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A PROOF OF SUMNER’S UNIVERSAL TOURNAMENT CONJECTURE

FOR LARGE TOURNAMENTS

DANIELA KÜHN, RICHARD MYCROFT, AND DERYK OSTHUS

Abstract. Sumner’s universal tournament conjecture states that any tournament on 2n−2
vertices contains any directed tree on n vertices. In this paper we prove that this conjecture
holds for all sufficiently large n. The proof makes extensive use of results and ideas from a
recent paper by the same authors, in which an approximate version of the conjecture was
proved.

1. Introduction

1.1. Introduction. A tournament is an orientation of a complete graph. Obviously one
cannot guarantee any substructures which contain a cycle within an arbitrary tournament.
On the other hand, Sumner’s universal tournament conjecture states that one can find any
directed tree T within an arbitrary tournament G, even if the order of T is rather large
compared to that of G. More precisely, the conjecture states that any tournament on 2n−2
vertices contains any directed tree on n vertices. Many partial results towards this conjecture
(made in 1971) have been proved – some of them are described below. Here we prove this
conjecture for all large n.

Theorem 1.1. There exists n0 such that the following holds. Let T be a directed tree on
n ≥ n0 vertices, and G a tournament on 2n− 2 vertices. Then G contains a copy of T .

To see that the bound is best possible, let T be a star with all edges directed inwards,
and let G be a regular tournament on 2n − 3 vertices. Then every vertex of G has n − 2
inneighbours and n−2 outneighbours, and so G does not contain a copy of T , whose central
vertex has n−1 inneighbours. There are also ‘near-extremal’ examples which have a different
structure to the one given above: let T be obtained from a directed path on ℓ ≥ 1 vertices by
adding y := (n− ℓ)/2 outneighbours to the terminal vertex of the path and y inneighbours
to the initial vertex of the path. Let G consist of regular tournaments Y and Z, each on
2y − 1 vertices, together with an arbitrary tournament X on ℓ− 1 vertices so that all edges
are oriented from Z to X, from X to Y and from Z to Y . Then |G| = 2n − ℓ − 3 as well
as |T | = n, and it is easy to see that G does not contain T . These examples will play a
significant role in the proof (see Section 1.2).

In [10], we used a randomised embedding algorithm to prove an approximate version of
Sumner’s universal tournament conjecture, and also a stronger result for directed trees of
bounded degree. Both of these results will be important tools in this paper.

Theorem 1.2 ([10], Theorem 1.4). Let α > 0. Then the following properties hold.

(i) There exists n0 such that for any n ≥ n0, any tournament G on 2(1 + α)n vertices
contains any directed tree T on n vertices.

(ii) Let ∆ be any positive integer. Then there exists n0 such that for any n ≥ n0, any
tournament G on (1 + α)n vertices contains any directed tree T on n vertices with
∆(T ) ≤ ∆.
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Let f(n) denote the smallest integer such that any tournament on f(n) vertices contains
any directed tree on n vertices. So Sumner’s conjecture states that f(n) = 2n−2. Chung (see
[16]) observed that f(n) ≤ n1+o(1), and Wormald [16] improved this to f(n) ≤ O(n log n).
The first linear bound on f(n) was established by Häggkvist and Thomason [4]. Havet [5]
then showed that f(n) ≤ 38n/5, and later Havet and Thomassé [7] used their notion of
median orders to improve this to f(n) ≤ 7n/2. Finally El Sahili used the same notion to
prove the best known bound for general n, namely that f(n) = 3n − 3. We shall make
extensive use of this result in this paper (actually, any linear bound would suffice for our
purposes; the factor of 3 is not essential.)

Theorem 1.3 (El Sahili [3]). Let T be a directed tree on n vertices, and let G be a tournament
on 3n− 3 vertices. Then G contains a copy of T .

Sumner’s conjecture is also known to hold for special classes of trees (see e.g. [14]). In
particular, Havet and Thomassé [7] proved it for ‘outbranchings’, again using median orders.
Here an outbranching is a directed tree T in which we may choose a root vertex t ∈ T so that
for any vertex t′ ∈ T , the path between t and t′ in T is directed from t to t′. (Outbranchings
are also known as arborescences.)

Theorem 1.4 (Havet and Thomassé [7]). Let T be an outbranching on n vertices, and let
G be a tournament on 2n− 2 vertices. Then G contains a copy of T .

For many types of trees, Sumner’s conjecture holds with room to spare. A classical result
of this type is Redei’s theorem.

Theorem 1.5 (Redei [13]). Any tournament contains a spanning directed path.

This was generalised considerably by Thomason [15] who showed that whenever n is
sufficiently large, every tournament on n vertices contains every orientation of the path on
n vertices (this was a conjecture of Rosenfeld). Havet and Thomassé [8] proved that this
even holds for all n 6= 3, 5, 7. They also proposed the following generalisation of Sumner’s
conjecture (see [6]): Let T be a directed tree on n vertices with k leaves. Then every
tournament on n + k − 1 vertices contains a copy of T . Some special cases are known (see
e.g. [2]). It would be interesting to know whether our methods can be used to prove this
conjecture.

As illustrated in the next section, our proof relies on all of the above theorems (i.e. The-
orems 1.2–1.5), as well as a directed version of Szemerédi’s regularity lemma and several
structural results proved in [10].

1.2. Outline of the proof. In Section 2, we shall introduce some notation, before intro-
ducing some key ideas and lemmas. In particular we shall define the core tree T∆ of a tree
T . This is a subtree of T consisting of all the ‘central’ vertices of T , which has the impor-
tant property that every component of T − T∆ is small. This is useful for the problem of
embedding T in a tournament G, as we may first embed T∆ and then proceed to embed
the components of T − T∆ one by one, using the fact that each such component is small.
We also introduce the notion of an ‘almost-regular’ tournament G, which is a tournament
in which every vertex has in- and outdegree approximately equal to |G|/2. Section 2 also
contains three auxiliary lemmas for embedding a directed tree T in a tournament G which
are derived from Theorems 1.2 and 1.3 and which we shall use extensively in later sections:
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• Lemma 2.5 is designed to embed a directed tree T which is similar to an outstar, in
the sense that T contains a vertex t with no inneighbours such that every component
of T − t is small.
• In Lemma 2.6, we consider a subtree Tc of T with the property that every component
of T − Tc is small, showing that a suitable embedding of Tc in G can be extended to
an embedding of T in G.
• In Lemma 2.7 we consider the case where the vertices of G can be partitioned into
disjoint sets Y and Z such that almost all edges between Y and Z are directed
the same way. Here we show that if the vertices of T are partitioned appropriately
between forests F− and F+, then to be able to embed T in G it is sufficient to embed
the largest component of F+ within Y .

We begin the proof of Theorem 1.1 in Section 3, by proving the case where |T∆| = 1
(Lemma 3.1). Note that the extremal case when T is a star is covered by this case. To
do this, we first embed the single vertex of T∆ to a vertex of G with appropriate in- and
outdegree. We then use Lemma 2.5, Lemma 2.6 and Theorem 1.4 to embed the components
of T − T∆ appropriately among the remaining vertices of G to obtain a copy of T in G.

Then in Section 4 we introduce the digraph regularity lemma, which yields a partition
of the vertex set of G into clusters so that the edges between pairs of clusters of G form
quasi-random bipartite subgraphs. We use the regularity lemma to prove

• Lemma 4.6, which states that Theorem 1.1 holds in the case where G is almost-
regular and T∆ is small enough to be embedded within a single cluster of G.

To prove this, we first select an appropriate cluster or pair of clusters of G in which to
embed T∆, and then use Lemma 2.6 to extend this embedding of T∆ to an embedding of T
in G. We also prove that if we additionally assume that |T∆| ≥ 2 then the result holds with
room to spare, i.e. we can allow G to be of order (2− α)n, where α is small.

Next, in Section 5 we consider the case when the tournament G is a ‘robust outexpander’.
The latter implies that every set S of reasonable size has a large outneighbourhood. A key
lemma in [10] showed that if G is a robust outexpander tournament on at least (2 + α)n
vertices with large minimum semidegree, then G contains any directed tree T on n vertices.
However, the αn error term was only required in the case where T∆ is small. In Section 5
we modify the argument from [10] to prove

• Lemma 5.3, which states that if T∆ is large, then any robust outexpander tournament
on at least (2− α)n vertices with large minimum semidegree contains a copy of T .

(The proof relies on further results from [10].) It is easy to see that any almost-regular
tournament is a robust outexpander tournament. So we can combine Lemmas 4.6 and 5.3
to deduce

• Lemma 5.8, which states that Theorem 1.1 holds with a little room to spare if G is
a large almost-regular tournament and |T∆| ≥ 2.

We also prepare the ground for the proof of Theorem 1.1 by modifying an algorithm from [10]
to prove Lemma 5.2. This states that any tournament G may be split into disjoint sub-
tournaments, each of which is either small or a robust outexpander with large minimum
semidegree. This will allow us to apply our results on robust outexpander tournaments to
(subtournaments of) general tournaments G.

In Section 6 we prove Lemma 6.1, which states that Theorem 1.1 holds for all directed
trees T for which T∆ is small. In particular, the ‘near extremal’ construction described
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in the introduction is dealt with in this part of the proof. Lemma 6.1 is proved in four
steps. Firstly, in Lemma 6.2 we show that we may assume the tournament G contains two
almost-regular subtournaments on vertex sets Y and Z which between them contain almost
all of the vertices of G. Using this structural information, we show in Lemmas 6.3 and 6.4
that we may assume that T∆ is a short directed path and that most of the remainder of
T is attached to the endvertices of this path. (Lemma 5.8 is used as a tool here: we can
apply it to embed a suitable subforest of T into Y or Z, and afterwards use Lemma 2.7 to
embed the remainder of T .) We then consider the case |T∆| = 2 separately, proving that
Theorem 1.1 holds for such T . This allows us to assume for the proof of Lemma 6.1 that
|T∆| ≥ 3. Since T∆ is a directed path, we can use Redei’s theorem to embed T∆ within a set
W of |T∆| vertices which have high in- and outdegree, and then apply Lemmas 2.5 and 2.6
to complete the embedding again.

Finally, in Section 7 we complete the proof of Theorem 1.1. By Lemma 6.1 we may assume
for this that T∆ is large. None of the extremal or near-extremal cases satisfy this condition,
so we will always have a little room to spare in our calculations in this part of the proof.
We proceed by using Lemma 5.2 to split the tournament G into disjoint robust outexpander
subtournaments of large minimum semidegree. If there is just one such subtournament
then this subtournament contains a copy of T by Lemma 5.3. By using Lemma 2.7 we
prove Lemma 7.2, which shows that if there are two such subtournaments then these must
also together contain a copy of T . We may therefore assume in the proof of Theorem 1.1
that there are at least three such subtournaments of G. In this case we use Lemma 5.3,
Theorem 1.2 and Theorem 1.3 to embed T into these subtournaments.

2. Definitions and basic tools

2.1. Notation. For a graph G, we write V (G) and E(G) to denote the vertex set and
edge set of G respectively. Then |G| := |V (G)| denotes the number of vertices of G, and
e(G) := |E(G)| is the number of edges of G. We shall sometimes write v ∈ G to mean
v ∈ V (G). A tree is a connected graph which does not contain any cycles, and we say that
a vertex of a tree is a leaf if it has degree one.

