ii) $G[Z]$ is a robust (μ, ν)-outexpander with $\delta^{0}(G[Z]) \geq \eta|Z|$, and
(iii) every vertex of Y has at most $\gamma|G|$ outneighbours in Z, and every vertex of Z has at most $\gamma|G|$ inneighbours in Y.
Then G contains a copy of T.
Proof. If $|Y \cup Z| \geq(2+\alpha) n$, then G contains a copy of T by Theorem 1.2(i). So we may assume that $|Y \cup Z|=(2 \pm \alpha) n$. Suppose first that $|Z|<64 \alpha n$. Then $|Y| \geq(2-65 \alpha) n$, and hence $G[Y]$ contains a copy of T by (i) and Lemma 5.3. Similarly if $|Y|<64 \alpha n$, then by (ii) and Lemma $5.3 G[Z]$ contains a copy of T. So we may assume that $|Y| \geq 64 \alpha n$ and $|Z| \geq 64 \alpha n$.

So we may form a forest F_{1}^{+}of order between $|Y| / 2+4 \alpha n$ and $|Y| / 2+5 \alpha n$ by repeatedly choosing a sink vertex of T, deleting it from T and adding it to F_{1}^{+}. Let $F_{1}^{-}:=T-F_{1}^{+}$, so that

$$
\begin{equation*}
\frac{|Z|}{2}-6 \alpha n \leq n-\frac{|Y|}{2}-5 \alpha n \leq\left|F_{1}^{-}\right| \leq n-\frac{|Y|}{2}-4 \alpha n \leq \frac{|Z|}{2}-3 \alpha n \tag{13}
\end{equation*}
$$

We therefore have $|Y| \geq 2\left|F_{1}^{+}\right|-10 \alpha n$ and $|Z| \geq 2\left|F_{1}^{-}\right|+6 \alpha n$. Note also that $\left|F_{1}^{+}\right| \geq 36 \alpha n$. Let T^{\prime} be the largest component of F_{1}^{+}. If $\left|T^{\prime}\right| \leq\left|F_{1}^{+}\right|-18 \alpha n$ or $\left|T_{\Delta}^{\prime}\right| \geq \beta n / 3$ then G contains a copy of T by (i), (iii) and Lemma 7.1. So we may assume that $\left|T^{\prime}\right|>\left|F_{1}^{+}\right|-18 \alpha n$, and that $\left|T_{\Delta}^{\prime}\right|<\beta n / 3$.

Next we form a forest F_{2}^{-}which is a subgraph of T and which contains F_{1}^{-}. To do this, take F_{2}^{-}initially to be F_{1}^{-}. Then select a source vertex of F_{1}^{+}, delete it from F_{1}^{+}and add it to F_{2}^{-}, and repeat this step until $|Z| / 2+4 \alpha n \leq\left|F_{2}^{-}\right| \leq|Z| / 2+5 \alpha n$, and let $F_{2}^{+}:=T-F_{2}^{-}$. Then by (13) we have $\left|F_{1}^{+} \cap F_{2}^{-}\right|=\left|F_{2}^{-}\right|-\left|F_{1}^{-}\right| \leq 11 \alpha n$. Also $\left|F_{2}^{+}\right| \leq|Y| / 2-3 \alpha n$, and so we have both $|Z| \geq 2\left|F_{2}^{-}\right|-10 \alpha n$ and $|Y| \geq 2\left|F_{2}^{+}\right|+6 \alpha n$. Observe also that $\left|F_{2}^{-}\right| \geq 36 \alpha n$. Let $T^{\prime \prime}$ be the largest component of F_{2}^{-}. Then if $\left|T^{\prime \prime}\right| \leq\left|F_{2}^{-}\right|-18 \alpha n$ then G contains a copy of T by (ii), (iii) and Lemma 7.1. So we may assume that $\left|T^{\prime \prime}\right|>\left|F_{2}^{-}\right|-18 \alpha n$. Clearly $\left|T^{\prime} \cap T^{\prime \prime}\right| \leq\left|F_{1}^{+} \cap F_{2}^{-}\right| \leq 11 \alpha n$, and so $\left|T^{\prime} \cup T^{\prime \prime}\right| \geq\left|T^{\prime}\right|+\left|T^{\prime \prime}\right|-\left|T^{\prime} \cap T^{\prime \prime}\right|>(1-47 \alpha) n$. This implies that $\left|T_{\Delta}^{\prime \prime}\right| \geq \beta n / 3$, as otherwise by Lemma 2.3 we would have $\left|T_{\Delta}\right|<\beta n$, a contradiction. Thus G contains a copy of T by (ii), (iii) and Lemma 7.1, as desired.