A directed graph G, or digraph, consists of a vertex set V (G) and an edge set E(G),
where each edge e ∈ E is an ordered pair (u, v) of vertices of G. For vertices u, v ∈ V (G)
we write u → v or v ← u to denote that (u, v) ∈ E(G). If u → v then we say that v is an
outneighbour of u, that u is an inneighbour of v, and that the edge (u, v) is directed from
u to v. Sometimes we shall use the term neighbour of v to mean a vertex which is either
an inneighbour or an outneighbour of v. For any vertex v ∈ G, we denote the set of all
outneighbours of v by N+

G (v), or simply N+(v) when G is clear from the context. Similarly

we write N−
G (v) or N−(v) to denote the set of all inneighbours of v. Then the outdegree of v,

denoted d+G(v), is defined by d+G(v) := |N+
G (v)|. Similarly the indegree of v, denoted d−G(v),

is defined by d−G(v) := |N−
G (v)|. Again we may write d+(v) or d−(v) when G is clear from

the context. We define the minimum outdegree of G, denoted δ+(G), to be the minimum
of d+(v) taken over all vertices v ∈ G, and the minimum indegree, denoted δ−(G), to be
the minimum of d−(v) taken over all vertices v ∈ G. Then the minimum semidegree of G,
denoted δ0(G), is the minimum of δ−(G) and δ+(G). We write G[U → V ] to denote the
bipartite subgraph of G formed by edges directed from U to V .

We say that a directed graphG is an oriented graph if for any u, v ∈ G at most one of u→ v
and u ← v holds. So an oriented graph may be obtained by assigning a direction to each
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edge of an undirected graph. We call this undirected graph the underlying graph, and denote
it by Gunder. An oriented graph is a tournament if for any distinct u, v ∈ V (G) precisely one
of u→ v and u← v holds. Equivalently, the underlying graph of a tournament is a complete
graph. A directed tree is an oriented graph T for which the underlying graph Tunder is a
tree. The maximum degree of T , denoted ∆(T ), is defined to be equal to ∆(Tunder). A tree
or directed tree T may be rooted by identifying a specific vertex r as the root of T .

Let T be a directed tree, and let x be a vertex of T . Then for any edge e ∈ E(T ) incident to
x, the weight of e at x, denoted we(x), is the number of vertices y of T for which e (ignoring
the orientation) is the first edge of the path in Tunder from x to y. We say that a component
of T −x is an incomponent of x if the unique edge between x and this component is directed
towards x, and an outcomponent of x if this edge is directed away from x. The inweight of x,
denoted w−(x), is then the number of vertices in incomponents of x, and the outweight of x,
denoted w+(x), is the number of vertices in outcomponents of x. Equivalently, the inweight
of x is the sum of we(x) taken over all edges e incident to x which are directed towards x,
and the outweight can be defined similarly.

In the same way we define incomponents and outcomponents for a subtree Tc of T . Indeed,
for any component T ′ of T − Tc there is precisely one edge between T ′ and Tc. If this edge
is directed towards a vertex of T ′ then we say that T ′ is an outcomponent of Tc, whereas if
this edge is directed towards Tc we say that T ′ is an incomponent of Tc. As when Tc is a
single vertex we define the inweight of Tc, denoted w−(Tc), to be the number of vertices in
incomponents of Tc, and the outweight of Tc, denoted w+(Tc), to be the number of vertices
in outcomponents of Tc. Again these inweights and outweights can equivalently be defined
as the sum of the weights of the appropriate edges of T .

Throughout this paper we shall write x ≪ y to indicate that for any y > 0 there exists
x0 > 0 such that for any 0 < x ≤ x0 the subsequent statements hold. Such statements with
more variables are defined similarly.

2.2. The core tree. Let T be a tree on n vertices, and let ∆ ≥ 2 be fixed. Then we say
that a vertex x of T is ∆-core if every edge e incident to x has we(x) ≤ (1 − 1/∆)n. We
call the subgraph of T induced by ∆-core vertices of T the core tree of T with parameter ∆,
and denote it by T∆. With this definition, for any tree T , the core tree T∆ is the same as
the ∆-heart of T considered by Häggkvist and Thomason in [4]. The following proposition
from [10] gives some important properties of the core tree (these properties are also stated
in [4]).

Proposition 2.1 ([10], Proposition 4.2). Let T be a tree on n vertices and let ∆ ≥ 2. Then:

(i) T∆ is a tree containing at least one vertex.
(ii) we(x) ≥ n/∆ if e = xy is an edge of T∆.
(iii) ∆(T∆) ≤ ∆.
(iv) Every component subtree T ′ of T − T∆ has |T ′| ≤ n/∆.

Note that T∆ is an undirected tree obtained from an undirected tree T . However we will
frequently refer to the core tree of a directed tree T ; this means the directed tree formed
by taking the core tree T∆ of the underlying graph Tunder (an undirected tree) of T and
directing each edge of T∆ as it is directed in T .

The following proposition is needed in the proof of Lemma 2.3. Essentially the latter
states that if trees T 1 and T 2 almost partition a tree T , then the core tree T∆ is not much
larger than T 1

∆ ∪ T 2
∆.
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Proposition 2.2. Let T be a tree on n vertices, let x be a leaf of T , and let ∆ ≥ 2. Then
|(T − x)∆| ≥ |T∆| − 1.

Proof. Let y be a vertex of T∆ − (T − x)∆, and let z be an arbitrary vertex of (T − x)∆.
Then for some edge e incident to y we have we(y) > (1 − 1/∆)(n − 1) in T − x. Since
by Proposition 2.1(iv) the component of (T − x)− (T − x)∆ containing y contains at most
(n−1)/∆ vertices, this edge must in fact be the first edge of the path in T from y to z. If e is
also the first edge of the path in T from y to x then we have we(y) > (1− 1/∆)(n− 1)+1 ≥
(1− 1/∆)n in T , and so y /∈ T∆, giving a contradiction. So y must lie on the path in T from
x to z. Since y ∈ T∆ we must have we(y) ≤ (1− 1/∆)n in T , and so in T we have

(1− 1

∆
)n− 1 ≤ (1− 1

∆
)(n − 1) < we(y) ≤ (1− 1

∆
)n.

Clearly this can hold for at most one vertex y on the path from x to z. So |T∆−(T−x)∆| ≤ 1,
as desired. �

Lemma 2.3. Let T be a tree on n vertices, let ∆ ≥ 2 and let γ, α > 0. Also let T 1 and T 2

be subtrees of T such that |T 1 ∪ T 2| ≥ (1 − γ)n. Suppose also that |T 1
∆|, |T 2

∆| ≤ αn. Then
|T∆| ≤ γn+ 2αn + 2n/∆.

Proof. Arbitrarily choose vertices x1 ∈ T 1
∆ and x2 ∈ T 2

∆, and let P be the path from x1 to
x2 (so P is also a subtree of T ). Then let T ∗ := T 1∪P ∪T 2, so |T ∗| ≥ (1−γ)n. Furthermore,
T ∗ can be formed from T by repeated leaf-deletions. So by Proposition 2.2 we must have
|T | − |T ∗| ≥ |T∆| − |T ∗

∆|, and so

(1) |T∆| ≤ |T | − |T ∗|+ |T ∗
∆| ≤ γn− |P − (T 1 ∪ T 2)|+ |T ∗

∆|.

Let T ∗
c := T 1

∆ ∪ P ∪ T 2
∆. We claim that T ∗

∆ ⊆ T ∗
c . Indeed, suppose for a contradiction

that there exists a vertex y ∈ T ∗
∆ − T ∗

c . Since T ∗
c is a subtree of T , every vertex of T ∗

c lies
in the same component C of T ∗ − y. Note that T ∗ − C is a tree. Now, T 1

∆ and T 2
∆ are

subtrees of C, so by Proposition 2.1(iv) T ∗ −C contains at most |T 1|/∆ vertices of T 1 and
at most |T 2|/∆ vertices of T 2. Let e be the edge of T ∗ between y and C. Then since y ∈ T ∗

∆,
we(y) ≤ (1− 1/∆)|T ∗| in T ∗. So at least |T ∗|/∆ vertices of T ∗ lie in components of T ∗ − y
other than C. As every vertex of P lies in C, either at least |T 1|/∆ vertices of T 1 lie in
components of T ∗ − y other than C, or at least |T 2|/∆ vertices of T 2 lie in components of
T ∗− y other than C. In the former case this implies that T ∗−C contains more than |T 1|/∆
vertices of T 1, and in the latter case this implies that T ∗ − C contains more than |T 2|/∆
vertices of T 2. In either case this yields a contradiction.

Now, |T ∗
c | ≤ 2αn + |P − (T 1

∆ ∪ T 2
∆)|. Since (P ∩ T 1) − T 1

∆ is contained within a single
component of T 1 − T 1

∆, |(P ∩ T 1) − T 1
∆| ≤ |T 1|/∆, by Proposition 2.1(iv). Similarly |(P ∩

T 2)− T 2
∆| ≤ |T 2|/∆. So

|T ∗
∆| ≤ |T ∗

c | ≤ 2αn + (|T 1|+ |T 2|)/∆+ |P − (T 1 ∪ T 2)|.

So by (1)

|T∆| ≤ γn+ (|T 1|+ |T 2|)/∆+ 2αn ≤ γn+ 2n/∆+ 2αn.

�
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2.3. Almost-regular tournaments. In a regular directed graph G, every vertex v has
d+(v) = d−(v) = e(G)/|G|. We say that a directed graph G is γ-almost-regular if every
vertex v ∈ G has d+(v), d−(v) ≥ (1−γ)e(G)/|G|. In particular, if G is a tournament then G
is γ-almost-regular if and only if every vertex v ∈ G has d+(v), d−(v) ≥ (1− γ)(|G| − 1)/2.
The next proposition shows that for a large tournament G only one of these two bounds is
needed to ensure that G contains an almost-spanning almost-regular tournament.

Proposition 2.4. Suppose that 1/n ≪ α ≪ γ ≪ 1. Let G be a tournament on n vertices
in which at least one of the following holds:

(i) d+(v) ≥ (1− α)(n − 1)/2 for every v ∈ G,
(ii) d−(v) ≥ (1− α)(n − 1)/2 for every v ∈ G,
(iii) d+(v) ≤ (1 + α)(n − 1)/2 for every v ∈ G,
(iv) d−(v) ≤ (1 + α)(n − 1)/2 for every v ∈ G.

Then G contains a γ-almost-regular subtournament G′ on at least (1− γ)n vertices.

Proof. We shall prove (i); then (ii), (iii) and (iv) follow immediately. Suppose that G has
at least

√
αn vertices with d+(v) > (1 +

√
α)(n− 1)/2. Then

(

n

2

)

= e(G) =
∑

v∈G

d+(v) > (1− α)

(

n

2

)

+
√
αn · √α(n− 1)/2 =

(

n

2

)

,

giving a contradiction. So there are at most
√
αn vertices of G with d+(v) > (1 +

√
α)(n −

1)/2. Delete all of these vertices of G, and let G′ be the obtained subtournament. Then
n−√αn ≤ |G′| ≤ n. Also, every vertex of G′ has

d+G′(v) ≥
(1− α)(n − 1)

2
−√αn ≥ (1− γ)(|G′| − 1)

2
and

d−G′(v) ≥ n− 1−√αn− (1 +
√
α)(n− 1)

2
≥ (1− γ)(|G′| − 1)

2
.

So G′ is a γ-almost-regular tournament on at least (1− γ)n vertices, as desired. �

2.4. Some embedding results. The following three lemmas will be the main tools we
shall use to embed directed trees in tournaments. We use Theorem 1.3 in the proofs of all
three lemmas, although the factor of 3 in Theorem 1.3 is not critical to our proof; any linear
bound would suffice. For the proof of Lemma 2.7 we also require the use of Theorem 1.2.