Proof of Theorem 1.1. Introduce new constants with

$$
1 / n \ll 1 / \Delta \ll \mu \ll \nu \ll \eta \ll \gamma \ll \alpha \ll \alpha^{\prime} \ll \beta \ll 1 .
$$

If $\left|T_{\Delta}\right|<\beta n$ then G contains a copy of T by Lemma6.1. So we may assume that $\left|T_{\Delta}\right| \geq \beta n$. Let $x:=\left|T_{\Delta}\right|$, let y be the outweight of T_{Δ}, and let z be the inweight of T_{Δ}, so $x+y+z=n$. Also let T_{1} be the subtree of T formed by T_{Δ} and all outcomponents of T_{Δ}, and let T_{2} be the subtree of T formed by T_{Δ} and all incomponents of T_{Δ}, so $\left|T_{1}\right|=x+y$, and $\left|T_{2}\right|=x+z$.

By Lemma 5.2 we may choose disjoint subsets S_{1}, \ldots, S_{r} of $V(G)$ such that
(i) $\left|\bigcup_{i \in[r]} S_{i}\right| \geq(1-\gamma)|G|$,
(ii) for each $i \in[r]$, any vertex $v \in S_{i}$ has at most $\gamma|G|$ inneighbours in $\bigcup_{j>i} S_{j}$ and at most $\gamma|G|$ outneighbours in $\bigcup_{j<i} S_{j}$, and
(iii) for each $i \in[r]$, either $G\left[S_{i}\right]$ is a robust (μ, ν)-outexpander with $\delta^{0}\left(G\left[S_{i}\right]\right) \geq \eta|G|$ or $\left|S_{i}\right|<\gamma|G|$.
Let i be maximal such that $\left|S_{1} \cup \cdots \cup S_{i-1}\right|<\max \{2(z-\alpha n), 4 \alpha n\}$, and let j be minimal such that $\left|S_{j+1} \cup \cdots \cup S_{r}\right|<\max \{2(y-\alpha n), 4 \alpha n\}$. Since $y+z \leq n-\beta n$, by (i) we have $i \leq j$ (though equality is possible here). Let $Z:=S_{1} \cup \cdots \cup S_{i}$, let $Y:=S_{j} \cup \cdots \cup S_{r}$ and let $X:=S_{i+1} \cup \cdots \cup S_{j-1}$. Then we have

$$
\begin{equation*}
\left|Z \backslash S_{i}\right|<\max \{2(z-\alpha n), 4 \alpha n\} \text { and }\left|Y \backslash S_{j}\right|<\max \{2(y-\alpha n), 4 \alpha n\} . \tag{14}
\end{equation*}
$$

Also, by the maximality of i and the minimality of j we have

$$
\begin{equation*}
|Z| \geq z+\alpha n \text { and }|Y| \geq y+\alpha n \tag{15}
\end{equation*}
$$

Claim. If $\left|Z \backslash S_{i}\right| \geq 11 \alpha$ n or $\left|Y \backslash S_{j}\right| \geq 11 \alpha n$ then G contains a copy of T.
To prove the claim, suppose first that $\left|Y \backslash S_{j}\right| \geq 11 \alpha n$. Let $X^{-}:=Z \cup X \cup S_{j}$ and $X^{+}:=Y \backslash S_{j}$. By (14) we have $\left|X^{+}\right|<2 y-2 \alpha n$. Also, by (ii) every vertex in X^{-}has at most $\gamma|G|$ inneighbours in X^{+}and every vertex in X^{+}has at most $\gamma|G|$ outneighbours in X^{-}. Now, $T_{1}-T_{\Delta}$ is a forest on $y>\left|X^{+}\right| / 2+\alpha n$ vertices in which each component has order at most n / Δ by Proposition [2.1(iv). So by repeatedly deleting a source vertex of $T_{1}-T_{\Delta}$, we may obtain a subforest F^{+}on between $\left|X^{+}\right| / 2+2 \alpha n / 3$ and $\left|X^{+}\right| / 2+\alpha n$ vertices. So $\left|F^{+}\right| \geq 6 \alpha n$, and each component of F^{+}has order at most $n / \Delta \leq\left|F^{+}\right|-3 \alpha n$. Let $F^{+}:=T-F^{-}$, so every edge of T between F^{-}and F^{+}is directed from F^{-}to F^{+}. Since $\left|X^{+}\right|+\left|X^{-}\right| \geq(1-\gamma)|G|$ by (i), we have