Lemma 2.5. Let T be a directed tree on n vertices, rooted at t, such that t has no inneigh-
bours in T , and every component of T−t contains at most d vertices. Let G be a tournament
whose vertex set is partitioned into three sets, {v}, N and X, where |N | ≥ n−1, every vertex
of N is an outneighbour of v, and at least 3d vertices of N each have at least 6d inneighbours
in X and at least 6d outneighbours in X. Then T can be embedded in G in such a way that
t is embedded to v and at most 4d vertices of X are occupied by this embedding.

Proof. Let N ′ ⊆ N consist of all vertices of N with at least 6d inneighbours in X and at
least 6d outneighbours in X. Then |N ′| ≥ 3d. We begin by embedding t to the vertex v.
Now let T1, . . . , Tr be the components of T − t, in order of decreasing order. For each i, let
ti be the single vertex of Ti which is an outneighbour of t. Then we shall embed T1, . . . , Tr

in turn in N ∪ X, with each ti embedded in N and each Ti embedded in the vertices not
occupied by the embeddings of T1, . . . , Ti−1. This will give an embedding of T in G. So
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suppose that we have embedded T1, . . . , Ti−1 in this manner, and we now wish to embed
Ti. Then at most n − 1 vertices of T have been embedded. At least one of these vertices
(namely t) was not embedded in N , so at least one vertex of N must be unoccupied.

Suppose that N ′ contains at least one unoccupied vertex vi, and also that fewer than 3d
vertices of X have been occupied. Then vi has at least 3d unoccupied inneighbours in X and
at least 3d unoccupied outneighbours in X. Embed ti to vi. We then proceed through the
outcomponents of ti in Ti in turn. Suppose that when we come to embed an outcomponent
of ti we have previously embedded m vertices of Ti. Then the current outcomponent has
order at most d−m. Also, vi has at least 3d−m ≥ 3(d−m) outneighbours in X which have
not yet been occupied, so by Theorem 1.3 we may embed this outcomponent amongst the
outneighbours of vi in X. Similarly we may embed the incomponents of ti in turn amongst
the inneighbours of vi in X, and so we obtain an embedding of Ti in the unoccupied vertices
of G. Note that all vertices of Ti apart from ti are embedded in X.

Now suppose instead that every vertex of N ′ has been occupied, but still that fewer than
3d vertices of X have been occupied. Then at least one of the Tj with j < i must have had
|Tj | = 1, and so Ti consists of one single vertex, namely ti. We may therefore embed ti to
any unoccupied vertex of N (recall that there is at least one such vertex).

Finally, suppose that at least 3d vertices of X have been occupied. Then at least 3d+ 1
vertices of T have been embedded outsideN , and soN contains at least n−1−(n−(3d+1)) =
3d unoccupied vertices. Since |Ti| ≤ d, by Theorem 1.3 we may embed Ti among these
unoccupied vertices.

By embedding each Ti in this fashion we obtain an embedding of T in G with t embedded
to v. Furthermore, the only vertices embedded in X are those in some Ti such that when
we came to embed Ti, N

′ contained at least one unoccupied vertex vi, and fewer than 3d
vertices of X had been occupied. The embedding of Ti occupied at most another d vertices
of X, and so at most 4d vertices of X can have been occupied in total. �

Lemma 2.6. (a) Let T be a directed tree, and let Tc be a subtree of T such that every
component of T − Tc contains at most d vertices. Let G be a tournament whose
vertices are partitioned into two sets S and N such that for every vertex v ∈ S we
have
(i) |N+(v) ∩N | ≥ |T − Tc|+ 2d, and
(ii) |N−(v) ∩N | ≥ |T − Tc|+ 2d.
Then any embedding of Tc in G[S] can be extended to an embedding of T in G.

(b) Suppose that in addition to the above assumptions we choose a set N ′ ⊆ N and an
integer r ≤ |T − Tc|, so that every vertex v ∈ S satisfies
(iii) |N+(v) ∩N ′| ≥ r + 2d, and
(iv) |N−(v) ∩N ′| ≥ r + 2d.
Then any embedding of Tc in G[S] can be extended to an embedding of T in G such
that at least r vertices of T are embedded in N ′.

(c) Suppose that no edges of T are directed from Tc to T − Tc. Then conditions (i) and
(iii) may be dropped without affecting the validity of the above result. Likewise if no
edges of T are directed from T − Tc to Tc, then the above results hold even without
conditions (ii) and (iv).

Proof. Let n := |T |. We shall prove (b) and (c); for (a), apply (b) with r := |T − Tc|
and N ′ := N . Let T1, . . . , Tq be the components of T − Tc, so |Ti| ≤ d for each i. Suppose
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now that we have successfully extended the embedding of Tc in G[S] to an embedding of
Tc∪T1∪· · ·∪Ts−1 in G. We shall demonstrate how to extend this embedding to an embedding
of Tc∪T1∪· · ·∪Ts in G. Indeed, there is precisely one edge between Tc and Ts. Let t ∈ Tc and
ts ∈ Ts be the endvertices of this edge, and let v be the vertex in S to which t is embedded.

Suppose that ts is an outneighbour of t. By (i), v has at least |T −Tc|+2d outneighbours
in N . At most |T1|+ · · ·+ |Ts−1| of these outneighbours are occupied by the embedding of
Tc ∪T1 ∪ · · · ∪Ts−1, and so v has at least |Ts|+2d ≥ 3|Ts| outneighbours in N which are not
occupied by this embedding. Now, by (iii), v has at least r + 2d outneighbours in N ′. If at
most r− |Ts| of these outneighbours are occupied by the embedding of Tc ∪ T1 ∪ · · · ∪ Ts−1,
then by Theorem 1.3 we may embed Ts amongst the at least 2d + |Ts| ≥ 3|Ts| unoccupied
outneighbours of v in N ′. If instead r − k of these outneighbours are occupied, for some
1 ≤ k ≤ |Ts| − 1, then by Theorem 1.3 we may embed Ts amongst the 2|Ts|+ k unoccupied
outneighbours in N ′ and some arbitrary |Ts|−k outneighbours of v in N \N ′. Then at least
k vertices of N ′ will be occupied by this embedding of Ts. Finally, if at least r outneighbours
of v in N ′ have been occupied by this embedding, then we may embed Ts within the at least
3|Ts| unoccupied outneighbours of v in N .

If instead ts is an inneighbour of t, then we may extend the embedding similarly, using
(ii) and (iv) rather than (i) and (iii). So we may extend the embedding of Tc in G[S] to
an embedding of T in G by proceeding through each Ti in this manner. Also conditions (i)
and (iii) will only be required if at least one edge of T is directed from Tc to T − Tc, and
conditions (ii) and (iv) will only be required if at least one edge of T is directed from T −Tc

to Tc. Finally, note that after each Ts is embedded, either every vertex of T1 ∪ · · · ∪ Ts will
have been embedded in N ′, or at least r vertices of T1 ∪ · · · ∪ Ts will have been embedded
in N ′. Since |T1 ∪ T2 ∪ · · · ∪ Tq| = |T − Tc| ≥ r, we can be sure that at least r vertices of N ′

will be occupied by the embedding of T , as desired. �

Lemma 2.7. Suppose that 1/n ≪ γ ≪ α ≪ 1. Let T be a directed tree on n vertices,
and let forests F− and F+ be induced subgraphs of T such that V (F−) and V (F+) partition
V (T ) and every edge between F− and F+ is directed from F− to F+. Let T+

1 and T+
2 be

the largest and second largest components of F+ respectively. Also, let Y and Z be disjoint
sets such that

|Y | ≥ |F+|+ |T+
2 |+ αn and |Z| ≥ 2|F−|+ αn.

Let G be a tournament on vertex set Y ∪ Z such that every vertex of Y has at most γn
outneighbours in Z, and every vertex of Z has at most γn inneighbours in Y . Then any
embedding of T+

1 in G[Y ] can be extended to an embedding of T in G.

Proof. Let T1, . . . , Tr be the components of F− and F+, ordered so that T1 = T+
1 and

so that for each 2 ≤ i ≤ r there is exactly one edge of T between Ti and T1 ∪ · · · ∪ Ti−1.
Then we have an embedding of T1 in G[Y ]. We shall proceed through the trees Ti in turn,
embedding each Ti in G[Y ] if Ti is a component of F+, or in G[Z] if Ti is a component of
F−. Each Ti will be embedded so that the embeddings of T1, . . . , Ti form an embedding of
the subtree of T induced by the vertices of T1, . . . , Ti. Suppose that we have successfully
embedded T1, . . . , Ti−1 in this manner, and we wish to extend this embedding to include Ti.
Note that there is precisely one edge e between Ti and T1∪· · ·∪Ti−1. Let t be the endvertex
of e in T1 ∪ · · · ∪ Ti−1, and let v be the vertex to which t was embedded.

If Ti is a component of F+, then t ∈ F−, so v ∈ Z. In this case we will embed Ti

within the unoccupied outneighbours of v in Y . Since v ∈ Z, |N+(v) ∩ Y | ≥ |Y | − γn ≥
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|F+|+ |T+
2 |+αn/2. At most |F+|− |Ti| of these vertices are occupied by the embeddings of

T1, . . . , Ti−1. Since i ≥ 2, Ti is not the largest component of F+, and so has order |Ti| ≤ |T+
2 |.

So at least 2|Ti|+ αn/2 outneighbours of v in Y remain unoccupied. So if |Ti| ≥ αn/2 then
by Theorem 1.2(i) we may embed Ti in these unoccupied vertices of N+(v)∩Y . On the other
hand, if |Ti| < αn/2 then by Theorem 1.3 we may embed Ti in these unoccupied vertices of
N+(v) ∩ Y .

Now suppose instead that Ti is a component of F−. Then t ∈ F+, so v ∈ Y . Here we
will embed Ti within the unoccupied inneighbours of v in Z. Since v ∈ Y , |N−(v) ∩ Z| ≥
|Z| − γn ≥ 2|F−| + αn/2, and at most |F−| − |Ti| of these vertices are occupied by the
embeddings of T1, . . . , Ti−1. So at least 2|Ti| + αn/2 such vertices remain unoccupied. So
as before, if |Ti| ≥ αn/2 then by Theorem 1.2(i) we may embed Ti in these unoccupied
vertices of N−(v) ∩ Z, whereas if |Ti| < αn/2 then by Theorem 1.3 we may embed Ti in
these unoccupied vertices of N−(v) ∩ Z. By proceeding through all of the trees Ti in this
manner we will obtain an embedding of T in G. �

Observe that if in the statement of Lemma 2.7 we let T−
1 and T−

2 be the largest and
second-largest components of F− respectively, and replaced the conditions on the sizes of Z
and Y by the conditions that |Y | ≥ 2|F+|+ αn and |Z| ≥ |F−|+ |T−

2 |+ αn, then we could
conclude that any embedding of T−

1 in G[Z] can be extended to an embedding of T in G.
To see this, either note that the proof will still be valid with appropriate changes (switching
inneighbours and outneighbours and so forth) or observe that this is the effect of reversing
the direction of every edge of T and every edge of G, in which case the embedding problem
is the same. Sometimes when referring to Lemma 2.7 we will implicitly mean this ‘dual’ of
Lemma 2.7 instead.

3. Embedding trees whose core tree is a single vertex

In this section we shall verify that Sumner’s universal tournament conjecture holds for
large directed trees T whose core tree T∆ contains only one vertex, that is, trees which are
‘star-shaped’. Such trees can be embedded by selecting an appropriate vertex to which to
embed the single vertex of T∆, and then embedding the components of T − T∆ one by one.

Lemma 3.1. Suppose that 1/n ≪ 1/∆ ≪ 1. Let T be a directed tree on n vertices with
|T∆| = 1, and let G be a tournament on 2n− 2 vertices. Then G contains a copy of T .

Proof. Introduce constants α and γ with 1/∆ ≪ α ≪ γ ≪ 1. Let t be the single vertex
of T∆, let y be the outweight of T∆, and let z be the inweight of T∆. Also, let T1 be the
subtree of T formed by t and all of its outcomponents, and let T2 be the subtree of T formed
by t and all of its incomponents. Then y + z = n − 1, |T1| = y + 1 and |T2| = z + 1. Now,
suppose that G contains a vertex v such that

(i) either d+(v) ≥ y + 2n/∆ or y = 0, and
(ii) either d−(v) ≥ z + 2n/∆ or z = 0.

Then embed t to v. By Proposition 2.1 each component of T − t contains at most n/∆
vertices. So by Lemma 2.6 we may extend the embedding of t in {v} to an embedding of T1

in {v} ∪N+(v) (since if y = 0 then T1 consists of the single vertex t). Also by Lemma 2.6,
we may extend the embedding of t in {v} to an embedding of T2 in {v} ∪ N−(v) (since if
z = 0 then t is the only vertex of T2). These two embeddings only overlap in the vertex v,
and so combining these two embeddings gives an embedding of T in G.



A PROOF OF SUMNER’S UNIVERSAL TOURNAMENT CONJECTURE FOR LARGE TOURNAMENTS11

So we may assume that every vertex v ∈ G has either d+(v) < y + 2n/∆ or d−(v) <
z +2n/∆. Let Y := {v ∈ G : d+(v) < y+ 2n/∆} and let Z := {v ∈ G : d−(v) < z+ 2n/∆}.
Then every vertex of G lies in precisely one of Y and Z, so |Y | + |Z| = 2n − 2. Thus we
must have either |Y | ≥ 2y or |Z| ≥ 2z. Furthermore, if y = 0 and |Y | ≥ 1 then each v ∈ Y
has d+(v) < 2n/∆ and therefore d−(v) ≥ z + 2n/∆, and so satisfies (ii). We may therefore
assume that if y = 0 then |Y | = 0 and similarly that if z = 0 then |Z| = 0. So without loss
of generality we may assume that |Y | ≥ 2y and y > 0 (otherwise reverse the direction of
every edge of T and every edge of G; then we would have |Y | ≥ 2y and y > 0 at this stage,
and the embedding problem is the same). Observe that by definition of Y we must also have
|Y | ≤ 2y + 4n/∆+ 1.

Now suppose that y ≥ αn. Since y ∈ N and |Y | ≥ 2y, Y must contain a vertex v which
satisfies |N+(v)∩Y | ≥ y. Choose a subset N ′ ⊆ N+(v)∩Y of size y. For any vertex u ∈ Y ,

d+G[Y ](u) = |N
+(u) ∩ Y | ≤ d+G(u) < y + 2n/∆ ≤ (1 + α)(|Y | − 1)/2.

So by Proposition 2.4 G[Y ] contains a γ-almost-regular tournament on at least 2(1 − γ)y
vertices. So at most |Y |−2(1−γ)y ≤ 3γy vertices of Y have fewer than (1−2γ)y inneighbours
in Y or fewer than (1 − 2γ)y outneighbours in Y . Since |N ′| = y, at most 6γy + 1 vertices
of N ′ have more than (1 − 3γ)y inneighbours in N ′, and at most 6γy + 1 vertices of N ′

have more than (1 − 3γ)y inneighbours in N ′. So at least (1 − 16γ)y vertices of N ′ have
at least γy inneighbours in Y \ N ′ and at least γy outneighbours in Y \ N ′. Certainly
therefore at least 3n/∆ vertices of N ′ have at least 6n/∆ inneighbours in Y \ ({v} ∪ N ′)
and at least 6n/∆ outneighbours in Y \ ({v} ∪ N ′). So by Lemma 2.5 we may embed T1

in Y , with t embedded to v, and at most 4n/∆ vertices embedded outside N ′ ∪ {v}. Let
V ′ be the set of vertices of G not occupied by this embedding of T1. Since v has at least
|G|−1−(y+2n/∆) ≥ z+6n/∆ inneighbours in G, all outside N ′∪{v}, v must have at least
z + 2n/∆ unoccupied inneighbours in V ′. So by Lemma 2.6 we may extend the embedding
of t in {v} to an embedding of T2 in {v} ∪ V ′. These two embeddings only overlap in the
vertex v, and so combine to give an embedding of T in G.

So we may assume that 1 ≤ y < αn. Then every vertex v ∈ Y has

(2) d−(v) ≥ |G| − 1− y − 2n/∆ ≥ n+ 2n/∆.

Let T3 be the subtree of T formed by every vertex t′ ∈ T for which T contains a directed
path from from t to t′. Then t ∈ T3, and (taking t as the root vertex) T3 is an outbranching.
Also T3 ⊆ T1, so |T3| ≤ y + 1, and so by Theorem 1.4, we may embed T3 in G[Y ]. Since
T∆ ⊆ T3, by Proposition 2.1(iv) each component of T − T3 contains at most n/∆ vertices.
So as every edge of T between T − T3 and T3 is directed from T − T3 to T3, and also since
by (2) every vertex of Y has at least |T −T3|+2n/∆ inneighbours which were not occupied
by the embedding of T3, we may extend the embedding of T3 in G[Y ] to an embedding of T
in G by Lemma 2.6. �

4. The regularity lemma and its applications to embedding trees

In this section we shall present a degree form of the regularity lemma for directed graphs,
and show how this may be used to embed trees. In particular, the regularity lemma is
useful for embedding directed trees T for which T∆ is substantially smaller than the size of a
cluster obtained by applying the regularity lemma to a tournament G; our approach here is
essentially to select an appropriate cluster in G in which to embed T∆ so that we may then
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embed the components of T − T∆ in the remaining clusters of G. By using this method we
shall prove Lemma 4.6, which states that Theorem 1.1 holds in the case where G is a large
and almost-regular tournament, and T is a directed tree such that T∆ is small.

Let U and V be disjoint sets, and let G be a directed graph on vertex set U ∪ V . Recall
that G[U → V ] denotes the bipartite subgraph of G formed by edges directed from U to V .
The density from U to V , denoted d(G[U → V ]), is then defined by

d(G[U → V ]) :=
e(G[U → V ])

|U ||V | .

We say that G[U → V ] is ε-regular if for any U ′ ⊆ U and V ′ ⊆ V with |U ′| > ε|U | and
|V ′| > ε|V | we have d(G[U ′ → V ′]) = d(G[U → V ])± ε.

The next lemma is the degree form of the regularity lemma which we shall use. A regularity
lemma for digraphs was proven by Alon and Shapira [1]. The degree form follows from this
in the same way as in the undirected case (see [11] for a sketch of the latter).

Lemma 4.1 (Regularity Lemma for directed graphs). Suppose that 1/n≪ 1/M ≪ 1/M ′ ≪
ε. Let G be a directed graph on n vertices. Then there exists a partition of V (G) into
V0, . . . , Vk and a spanning subgraph G′ of G such that

(1) M ′ ≤ k ≤M ,
(2) |V0| ≤ εn,
(3) |V1| = · · · = |Vk|,
(4) d+G′(x) > d+G(x)− εn for all vertices x ∈ V (G),

(5) d−G′(x) > d−G(x)− εn for all vertices x ∈ V (G),
(6) for all i ∈ [k] the directed graph G′[Vi] is empty,
(7) for all i, j ∈ [k] with i 6= j the directed graph G′[Vi → Vj ] is ε-regular.

We say that an oriented graph G on clusters V1, . . . , Vk of equal size is an ε-regular cluster
tournament if for any i, j ∈ [k] with i 6= j the subdigraph G[Vi → Vj] is ε-regular and
for any i ∈ [k] the subdigraph G[Vi] is a tournament. If G is a cluster tournament on
clusters V1, . . . , Vk then we shall denote the density of G[Vi → Vj ] by dij for any i, j ∈ [k]
(the tournament G will be clear from the context). The following corollary of the regularity
lemma shows that any sufficiently large tournament G contains an almost-spanning ε-regular
cluster tournament G∗ such that vertices have similar in- and outdegrees in both G and G∗.

Corollary 4.2. Suppose that 1/n ≪ 1/M ≪ 1/M ′ ≪ ε. Let G be a tournament on n
vertices. Then there exist disjoint subsets V1, . . . , Vk ⊆ V (G) of equal size and a subgraph
G∗ ⊆ G on vertex set V1 ∪ · · · ∪ Vk such that:

(i) M ′ ≤ k ≤M ,
(ii) G∗ is an ε-regular cluster tournament,
(iii)

⋃

i∈[k] Vi ≥ (1− ε)n,

(iv) d+G∗(x) > d+G(x)− 2εn for all vertices x ∈ V (G), and

(v) d−G∗(x) > d−G(x)− 2εn for all vertices x ∈ V (G).

Proof. Apply Lemma 4.1 to obtain a partition V0, . . . , Vk of V (G) and a subgraph G′ ⊆ G
which satisfy the conditions of Lemma 4.1. In particular (i) and (iii) are satisfied. Now
form G∗ from G′[V1 ∪ · · · ∪ Vk] by adding every edge of G for which both endvertices lie in
the same cluster Vi. So G∗ ⊆ G, and by (7) of Lemma 4.1 and the fact that G∗[Vi] is a
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tournament for each i ∈ [k] we have (ii). Finally note that using (4) of Lemma 4.1 we have

d+G∗(x) ≥ d+G′(x)− |V0| ≥ d+G(x)− 2εn.

Similarly d−G∗(x) ≥ d−G(x)− 2εn using (5) of Lemma 4.1. �

It follows immediately from the definition of regularity that if U and V are sets of size
m, and G[U → V ] is ε-regular with density d, then all but at most 2εm vertices of U have
(d ± ε)m outneighbours in V . The next lemma is a generalisation of this fact, considering
the number of outneighbours of vertices in one cluster within a cluster tournament.

Lemma 4.3. Suppose that 1/m ≪ 1/k ≪ ε ≪ ε′ ≪ 1. Let G be an ε-regular cluster
tournament on clusters V1, . . . , Vk, each of size m. Let V ′

j ⊆ Vj for each j ∈ [k] be fixed.

Then for any i, all but at most ε′m vertices of Vi have
∑

j∈[k]\{i} dij |V ′
j |±ε′km outneighbours

in
⋃

j∈[k]\{i} V
′
j and

∑

j∈[k]\{i} dji|V ′
j | ± ε′km inneighbours in

⋃

j∈[k]\{i} V
′
j .

Proof. Fix some i ∈ [k]. Then let L be the set of all j ∈ [k] \ {i} such that |V ′
j | ≥ εm

and dij ≥
√
ε. For each j ∈ L, let Aj denote the set of vertices of Vi which have fewer than

(1 − √ε)dij |V ′
j | outneighbours in V ′

j . Then for each j ∈ L, the subdigraph of G[Vi → Vj]

induced by Aj and V ′
j has density less than (1 − √ε)dij ≤ dij − ε. Since G[Vi → Vj] is

ε-regular with density dij , and |V ′
j | ≥ εm, we must have |Aj | < εm.

Now, fix a vertex v ∈ Vi. Suppose that v appears in at most
√
ε|L| of the sets Aj with

j ∈ L. Then

|N+(v) ∩
⋃

j∈L

V ′
j | ≥

∑

j∈L:v/∈Aj

(1−√ε)dij |V ′
j |

≥
∑

j∈[k]\{i}

(1−√ε)dij |V ′
j | −

∑

j∈[k]\(L∪{i})

dij |V ′
j | −

∑

j∈L:v∈Aj

dij|V ′
j |

≥
∑

j∈[k]\{i}

dij |V ′
j | −
√
εkm−√εkm−√ε|L|m

≥
∑

j∈[k]\{i}

dij |V ′
j | − 3

√
εkm.