$$
\left|F^{-}\right|=n-\left|F^{+}\right| \leq n-\frac{\left|X^{+}\right|}{2}-\frac{2 \alpha n}{3} \leq \frac{\left|X^{-}\right|}{2}-\frac{\alpha n}{2} .
$$

So $\left|X^{-}\right| \geq 2\left|F^{-}\right|+\alpha n$, and $\left|X^{+}\right| \geq 2\left|F^{+}\right|-2 \alpha n$, and so G contains a copy of T by Lemma 7.1(i). If instead $\left|Z \backslash S_{i}\right| \geq 11 \alpha n$ then G contains a copy of T similarly. This proves the claim.

We may therefore assume that $\left|Z \backslash S_{i}\right|<11 \alpha n$ and $\left|Y \backslash S_{j}\right|<11 \alpha n$. Suppose first that $i=j$. Then $\left|S_{i}\right| \geq(1-\gamma)|G|-22 \alpha n \geq\left(2-\alpha^{\prime}\right) n$, so by (iii) $G\left[S_{i}\right]$ is a robust (μ, ν) outexpander with $\delta^{0}\left(G\left[S_{i}\right]\right) \geq \eta|G| \geq \eta\left|S_{i}\right|$. Thus G contains a copy of T by Lemma 5.3, Now suppose instead that $i \neq j$, and also that $|X|<12 \alpha^{\prime} n$. Then $\left|S_{i} \cup S_{j}\right| \geq(1-\gamma)|G|-$ $|X|-22 \alpha n \geq\left(2-13 \alpha^{\prime}\right) n$. Now if $\left|S_{i}\right|<\gamma|G|$, then we must have $\left|S_{j}\right| \geq\left(2-14 \alpha^{\prime}\right) n$. Then by (iii) $G\left[S_{j}\right]$ must be a robust (μ, ν)-outexpander with $\delta^{0}\left(G\left[S_{j}\right]\right) \geq \eta|G| \geq \eta\left|S_{j}\right|$, so $G\left[S_{j}\right]$ contains a copy of T by Lemma 5.3. Alternatively, if $\left|S_{j}\right|<\gamma|G|$ then $G\left[S_{i}\right]$ contains a copy of T similarly. Finally, if $\left|S_{i}\right|,\left|S_{j}\right| \geq \gamma|G|$, then by (iii) $G\left[S_{i}\right]$ and $G\left[S_{j}\right]$ must both be robust (μ, ν)-outexpanders with $\delta^{0}\left(G\left[S_{i}\right]\right) \geq \eta|G| \geq \eta\left|S_{i}\right|$ and $\delta^{0}\left(G\left[S_{j}\right]\right) \geq \eta\left|S_{j}\right|$. Also, by (ii) every vertex of S_{i} has at most $\gamma|G|$ inneighbours in S_{j}, and every vertex of S_{j} has at most $\gamma|G|$ outneighbours in S_{i}. So $G\left[S_{i} \cup S_{j}\right]$ contains a copy of T by Lemma 7.2,

So we may assume that $i \neq j$, and also that $|X| \geq 12 \alpha^{\prime} n$. We next consider two cases for the size of X, in each case showing that T may be embedded in G.