Since at most
√
εm vertices v ∈ Vi appear in more than

√
ε|L| of the sets Aj with j ∈ L, we

may conclude that there are at most
√
εm vertices v ∈ Vi with fewer than

∑

j∈[k]\{i} dij |V ′
j |−

3
√
εkm outneighbours in

⋃

j∈[k]\{i} V
′
j . A similar argument shows that there are at most

√
εm

vertices v ∈ Vi with more than
∑

j∈[k]\{i} dij |V ′
j |+ 3

√
εkm outneighbours in

⋃

j∈[k]\{i} V
′
j .

Now, let L′ be the set of all j ∈ [k] such that |V ′
j | ≥ εm and dji ≥

√
ε. Then the same

argument applied to inneighbours rather than outneighbours shows that there are at most√
εm vertices v ∈ Vi with fewer than

∑

j∈[k]\{i} dji|V ′
j |−3

√
εkm inneighbours in

⋃

j∈[k]\{i} V
′
j

and at most
√
εm vertices v ∈ Vi with more than

∑

j∈[k]\{i} dji|V ′
j | + 3

√
εkm inneighbours

in
⋃

j∈[k]\{i} V
′
j . Since ε≪ ε′, this completes the proof. �

The next two lemmas will be used in the proof of Lemma 4.6; we state them separately
as we shall also refer to them in Section 6. Both of these consider an ε-regular cluster
tournament G on k clusters with the property that for some cluster Vi the density of edges
leaving Vi and the density of edges entering Vi are each roughly 1/2. Lemma 4.4 considers
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the case where for many clusters Vj the density of edges between Vi and Vj is large in both
directions, showing that in this case G contains a copy of a directed tree T of the type
considered. Lemma 4.5 considers the alternative, namely that for almost all clusters Vj the
density of edges between Vi and Vj is small in one direction, showing that in this case G
contains a copy of T provided that T∆ has large inweight and large outweight.

Lemma 4.4. Suppose that 1/n ≪ 1/∆′, β ≪ 1/k ≪ ε ≪ γ ≪ α ≪ 1/∆ ≪ 1. Let T be a
directed tree on n vertices with |T∆′ | ≤ βn and |T∆| ≥ 2, and let G be an ε-regular cluster
tournament on clusters V1, . . . , Vk, each of size m ≥ 2(1 − γ)n/k. Suppose also that for
some i ∈ [k] we have

∑

j∈[k]\{i}

dij ≥
(1− 3γ)k

2
and

∑

j∈[k]\{i}

dji ≥
(1− 3γ)k

2
,

and also that there are at least αk values of j ∈ [k] \ {i} such that dij ≥ α and dji ≥ α.
Then G contains a copy of T .

Proof. Fix such a value of i, and introduce a new constant ε′ with ε ≪ ε′ ≪ γ. Since
∆ ≤ ∆′, we must have T∆ ⊆ T∆′ . Also, since |T∆| ≥ 2, we may choose an edge t− → t+

of T∆, which therefore is also an edge of T∆′ . Let T+ and T− be the two components formed
when this edge is deleted from T , labelled so that t+ ∈ T+ and t− ∈ T−. Similarly, let T+

∆′

and T−
∆′ be the two components formed by the deletion of the edge t− → t+ from T∆′ ,

labelled with t+ ∈ T+
∆′ and t− ∈ T−

∆′ . Then T+ and T− partition the vertices of T , and there
is precisely one edge of T between T+ and T−, which is directed towards T+. Furthermore,
since t− → t+ was an edge of T∆, by Proposition 2.1(ii) we have |T+|, |T−| ≥ n/∆.

Let J ⊆ [k]\{i} satisfy |J | ≥ αk and also that for any j ∈ J we have dij ≥ α and dji ≥ α.
Then

∑

j∈J dij ≥ α2k and
∑

j∈J dji ≥ α2k. By Lemma 4.3 (applied with V ′
j = ∅ for each

j /∈ J) at most ε′m vertices of Vi have fewer than

(3)
∑

j∈J

dijm− ε′km ≥ α2km− ε′km ≥ α2km

2

outneighbours in
⋃

j∈J Vj or fewer than
∑

j∈J djim − ε′km ≥ α2km/2 inneighbours in
⋃

j∈J Vj . Also by Lemma 4.3 at most ε′m vertices of Vi have fewer than

(4)
∑

j∈[k]\{i}

dijm− ε′km ≥ (1− 3γ − 2ε′)km

2
≥ (1− 5γ)n

outneighbours in
⋃

j∈[k]\{i} Vj or fewer than
∑

j∈[k]\{i} djim−ε′km ≥ (1−5γ)n inneighbours

in
⋃

j∈[k]\{i} Vj . Finally, at most m/2 + 1 vertices of Vi have fewer than m/4 inneighbours

in Vi. So we may choose a set S+ of m/10 vertices of Vi which do not fall into any of these
categories. Since |T+

∆′ | ≤ |T∆′ | ≤ βn ≤ m/30, by Theorem 1.3 we may embed T+
∆′ in S+.

Let S+
∆′ be the set of vertices of S+ occupied by this embedding of T+

∆′ , and let v+ be the
vertex to which t+ was embedded. Recall that |T−| ≥ n/∆, so

|T+| = n− |T−| ≤ (1− 1/∆)n.

Furthermore, every component of T+ − T+
∆′ is a component of T − T∆′ and thus has order

at most n/∆′ by Proposition 2.1. So by (3) and (4), and since γ ≪ 1/∆, we may apply
Lemma 2.6(b) to extend the embedding of T+

∆′ in S+
∆′ to an embedding of T+ in S+

∆′ ∪
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⋃

j∈[k]\{i} Vj so that at least α2n/3 vertices of
⋃

j∈J Vj are occupied by this embedding of

T+.
Now, at least m/4 − m/10 = 3m/20 vertices of Vi \ S+

∆′ are inneighbours of v+. For
each j ∈ [k] \ {i}, let oj denote the number of vertices of Vj which are occupied by our
embedding of T+, and let V ′

j ⊆ Vj consist of those vertices of Vj which are not occupied

by this embedding. So |V ′
j | = m − oj for each j. Note that since dij + dji ≤ 1 we have

dij ≤ 1− α for each j ∈ J . Then by Lemma 4.3, at most ε′m vertices of Vi have fewer than

∑

j∈[k]\{i}

dij(m− oj)− ε′km ≥
∑

j∈[k]\{i}

dijm− ε′km−
∑

j∈J

dijoj −
∑

j∈[k]\({i}∪J)

dijoj

(4)
≥ (1− 5γ)n − (1− α)

∑

j∈J

oj −
∑

j∈[k]\({i}∪J)

oj

≥ (1− 5γ)n−
∑

j∈[k]\{i}

oj + α
∑

j∈J

oj

≥ (1− 5γ)n−
∑

j∈[k]\{i}

oj + α3n/3 ≥ n−
∑

j∈[k]\{i}

oj + 2n/∆′(5)

outneighbours in
⋃

j∈[k]\{i} V
′
j or fewer than

∑

j∈[k]\{i}

dji(m− oj)− ε′km ≥ n−
∑

j∈[k]\{i}

oj + 2n/∆′,

inneighbours in
⋃

j∈[k]\{i} V
′
j . So we may choose a set S− of m/10 vertices of Vi \ S+

∆′ ,

none of which fall into these two categories, and all of which are inneighbours of v+. Since
|T−

∆′ | ≤ |T∆′ | ≤ βn ≤ m/30, by Theorem 1.3 we may embed T−
∆′ in S−. Let S−

∆′ be the set

of vertices of S− occupied by this embedding of T−
∆′ . Then since

|T−| = n− |T+| ≤ n−
∑

j∈[k]\{i}

oj,

the right hand side of (5) is at least |T−| + 2n/∆′. Also every component of T− − T−
∆′

is a component of T − T∆′ (and so has order at most n/∆′ by Proposition 2.1(iv)). So
by Lemma 2.6 we may extend the embedding of T−

∆′ in S−
∆′ to an embedding of T− in

S−
∆′ ∪

⋃

j∈[k]\{i} V
′
j . Then the embeddings of T+ and T− do not overlap, and so together

these embeddings form an embedding of T in G. �

Given an ε-regular cluster tournament G on clusters V1, . . . , Vk, we define the reduced
digraph of G with parameter d, denoted RG(d), to be the directed graph on vertex set [k]
in which i → j if and only if dij ≥ d. Observe that since dij + dji ≤ 1 for any i and j, if
d > 1/2 then RG(d) is an oriented graph.

Lemma 4.5. Suppose that 1/n ≪ 1/∆′, β ≪ 1/k ≪ ε ≪ γ ≪ α ≪ 1. Let T be a directed
tree on n vertices with |T∆′ | ≤ βn, and let y and z be the outweight and inweight of T∆′

respectively. Let G be an ε-regular cluster tournament on clusters V1, . . . , Vk, each of size
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m ≥ 2(1− γ)n/k. Suppose that for some i ∈ [k] we have

∑

j∈[k]\{i}

dij ≥
(1− 3γ)k

2
and

∑

j∈[k]\{i}

dji ≥
(1− 3γ)k

2
,

and also that there are at most αk values of j ∈ [k] \ {i} such that dij ≥ α and dji ≥ α.
Then:

(i) There are at most 2αk values of j ∈ [k]\{i} such that dij < 1−2α and dji < 1−2α.

(ii) Let R := RG(1− 2α). Then |N+
R (i)|, |N−

R (i)| ≥ (1− 10α)k/2.
(iii) If y, z ≥ 14αn, then G contains a copy of T .

Proof. Fix such an i, and introduce a new constant ε′ with ε≪ ε′ ≪ γ. For (i), note that
since dij + dji ≤ 1 for any j ∈ [k] \ {i}, and

∑

j∈[k]\{i}

(dij + dji) ≥ (1− 3γ)k,

there are at most 3
√
γk ≤ αk values of j ∈ [k] \ {i} for which dij + dji < 1−√γ. So there

are at most 2αk values of j ∈ [k] \ {i} for which dij < 1− α−√γ and dji < 1− α−√γ, so
(i) holds.

For (ii), observe that by (i) we have

(1− 3γ)k

2
≤

∑

j∈[k]\{i}

dij ≤
∑

j∈[k]\{i}
dij≥1−2α

dij +
∑

j∈[k]\{i}
dij ,dji<1−2α

dij +
∑

j∈[k]\{i}
dij≤2α

dij

≤ |N+
R (i)|+ 2αk + 2αk,

so |N+
R (i)| ≥ (1− 10α)k/2. A similar calculation shows that |N−

R (i)| ≥ (1− 10α)k/2.

For (iii), let N+ and N− denote N+
R (i) and N−

R (i) respectively, and let V + :=
⋃

j∈N+ Vj

and V − :=
⋃

j∈N− Vj , so V + and V − are disjoint. By Lemma 4.3, Vi contains at most ε′m
vertices with fewer than

∑

j∈N+

dijm− ε′km ≥ |N+
R (i)|(1 − 2α)m− ε′km ≥ (1− 10α)(1 − 2α)km/2 − ε′km

≥ (1− 12α− 2ε′)km/2 ≥ (1− 13α)n

outneighbours in V + and at most ε′m vertices with fewer than
∑

j∈N− djim − ε′km ≥
(1 − 13α)n inneighbours in V −. Choose a set S of m/2 vertices of Vi, not including any of
these at most 2ε′m vertices. Since |T∆′ | ≤ βn ≤ m/6, by Theorem 1.3 we may embed T∆′

in S. Let S∆′ be the set of vertices of S occupied by this embedding of T∆′ . Also let T1

be the tree formed by T∆′ and all of its outcomponents, and let T2 be the tree formed by
T∆′ and all of its incomponents. Note that all of these out- and incomponents have order
at most n/∆′ ≪ αn by Proposition 2.1(iv). In addition |T1| = n − z ≤ (1 − 14α)n and
|T2| = n − y ≤ (1 − 14α)n. So by Lemma 2.6 we may extend the embedding of T∆′ in S∆′

to an embedding of T1 in S∆′ ∪V +. Similarly by Lemma 2.6 we may extend the embedding
of T∆′ in S∆′ to an embedding of T2 in S∆′ ∪ V −. Then these embeddings do not overlap
outside T∆′ , so we may combine them to form an embedding of T in G. �
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To finish this section we shall show how Lemma 4.1 can be used to show that Sumner’s
universal tournament conjecture holds for any large and almost-regular tournament with a
small core tree. Actually we shall prove a slightly stronger result in this case, considering a
tournament on fewer than 2n − 2 vertices. Later on we shall make use of the fact that we
have a little room to spare in the order of the tournament. Much of the work for this lemma
is done by the two previous lemmas.

Lemma 4.6. Suppose that 1/n ≪ 1/∆′, β ≪ γ ≪ 1/∆ ≪ 1. Let T be a directed tree on n
vertices such that |T∆′ | ≤ βn and |T∆| ≥ 2. Let G be a γ-almost-regular tournament on at
least (2− γ)n vertices. Then G contains a copy of T .

Proof. Introduce new constants ε, ε′, α,M, and M ′ with

1/n≪ 1/∆′, β ≪ 1/M ≪ 1/M ′ ≪ ε≪ ε′ ≪ γ ≪ α≪ 1/∆≪ 1.

If |G| ≥ (2 + γ)n, then G contains a copy of T by Theorem 1.2(i). So we may assume that
|G| = (2± γ)n. Observe that d+(v), d−(v) ≥ (1− γ)(|G| − 1)/2 ≥ (1− 2γ)n for all v ∈ G.

Since ∆ ≤ ∆′, we must have T∆ ⊆ T∆′ . Also, since |T∆| ≥ 2, we may choose an edge
t− → t+ of T∆, which must also lie in T∆′ . Let T+ and T− be the two components formed
when this edge is deleted from T , labelled so that t+ ∈ T+ and t− ∈ T−. Similarly, let
T+
∆′ and T−

∆′ be the two components formed by the deletion of the edge t− → t+ from T∆′ ,

labelled with t+ ∈ T+
∆′ and t− ∈ T−

∆′ . Then T+ and T− partition the vertices of T , and there
is precisely one edge of T between T+ and T−, which is directed towards T+. Furthermore,
|T+|, |T−| ≥ n/∆.

Let disjoint subsets V1, . . . , Vk and a subgraph G∗ ⊆ G satisfy the conditions of Corol-
lary 4.2. So M ′ ≤ k ≤ M , and G∗ is an ε-regular cluster tournament on clusters V1, . . . , Vk

of equal size m, where

(6)
2(1 − γ)n

k
≤ (2− γ)n− 3εn

k
≤ m ≤ (2 + γ)n

k
.

Also, for each v ∈ G∗ we have d+G∗(v) ≥ d+G(v) − 2ε|G| ≥ d+G(v) − 5εn and d−G∗(v) ≥
d−G(v) − 5εn. So for each i ∈ [k] we have

∑

j∈[k]\{i}

dij =
∑

j∈[k]\{i}

eG∗(Vi → Vj)

m2
≥

∑

v∈Vi

d+G∗(v)−m

m2
(7)

≥
∑

v∈Vi

d+G(v)− 5εn −m

m2
≥ (1− 2γ)n− 5εn −m

m

(6)
≥ (1− 3γ)k

2
,

and similarly
∑

j∈[k]\{i} dji ≥ (1− 3γ)k/2.

So if there exists some i ∈ [k] for which there are at least αk values of j ∈ [k] \ {i} such
that dij ≥ α and dji ≥ α, then by Lemma 4.4 we may embed T in G∗, and therefore in G.
So we may assume that for each i ∈ [k] fewer than αk values of j ∈ [k] \ {i} satisfy dij ≥ α
and dji ≥ α. Then by Lemma 4.5 we may assume that R := RG(1− 2α) has

(8) δ0(R) ≥ (1− 10α)k/2.

Let y be the number of vertices in outcomponents of T∆′ , and let z be the number of vertices
in incomponents of T∆′ , so y + z + |T∆′ | = n. So if y, z ≥ 14αn then G∗ (and therefore G)
contains a copy of T by Lemma 4.5. We may therefore assume without loss of generality
that z < 14αn.
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Now, since |R| = k we may choose a vertex i ∈ R with d+R(i) ≤ k/2. Then we may

choose a vertex j ∈ N+
R (i) with at most d+R(i)/2 outneighbours in N+

R (i). So i → j and

|N+
R (i) ∩N+

R (j)| ≤ k/4. For this choice of i and j, let

A := N+
R (i) ∩N+

R (j),

B := N+
R (i) \N+

R (j),

C := N+
R (j) \N+

R (i).

Then A,B and C are disjoint, and |B|, |C| ≥ k/2 − 5αk − |A| ≥ k/4 − 5αk by (8). Now,
choose a set S+ of m/2 vertices of Vj such that each vertex v ∈ S+ has

(i) at least m/2 inneighbours in Vi,
(ii) at least

∑

ℓ∈A djℓm− ε′km ≥ (1− 2α)m|A| − ε′km outneighbours in
⋃

ℓ∈A Vℓ, and
(iii) at least

∑

ℓ∈C djℓm− ε′km ≥ (1− 2α)m|C| − ε′km outneighbours in
⋃

ℓ∈C Vℓ.

We can be sure that such a choice is possible, as by Lemma 4.3 there are at most 2ε′m
vertices of Vj which fail either of (ii) and (iii), and since G∗[Vi → Vj ] is ε-regular with density
dij ≥ 1−2α there are at most εm vertices of Vj which fail (i). Then since |T+

∆′ | ≤ βn ≤ m/6,

by Theorem 1.3 we can embed T+
∆′ in S+. Let v+ be the vertex to which t+ is embedded.

Then v+ has at least m/2 inneighbours in Vi. Choose a set S− of m/3 of these inneighbours
so that every vertex v ∈ S− has at least

(9)
∑

ℓ∈A∪B=N+

R (i)

diℓm− ε′km ≥ (1− 2α)m|N+
R (i)| − ε′km

(8)
≥ (1− 13α)n

outneighbours in
⋃

ℓ∈A∪B Vℓ. Again we can be sure that such a choice is possible, since by

Lemma 4.3 at most ε′m vertices of Vi fail this condition. Then since |T−
∆′ | ≤ βn ≤ m/9, by

Theorem 1.3 we can embed T−
∆′ in S−. Let S+

∆′ and S−
∆′ be the sets of vertices of G occupied

by T+
∆′ and T−

∆′ respectively.
Let T3 be the tree formed by T∆′ and all of its incomponents. Let T4 be the tree formed

by T+
∆′ and all of its outcomponents, and let T5 be the tree formed by T−

∆′ and all of its
outcomponents in T− (i.e. all of its outcomponents except T+). Note that T3∪T4∪T5 = T .
Then |T3| = |T∆′ | + z < 15αn, |T4| ≤ |T+| ≤ n − |T−| ≤ (1 − 1/∆)n, and similarly
|T5| ≤ (1 − 1/∆)n. Every vertex of G has at least (1 − 2γ)n inneighbours in G, so by
Lemma 2.6(c) we may extend the embedding of T∆′ in S+

∆′ ∪ S−
∆′ to an embedding of T3 in

G. For each ℓ ∈ [k] \ {i}, let V ′
ℓ ⊆ Vℓ consist of the vertices of Vℓ which are not occupied by

this embedding.
By (ii) and (iii), every vertex of S+

∆′ then has at least (1 − 2α)(|A| + |C|)m − 2ε′km −
|T3| ≥ (1 − 28α)n outneighbours in

⋃

ℓ∈A∪C V ′
ℓ (here we also use the fact that |A| + |C| =

|N+
R (j)| ≥ (1 − 10α)k/2 by (8)). Since also 1/∆′ ≪ α ≪ 1/∆ and every component

of T4 − T+
∆′ has order at most n/∆′, by Lemma 2.6 we may extend the embedding of

T+
∆′ in S+

∆′ to an embedding of T4 in S+
∆′ ∪

⋃

ℓ∈A∪C V ′
ℓ . Furthermore, since every vertex

of S+
∆′ has at least (1 − 2α)|C|m − ε′km − |T3| ≥ n/∆ outneighbours in

⋃

ℓ∈C V ′
ℓ , and

|T4 − T+
∆′ | = |T+ − T3| ≥ n/2∆, by Lemma 2.6(b) we can ensure that this embedding of T4

occupies at least n/2∆ vertices of
⋃

ℓ∈C V ′
ℓ . So crucially at most |T4| − n/2∆ vertices of T4

are embedded in
⋃

ℓ∈A∪B Vℓ. For each ℓ ∈ A∪B, let V ′′
ℓ ⊆ Vℓ consist of those vertices which

are not occupied by the embedding of T3 and T4.
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Finally, by (9), every vertex of S−
∆′ has at least

(1− 13α)n − (|T4| − n/2∆)− |T3| ≥ n− |T4|+ n/3∆

outneighbours in
⋃

ℓ∈A∪B V ′′
ℓ . Since |T5−T−

∆′ | ≤ n−|T4|, by Lemma 2.6(c) we can extend the

embedding of T−
∆′ in S−

∆′ to an embedding of T5 in S−
∆′ ∪

⋃

ℓ∈A∪B V ′′
ℓ . Then the embeddings

of T3, T4 and T5 do not overlap outside S+
∆′ ∪ S−

∆′ , and so together form an embedding of T
in G. �

5. Embedding trees in robust outexpander tournaments

Let G be a tournament on n vertices, and let µ ≤ ν be positive constants. Then the
robust outneighbourhood RN+

µ (S) of a set S ⊆ V (G) is the set of vertices of G with at least
µn inneighbours in S. We say that G is a robust (µ, ν)-outexpander if for any S ⊆ V (G)
with νn ≤ |S| ≤ (1− ν)n we have |RN+

µ (S)| ≥ |S|+ µn.
If a tournament G is not a robust outexpander, then the following lemma shows that G

contains two subtournaments which partition the vertices of G and which have almost all
edges between them directed the same way.

Lemma 5.1 ([10], Lemma 2.8). Suppose that 1/n ≪ µ ≪ ν, that G is a tournament on
n vertices and that G is not a robust (µ, ν)-outexpander. Then we can partition V (G) into
sets S and S′ such that νn < |S|, |S′| < (1− ν)n and e(G[S → S′]) ≤ 4µn2.

By iterating this split, we obtain a decomposition of G into sets Si which either induce
robust expanders or are small, and where for all i < j, almost all edges are directed from Si

to Sj. (So if all the Si are small, then G is close to being a transitive tournament.) We will
use this decomposition in Section 7 to prove Theorem 1.1.

Lemma 5.2. Suppose that 1/n ≪ µ ≪ ν ≪ η ≪ γ ≪ 1. Let G be a tournament on n
vertices. Then we may choose disjoint subsets S1, . . . , Sr of V (G) such that:

(i) |⋃i∈[r] Si| ≥ (1− γ)n,

(ii) for each i ∈ [r], any vertex v ∈ Si has at most γn inneighbours in
⋃

j>i Sj and at

most γn outneighbours in
⋃

j<i Sj , and

(iii) for each i ∈ [r], either G[Si] is a robust (µ, ν)-outexpander with δ0(G[Si]) ≥ ηn or
|Si| < γn.