Case 1: $|X| \geq(1+\alpha) x$.
Since by Proposition 2.1(iii) we have $\Delta\left(T_{\Delta}\right) \leq \Delta$, by Theorem 1.2 (ii) we may embed T_{Δ} in $G[X]$. Let $X^{\prime} \subseteq X$ consist of the vertices occupied by this embedding. Now, by (ii) every vertex of X^{\prime} has at most $\gamma|G|$ inneighbours in Y, and hence by (15) at least $y+\alpha n / 2$ outneighbours in Y. Since by Proposition [2.1(iv) every component of $T_{1}-T_{\Delta}$ has order at most n / Δ, by Lemma [2.6] we may extend the embedding of T_{Δ} in $G\left[X^{\prime}\right]$ to an embedding of T_{1} in $G\left[X^{\prime} \cup Y\right]$. Similarly by (ii) every vertex of X^{\prime} has at most $\gamma|G|$ outneighbours in Z, and hence by (15) at least $z+\alpha n / 2$ inneighbours in Z. Since by Proposition [2.1(iv) every component of $T_{2}-T_{\Delta}$ has order at most n / Δ, by Lemma 2.6 we may extend the embedding of T_{Δ} in $G\left[X^{\prime}\right]$ to an embedding of T_{2} in $G\left[X^{\prime} \cup Z\right]$. Since these embeddings of T_{1} and T_{2} only overlap in T_{Δ}, they together form an embedding of T in G.
Case 2: $|X|<(1+\alpha) x$.
Observe that if $|Z| \leq 2 z+\alpha n$ and $|Y| \leq 2 y+\alpha n$, then by (i) and the fact that $x=\left|T_{\Delta}\right| \geq$ βn we have

$$
|X| \geq(1-\gamma)|G|-|Z|-|Y| \geq 2 n-2 z-2 y-3 \alpha n \geq 2 x-3 \alpha n \geq(1+\alpha) x
$$

contradicting our assumption on X. So at least one of $|Z|>2 z+\alpha n$ and $|Y|>2 y+\alpha n$ must hold. This gives us three further cases, which we consider separately.
Case 2(a): $|Z|>2 z+\alpha n,|Y| \leq 2 y+\alpha n$.
In this case it is sufficient to embed T_{2} in $G[X \cup Z]$. Indeed, by (ii) every vertex of $X \cup Z$ has at most $\gamma|G|$ inneighbours in Y, and therefore by (15) at least $y+\alpha n / 2$ outneighbours in Y. Since by Proposition [2.1(iv) every component of $T-T_{2}$ has order at most n / Δ, any embedding of T_{2} in $G[X \cup Z]$ can be extended to an embedding of T in G by Lemma 2.6.

Now, if $|X \cup Z| \geq 2\left|T_{2}\right|+2 \alpha n$, then we may embed T_{2} in $G[X \cup Z]$ by Theorem 1.2(i). So we may assume that $|X \cup Z|<2\left|T_{2}\right|+2 \alpha n$. Also, by (i) we have

$$
|X \cup Z| \geq(1-\gamma)|G|-|Y| \geq 2 n-2 y-2 \alpha n=2 x+2 z-2 \alpha n=2\left|T_{2}\right|-2 \alpha n .
$$

So $|X \cup Z|=2\left|T_{2}\right| \pm 2 \alpha n$. In particular, since $\left|T_{2}\right| \geq\left|T_{\Delta}\right| \geq \beta n$, we have $|X \cup Z| \geq \beta n$. By repeatedly deleting a source vertex of T_{Δ}, we may form a forest F which is an induced
subgraph of T_{Δ} (consisting of the undeleted vertices of T_{Δ}) so that every edge between $T_{\Delta}-F$ and F is directed from T_{Δ} to F, and also so that

$$
\frac{|X|}{2}+\frac{2 \alpha^{\prime}\left|T_{2}\right|}{3} \leq|F| \leq \frac{|X|}{2}+\alpha^{\prime}\left|T_{2}\right| .
$$

Let $F^{-}:=T_{2}-F$. Then

$$
\left|F^{-}\right|=\left|T_{2}\right|-|F| \leq\left|T_{2}\right|-\frac{|X|}{2}-\frac{2 \alpha^{\prime}\left|T_{2}\right|}{3} \leq \frac{|Z|}{2}-\frac{\alpha^{\prime}\left|T_{2}\right|}{2} .
$$