Proof. We shall use a modified version of an algorithm from [10], which keeps track of
an ordered family Sτ of disjoint subsets of V (G), and a set Bτ of bad edges of G, at each
time τ . The analysis of this algorithm is also similar to the analysis in [10]. Initially, let
S1 := (V (G)), and let B1 := ∅. Then at time τ ≥ 1, we have Sτ = (Sτ

1 , . . . , S
τ
τ ), and the

algorithm proceeds as follows.

(1) Let Sτ
ℓ be the largest member of Sτ which is not a robust (µ, ν)-outexpander with

δ0(G[Sτ
ℓ ]) ≥ ηn. If there is no such member of Sτ , or if |Sτ

ℓ | < γn, then terminate.
If there is more than one largest such member, then choose one of these arbitrarily.

(2) If some v ∈ Sτ
ℓ has d+G[Sτ

ℓ ]
(v) < ηn, then let

Sτ+1 := (Sτ
1 , . . . , S

τ
ℓ−1, S

τ
ℓ \ {v}, {v}, Sτ

ℓ+1, . . . , S
τ
τ ),

let Bτ+1 := Bτ ∪ E({v} → Sτ
ℓ \ {v}), and proceed to step (5).
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(3) Similarly, if some v ∈ Sτ
ℓ has d−G[Sτ

ℓ ]
(v) < ηn, then let

Sτ+1 := (Sτ
1 , . . . , S

τ
ℓ−1, {v}, Sτ

ℓ \ {v}, Sτ
ℓ+1, . . . , S

τ
τ ),

let Bτ+1 := Bτ ∪ E(Sτ
ℓ \ {v} → {v}), and proceed to step (5).

(4) If G[Sτ
ℓ ] is not a robust (µ, ν)-outexpander then apply Lemma 5.1 to partition the

vertices of Sτ
ℓ into sets S′ and S′′ such that ν|Sτ

ℓ | ≤ |S′|, |S′′| ≤ (1 − ν)|Sτ
ℓ | and at

most 4µ|Sτ
ℓ |2 edges of G[Sτ

ℓ ] are directed from S′′ to S′. Then let

Sτ+1 := (Sτ
1 , . . . , S

τ
ℓ−1, S

′, S′′, Sτ
ℓ+1, . . . , S

τ
τ )

and let Bτ+1 := Bτ ∪ E(S′′ → S′).
(5) Finally, for each i ∈ [τ + 1], delete from Sτ+1

i any vertex v which lies in more than√
ηn edges of Bτ+1.

At any time τ , if the algorithm does not terminate at step (1) then Sτ
ℓ will be split in

precisely one of steps (2), (3) and (4). So at each time τ , either the algorithm terminates
or |Sτ | increases from τ to τ +1 (in forming Sτ+1) by reducing the size of the largest piece.
Therefore the algorithm must terminate at some time τend ≤ n. Take r := τend, and Si := Sr

i
for each i. Then since the algorithm terminated at step (1) of time r, (iii) must hold.

To see (i), observe that the split in step (4) will occur for at most 1/γν times τ < τend.
This is because any set obtained by a split in step (4) must have size at least γνn (since
|Sτ

ℓ | ≥ γn, and the sets S′, S′′ obtained have |S′|, |S′′| ≥ ν|Sτ
ℓ |). Also, at each time τ ≤ τend,

the number of edges added to form Bτ+1 from Bτ is at most ηn if the algorithm carried out
the split in step (2) or (3), and at most 4µn2 if the algorithm carried out the split in step
(4). Since τend ≤ n, and the split in step (4) is carried out in at most 1/γν steps, we must
have

|Bτend | ≤ ηn2 + 4µn2/νγ ≤ 2ηn2.

Since B1 ⊆ · · · ⊆ Bτend , any vertex of G which was ever deleted in step (5) must lie in at
least

√
ηn edges of Bτend , and so at most 4

√
ηn ≤ γn vertices of G can have been deleted in

step (5) over the entire course of the algorithm. But any vertex which was not deleted lies
in some Si, and so (i) holds.

Finally, for (ii) fix any i ∈ [r] and any v ∈ Si. Observe that all edges directed from v to
⋃

j<i Sj and all edges directed from
⋃

j>i Sj to v are contained in Br. This means that there

are at most
√
ηn such edges, as otherwise v would have been deleted in step (5) at some

point. Since i and v were arbitrary, (ii) must hold. �

We now consider the case when G is a robust outexpander. Lemma 4.1 of [10] stated that
if T is a directed tree on n vertices, and G is a robust outexpander tournament on at least
(2 + α)n vertices with large minimum semidegree, then G contains a copy of T . However,
in the proof of this lemma, the αn error term was only needed in the case when T∆ is small.
Indeed, in this section we modify this proof to show that Sumner’s universal tournament
conjecture holds for such G in the case when T∆ is large. This is the following lemma.

Lemma 5.3. Suppose that 1/n ≪ 1/∆ ≪ µ ≪ ν ≪ η ≪ γ ≪ β ≪ 1. Let T be a directed
tree on n vertices such that |T∆| ≥ βn, and let G be a robust (µ, ν)-outexpander tournament
on at least (2− γ)n vertices, with δ0(G) ≥ η|G|. Then G contains a copy of T .

Before we can present the proof of this lemma, we must give some definitions from [10].
Let V1, . . . , Vk be disjoint sets of equal size. A digraph G on vertex set V1, . . . , Vk is a ε-regular
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d-dense cycle of cluster tournaments if for each i, G[Vi] is a tournament and G[Vi → Vi+1]
is ε-regular with density at least d (where addition on the index of Vi+1 is taken modulo
k). The following lemma from [10] (an immediate consequence of two results from [12]) will
help us to find such digraphs.

Lemma 5.4 ([10], Lemma 2.7). Suppose that 1/n ≪ 1/M ≪ 1/M ′ ≪ ε ≪ d ≪ µ ≪
ν ≪ η ≪ 1. Let G be a tournament on n vertices which is a robust (µ, ν)-outexpander with
δ0(G) ≥ ηn. Then G contains an ε-regular d-dense cycle of cluster tournaments on clusters

V1, . . . , Vk, where |
⋃k

i=1 Vi| > (1− ε)n, and M ′ ≤ k ≤M .

Let T be a directed tree. Then the distance between vertices u, v ∈ T , denoted d(u, v), is
the length of the shortest path connecting u and v in the underlying graph Tunder. Similarly
for a set X of vertices of T , the distance d(u,X) is the minimum of d(u, x) taken over all
vertices x ∈ X. If T is a rooted tree with root r, then the children of a vertex u ∈ T are
those neighbours v of u for which d(r, u) = d(r, v) + 1.

Let T be a tree on n vertices, rooted at t1, and let H ⊆ V (T ). Also let k be a positive
integer. For any vertex x ∈ T , there is a unique path in T from x to t1; let Px denote the set
of the first k vertices of this path, starting from x. Let H1 :=

⋃

x∈H Px, and then for each

i ≥ 1 let H i+1 be formed from H i by adding the vertices of Px for any x ∈ H i with at least
two children in H i. After at most n steps we must have H i = H i+1, when we terminate
the process. We refer to this final H i as H with leading paths included, denoted Pk(H). So
H ⊆ Pk(H) ⊆ V (T ). Note that Pk(H) depends on both the value of k and the root t1 of T .

We may now present the key lemma from [10] we shall use to prove Lemma 5.3. This says
that a directed tree of bounded degree can be embedded in a robust outexpander tournament
of large minimum semidegree such that the vertices in a small set H of vertices of T are
embedded within a chosen set U ⊆ V (G).

Lemma 5.5 ([10], Lemma 4.6). Suppose that 1/n ≪ 1/∆, 1/k ≪ ε ≪ d ≪ α, λ ≤ 1/2,
that m := n/k, that λ ≤ α/4 and that δ := dλ/8k. Let T be a directed tree on n vertices
rooted at t1 and with ∆(T ) ≤ ∆. Let H ⊆ V (T ) be such that |H| ≤ δn/7k and |{x ∈ T : 1 ≤
d(x,Pk(H)) ≤ k3}| ≤ δn. Let G be an ε-regular d-dense cycle of cluster tournaments on
clusters V1, . . . , Vk, each of size (1 + α)m, and let U ⊆ V1 ∪ · · · ∪ Vk have size |U | ≥ λn.
Then T can be embedded in G so that each vertex t ∈ H is embedded to some u ∈ U .

We will also use the following lemma, again from [10]. This shows that we can extend T∆

to an ‘extended tree’ Text, with desired properties. We will apply Lemma 5.5 to Text and
embed H within a set U of vertices of high in- and outdegree.

Proposition 5.6 ([10], Lemma 4.5). Suppose that 1/n, 1/∆∗ ≪ 1/∆, 1/k, ω ≪ 1. Let T be
a directed tree on n vertices. Choose any vertex t1 ∈ T∆ as the root of T . Then there exists
a subtree Text of T and a subset H ⊆ V (Text) which satisfy the following properties.

(i) T∆ ⊆ Text.
(ii) ∆(Text) ≤ ∆∗.
(iii) For any edge e between T − Text and Text, the endvertex of e in Text lies in H.
(iv) The number of vertices v ∈ Text which satisfy 1 ≤ d(v,Pk(H)) ≤ k3 is at most ωn.

(v) |H| ≤ n/∆k1/ω .

The final lemma we shall need to prove Lemma 5.3 gives standard Chernoff-type bounds
for the binomial and hypergeometric distributions. The binomial random variable X with
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parameters (n, p) is defined to be the number of successes in n independent trials, each of
which has probability p of success. So EX = np. The hypergeometric random variable Y
with parameters (n,m, k) is defined as follows. Let N be a set of size n, and fix a set S ⊆ N
of size |S| = m. Now choose a set T ⊆ N of size |T | = k uniformly at random. Then
Y = |T ∩ S|. Note that EY = km/n.

Proposition 5.7 ([9], Corollary 2.3 and Theorem 2.10). Suppose X has binomial or hyper-

geometric distribution and 0 < a < 3/2. Then P(|X − EX| ≥ aEX) ≤ 2e−
a2

3
EX .

Proof of Lemma 5.3. We begin by introducing new constants ∆∗,M,M ′, ε, d and α which
satisfy

1/n≪ 1/∆∗ ≪ 1/M ≪ 1/M ′, 1/∆ ≪ ε≪ d≪ µ≪ ν ≪ η ≪ γ ≪ α≪ β ≪ 1.

Now, if |G| ≥ (2 + γ)n, then by Theorem 1.2(i), G contains a copy of T . So we may
assume that |G| = (2 ± γ)n. Since G is a robust (µ, ν)-outexpander with δ0(G) ≥ η|G|,
Lemma 5.4 implies that G contains an ε-regular d-dense cycle of cluster tournaments on
clusters V1, . . . , Vk each of equal size between (1 − ε)|G|/k ≥ (1 − ε)(2 − γ)m ≥ 2(1 − γ)m
and |G|/k ≤ (2 + γ)m, where m := n/k and M ′ ≤ k ≤ M . So we may remove vertices
from each Vi to obtain a 2ε-regular (d/2)-dense cycle of cluster tournaments G′ on clusters
V ′
1 , . . . , V

′
k each of size 2(1− γ)m. So |G′| = 2(1− γ)n. Let

δ := dαβ/160k.