So $|X| \geq 2|F|-2 \alpha^{\prime}\left|T_{2}\right|$ and $|Z| \geq 2\left|F^{-}\right|+\alpha^{\prime}\left|T_{2}\right|$. Also, $|F| \geq|X| / 2 \geq 6 \alpha^{\prime}\left|T_{2}\right|$, and since F is a subtree of T_{Δ}, by Proposition [2.1(iii) each component C of F has $\Delta(C) \leq \Delta$. Since by (ii) every vertex of X has at most $\gamma|G| \leq 2 \gamma|X \cup Z| / \beta$ outneighbours in Z and every vertex of Z has at most $\gamma|G| \leq 2 \gamma|X \cup Z| / \beta$ inneighbours in $X, G[X \cup Z]$ contains a copy of T_{2} by Lemma 7.1, as required.
Case 2(b): $|Z| \leq 2 z+\alpha n,|Y|>2 y+\alpha n$.
In this case T may be embedded in G by the same method as in the previous case, with the roles of inneighbours and outneighbours switched. So we begin by embedding T_{1} in $G[X \cup Y]$, and then use Lemma 2.6 to extend this embedding to an embedding of T in G.
Case 2(c): $|Z|>2 z+\alpha n,|Y|>2 y+\alpha n$.
In this case, we shall partition T into three forests as follows. Initially take F^{-}to be the forest formed by all incomponents of T_{Δ}, and F^{+}to be the forest formed by all outcomponents of T_{Δ}. Then select a source vertex of T_{Δ}, delete it from T_{Δ} and add it to F^{-}. Repeat this step until $2\left|F^{-}\right|+\alpha n \leq|Z| \leq 2\left|F^{-}\right|+2 \alpha n$. Next, select a sink vertex of T_{Δ}, delete it from T_{Δ} and add it to F^{+}. Repeat this step until $2\left|F^{+}\right|+\alpha n \leq|Y| \leq 2\left|F^{+}\right|+2 \alpha n$. Then let F consist of all vertices remaining in T_{Δ}. So F is a subgraph of T_{Δ}. Also, by (i)

$$
|F|=n-\left|F^{-}\right|-\left|F^{+}\right| \leq n-|Y| / 2-|Z| / 2+2 \alpha n \leq|X| / 2+3 \alpha n,
$$

so (since $\left.|X| \geq \alpha^{\prime} n\right)|X| \geq|F|+\alpha n$. We shall embed the components of F^{-}, F and F^{+}in turn amongst the vertices of Z, X and Y respectively. Indeed, the proof is similar to the proof of Lemma 2.7, but with three forests instead of two.

Let C_{1}, \ldots, C_{s} be the components of F^{-}, F and F^{+}, ordered so that C_{1} is a component of F, and for each $i \in[s-1], C_{i+1}$ has precisely one neighbour in $C_{1} \cup \cdots \cup C_{i}$. We shall embed the C_{i} in turn, so that each component of F^{-}is embedded in $G[Z]$, each component of F is embedded in $G[X]$, and each component of F^{+}is embedded in $G[Y]$. We also require that after each C_{i} is embedded, the embeddings of C_{1}, \ldots, C_{i} together form an embedding in G of the subtree of T induced by the vertices of C_{1}, \ldots, C_{i}. So suppose that we have successfully embedded C_{1}, \ldots, C_{i-1} in this manner, and we now wish to extend this embedding to include C_{i}. Then if $i \geq 2$, there is precisely one edge of T between C_{i} and $C_{1} \cup \cdots \cup C_{i-1}$. Let t be the endvertex of this edge in $C_{1} \cup \cdots \cup C_{i-1}$, and let v be the vertex to which t was embedded. If C_{i} is a component of F^{-}, then $i \geq 2$, the edge between t and C_{i} is directed towards t and $v \in X \cup Y$. So we may let S consist of the inneighbours of v in Z. Then by (ii) we have $|S| \geq|Z|-\gamma|G|$. Let $S^{\prime} \subseteq S$ consist of the unoccupied vertices of S. Since at most $\left|F^{-}\right|-\left|C_{i}\right|$ vertices of S are occupied by the embeddings of C_{1}, \ldots, C_{i-1},

$$
\left|S^{\prime}\right| \geq|Z|-\gamma|G|-\left|F^{-}\right|+\left|C_{i}\right| \geq 2\left|C_{i}\right|+\alpha n / 2
$$

So if $\left|C_{i}\right|<\alpha n / 2$ then $G\left[S^{\prime}\right]$ contains a copy of T by Theorem [1.3, and if $\left|C_{i}\right| \geq \alpha n / 2$ then $G\left[S^{\prime}\right]$ contains a copy of T by Theorem [1.2(i). Alternatively, if C_{i} is a component of
F^{+}, then $i \geq 2$, the edge between t and C_{i} is directed towards C_{i} and $v \in X \cup Z$. So we may let S consist of the outneighbours of v in Y, and let $S^{\prime} \subseteq S$ consist of the unoccupied vertices of S. Then we may embed C_{i} in S^{\prime} by the same argument as used when C_{i} is a component of F^{-}. Finally, suppose that C_{i} is a component of F. Then if $i \geq 2$ and $t \in F^{+}$, let S consist of the inneighbours of v in X. If instead $i \geq 2$ and $t \in F^{-}$, let S consist of the outneighbours of v in X. If $i=1$ then let $S=X$. Then by (ii) we have $|S| \geq|X|-\gamma|G|$. Again let $S^{\prime} \subseteq S$ consist of the unoccupied vertices of S. Then it suffices to embed C_{i} in $G\left[S^{\prime}\right]$. Since at most $|F|-\left|C_{i}\right|$ vertices have been embedded in S, we have $\left|S^{\prime}\right| \geq|X|-\gamma|G|-|F|+\left|C_{i}\right| \geq\left|C_{i}\right|+\alpha n / 2$. Now, C_{i} is a subtree of T_{Δ}, so $\Delta\left(C_{i}\right) \leq \Delta$ by Proposition 2.1(iii). So if $\left|C_{i}\right| \geq \alpha n / 4$, then $G\left[S^{\prime}\right]$ contains a copy of C_{i} by Theorem 1.2(ii). On the other hand, if $\left|C_{i}\right|<\alpha n / 4$, then $G\left[S^{\prime}\right]$ contains a copy of C_{i} by Theorem 1.3. So in any case we may embed C_{i} as desired, completing the proof.

References

[1] N. Alon and A. Shapira, Testing subgraphs in directed graphs, Journal of Computer and System Sciences 69 (2004), 354-382.
[2] S. Céroi and F. Havet, Trees with three leaves are ($n+1$)-unavoidable, Discrete Applied Mathematics 141 (2004), 19-39.
[3] A. El Sahili, Trees in tournaments, Journal of Combinatorial Theory, Series B 92 (2004), 183-187.
[4] R. Häggkvist and A.G. Thomason, Trees in tournaments, Combinatorica 11 (1991), 123-130.
[5] F. Havet, Trees in tournaments, Discrete Mathematics 243 (2002), 121-134.
[6] F. Havet, On unavoidability of trees with k leaves, Graphs and Combinatorics 19 (2003), 101-110.
[7] F. Havet and S. Thomassé, Median orders of tournaments: a tool for the second neighbourhood problem and Sumner's conjecture, Journal of Graph Theory 35 (2000), 244-256.
[8] F. Havet and S. Thomassé, Oriented Hamiltonian paths in tournaments: a proof of Rosenfeld's conjecture, Journal of Combinatorial Theory, Series B 78 (2000), 243-273.
[9] S. Janson, T. Łuczak and A. Ruciński, Random graphs, Wiley-Interscience, 2000.
[10] D. Kühn, R. Mycroft and D. Osthus, An approximate version of Sumner's universal tournament conjecture, preprint.
[11] D. Kühn and D. Osthus, Embedding large subgraphs into dense graphs, in Surveys in Combinatorics 2009, eds. S. Huczynska, J.D. Mitchell and C.M. Roney-Dougal, London Math. Soc. Lecture Notes 365, Cambridge University Press, 2009, 137-168.
[12] D. Kühn, D. Osthus and A. Treglown, Hamiltonian degree sequences in digraphs, Journal of Combinatorial Theory, Series B 100 (2010), 367-380.
[13] L. Redei, Ein kombinatorischer Satz, Acta Lit. Szeged 7 (1934), 39-43.
[14] K.B. Reid and N.C. Wormald, Embedding oriented n-trees in tournaments, Studia Scientiarum Mathematicarum Hungarica 18 (1983) 377-387.
[15] A. Thomason, Paths and cycles in tournaments, Transactions of the American Mathematical Society 296 (1986), 167-180.
[16] N.C. Wormald, Subtrees of large tournaments, Combinatorial Mathematics X, Springer Lecture Notes in Mathematics 1036 (1983) 417-419.

Daniela Kühn, Deryk Osthus,
School of Mathematics,
University of Birmingham,
Birmingham,
B15 2TT,
United Kingdom,
\{kuehn, osthus\}@maths.bham.ac.uk

Richard Mycroft,
School of Mathematical Sciences,
Queen Mary, University of London, London,
E1 4NS,
United Kingdom,
r.mycroft@qmul.ac.uk

[^0]: D. Kühn and D. Osthus were partially supported by the EPSRC, grant no. EP/F008406/1.