Choose any vertex t1 ∈ T∆ as the root of T . Then let Text and H satisfy the properties
of Proposition 5.6, with ω := δβ. Let T1 denote the subtree of T formed by Text and all
of its outcomponents, and let T2 denote the subtree of T formed by Text and all of its
incomponents. Since T∆ ⊆ Text (this is (i) of Proposition 5.6), all of these incomponents
and outcomponents have order at most n/∆ by Proposition 2.1. Let x := |Text|, y :=
|T1 − Text|, z := |T2 − Text|, so x + y + z = n. Since T∆ ⊆ Text, we have x ≥ βn. Also, all
but at most 2y+x−αn/2 vertices of G have at least y+x/2−αn/4 outneighbours, and all
but at most 2z + x − αn/2 vertices of G have at least z + x/2 − αn/4 inneighbours. So at
least (2− γ)n− 2y− 2z− 2x+αn ≥ αn/2 vertices of G satisfy both of these conditions. Let
U0 be the set of these vertices, so |U0| ≥ αn/2, and each v ∈ U0 has at least y+ x/2−αn/4
outneighbours and at least z + x/2 − αn/4 inneighbours.

From each cluster V ′
i of G′ choose a set Xi of (1+α)x/k vertices uniformly at random, and

let X := X1 ∪ · · · ∪Xk. Then |X| = (1 + α)x. For any single vertex u ∈ G′, the probability
that u is included in X is (1 + α)x/|G′| ≥ x/2n, so by Proposition 5.7, with probability at
least 2/3 the set U := X ∩U0 satisfies |U | ≥ αx/5 ≥ αβn/5. Also, for any vertex v ∈ U , the
expected number of outneighbours of v outside X is at least

(

y +
x

2
− αn

4

)

(

1− (1 + α)x

|G′|

)

≥y − αn

4
+

x

2
− (1 + α)xy

2(1 − γ)n
− (1 + α)x2

4(1− γ)n

≥y − αn

4
+

2xn− 2xy − x2 − 2γxn− 2αxy − αx2

4(1 − γ)n

≥y + x2

4n
− 2αn ≥ y +

β2n

4
− 2αn ≥ y + 2αn,

where in the first inequality of the third line we used the fact that 2n−2y−x ≥ x. A similar
calculation shows that for each v ∈ U , the expected number of inneighbours of v outside X
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is at least z + 2αn. So by Proposition 5.7 we find that with probability at least 2/3, every
vertex v ∈ U has at least y+ αn outneighbours outside X and at least z +αn inneighbours
outside X. Fix a choice of X such that both these events of probability at least 2/3 occur.

Since every vertex of U has either at least (|G|− |X|)/2 ≥ y+z+αn inneighbours outside
X or at least y + z + αn outneighbours outside X, we may choose a set U ′ ⊆ U of size
|U ′| ≥ |U |/2 ≥ αβn/10 such that either

(α1) every v ∈ U ′ has at least y + αn outneighbours outside X and at least y + z + αn
inneighbours outside X, or

(α2) every v ∈ U ′ has at least y + z + αn outneighbours outside X and at least z + αn
inneighbours outside X.

SoG′[X] is a (2ε/β)-regular (d/2)-dense cycle of cluster tournaments on clustersX1, . . . ,Xk

of size (1 + α)x/k, and U ′ ⊆ X1 ∪ · · · ∪ Xk has size |U ′| ≥ αβx/10. Also Text is a di-
rected tree on x vertices rooted at t1 and with ∆(Text) ≤ ∆∗, and H ⊆ V (Text) has

|H| ≤ n/∆k1/βδ ≤ δx/7k and |{t ∈ Text : 1 ≤ d(t,Pk(H)) ≤ k3}| ≤ δβn ≤ δx. So by
Lemma 5.5 (with αβ/10, ∆∗ and d/2 in place of λ, ∆ and d respectively), G′[X] contains a
copy of Text in which every vertex of H is embedded to a vertex of U ′.

So every vertex t ∈ H has been embedded to some vertex v(t) ∈ U ′. Suppose that (α1)
holds. Then for every t ∈ H, v(t) has at least y + 2n/∆ outneighbours outside X (and so
unoccupied by vertices of Text). Since the only vertices of Text which may have neighbours
in T1 − Text are the vertices of H, we may use Theorem 1.3 to extend the embedding of
Text in G[X] to an embedding of T1 in G in the same way as in the proof of Lemma 2.6
(we cannot just apply Lemma 2.6 as vertices of G to which we embedded Text − H may
not have sufficiently many outneighbours, but since vertices of Text − H do not have any
outneighbours outside Text this does not cause any problems). Then for every t ∈ H, v(t)
has at least z + 2n/∆ inneighbours outside X which are not occupied by this embedding
of T1. So in the same way we may extend the embedding of Text in G[X] to an embedding
of T2 in the vertices of G not occupied by T1 − Text. So the embeddings of T1 and T2 only
overlap in Text, and so together form an embedding of T in G. If instead (α2) holds we may
embed T in G similarly by first embedding T2 then T1. �

We can now deduce that if G is a large almost-regular tournament and if |T∆| > 1, then
Sumner’s conjecture holds with a little room to spare (we shall need this extra room in the
proof of Lemmas 6.2 and 6.3). Indeed, we shall see that a large almost-regular tournament G
is also a robust outexpander, and so if T∆ is large, then we can embed T in G by Lemma 5.3.
On the other hand, if T∆ is small but has more than one vertex, then we may embed T in
G by Lemma 4.6.

In particular, together with Lemma 3.1 (which deals with the case |T∆| = 1), this means
that at this stage, we have proved that Sumner’s conjecture holds for all large almost-regular
tournaments.

Lemma 5.8. Suppose that 1/n≪ γ ≪ 1/∆≪ 1. Let T be a directed tree on n vertices with
|T∆| > 1. Then every γ-almost-regular tournament G on at least (2− γ)n vertices contains
a copy of T .

Proof. Introduce constants µ, ν, η,∆′, β, γ′ such that

1/n≪ 1/∆′ ≪ µ≪ ν ≪ η ≪ γ ≪ β ≪ γ′ ≪ 1/∆≪ 1.
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Let G be a γ-almost-regular tournament on at least (2−γ)n vertices. Then we shall show that
G is a robust (µ, ν)-outexpander. Indeed, let S ⊆ V (G) satisfy ν|G| ≤ |S| ≤ 2|G|/3. Then at

least (1− γ)|S|(|G| − 1)/2 edges originate in S. At most
(

|S|
2

)

of these have both endvertices

in S, so at least (1 − γ)|S|(|G| − 1)/2 −
(|S|

2

)

≥ |S|((1 − γ)(|G| − 1) − |S|)/2 ≥ ν|G|2/10
edges leave S. So at least ν|G|/20 ≥ 3µ|G| vertices outside S have at least ν|G|/20 ≥ 3µ|G|
inneighbours in S. At most 2µ|G| vertices of S have fewer than µ|G| inneighbours in S,
and so |RN+

µ (S)| ≥ |S| + µ|G|, as desired. On the other hand, if S ⊆ V (G) satisfies
2|G|/3 < |S| ≤ (1 − ν)|G|, every vertex of G has at least |G|/7 ≥ µ|G| inneighbours in S.
So |RN+

µ (S)| = |G| ≥ |S|+ µ|G|, as desired.
So G is indeed a robust (µ, ν)-outexpander. Clearly δ0(G) ≥ η|G|. So if |T∆′ | ≥ βn, then

by Lemma 5.3, G contains a copy of T . So we may assume that |T∆′ | ≤ βn. But G is
also a γ′-almost-regular tournament on at least (2− γ′)n vertices, and so by Lemma 4.6, G
contains a copy of T . �

6. Embedding trees whose core tree is small

We now turn our attention to the general case of the problem. As when considering
almost-regular tournaments, we consider the problem of embedding directed trees whose
core trees are small separately from the case when the core trees are large. In this section
we shall consider directed trees with small core trees, proving the following lemma.

Lemma 6.1. Suppose 1/n ≪ β, 1/∆′ ≪ 1. Let T be a directed tree on n vertices with
|T∆′ | ≤ βn, and let G be a tournament on 2n− 2 vertices. Then G contains a copy of T .

We begin by showing that we may assume that the tournament G consists of two large
disjoint almost-regular tournaments, with almost all of the edges between them directed the
same way.

Lemma 6.2. Suppose that 1/n ≪ β, 1/∆ ≪ γ ≪ η ≪ 1. Let T be a directed tree on n
vertices with |T∆| ≤ βn, and let G be a tournament on 2n−2 vertices. Let y be the outweight
of T∆, and let z be the inweight of T∆. Then the following properties hold.

(i) If z < ηn or y < ηn then G contains a copy of T .
(ii) Either G contains a copy of T , or we can find disjoint sets Y,Z ⊆ V (G) such that
|Y | ≥ (2 − γ)y and |Z| ≥ (2− γ)z, G[Y ] and G[Z] are γ-almost-regular, any vertex
of Y has at most 3γn outneighbours in Z and any vertex of Z has at most 3γn
inneighbours in Y .

Proof. Introduce new constants M,M ′, ε, ε′, α, γ∗ and ∆∗ such that

1/n≪ β, 1/∆≪ 1/M ≪ 1/M ′ ≪ ε≪ ε′ ≪ γ ≪ α≪ η ≪ γ∗ ≪ 1/∆∗ ≪ 1.

Partition the vertex set of G into sets A,B,C,D,E such that:

A ⊆ {v ∈ G : d+(v) ≤ y + εn},
B ⊆ {v ∈ G : y + εn < d+(v) < n− εn},
C ⊆ {v ∈ G : d+(v), d−(v) ≥ n− εn},
D ⊆ {v ∈ G : z + εn < d−(v) < n− εn},
E ⊆ {v ∈ G : d−(v) ≤ z + εn}.
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These subset relations may not all be equality, for example in the case where z is very small,
when we have y+εn ≥ n−εn. However, it is clear that each vertex v ∈ G lies in at least one
of these five sets, so we may choose such a partition of V (G). Let x := |T∆|, so x+y+z = n
and x ≤ βn.

Suppose that |B| ≥ 3x. Then by Theorem 1.3 we may embed T∆ in G[B]. Let S∆ ⊆ B be
the set of vertices occupied by this embedding of T∆. Then every vertex of S∆ has at least
y+εn−x ≥ y+2n/∆ outneighbours outside S∆ and at least |G|−x−(n−εn) ≥ y+z+2n/∆
inneighbours outside S∆. Let T1 be the subtree of T formed by T∆ and all outcomponents
of T∆, and let T2 be the subtree of T formed by T∆ and all incomponents of T∆. Then
|T1| = x+ y and |T2| = x+ z. By Proposition 2.1(iv), all incomponents and outcomponents
of T∆ contain at most n/∆ vertices, so by Lemma 2.6(c) we may extend our embedding
of T∆ in S∆ to an embedding of T1 in G. Then each vertex of S∆ still has at least z+2n/∆
inneighbours outside S∆ which are not occupied by this embedding of T1, so by Lemma 2.6(c)
we may also extend our embedding of T∆ in S∆ to an embedding of T2 in G which avoids
vertices occupied by the embedding of T1 − T∆. Then these embeddings of T1 and T2 do
not overlap outside T∆, and so together form an embedding of T in G. We may therefore
assume that |B| < 3x ≤ 3βn. By the same argument (embedding first T2 and then T1 in G)
we may assume that |D| < 3x ≤ 3βn.

If |T∆∗ | = 1, then G contains a copy of T by Lemma 3.1. So we may assume that |T∆∗ | ≥ 2.
Now, if z < ηn, then every v ∈ E satisfies d−(v) < (η+ ε)n < 2ηn, so |E| ≤ 4ηn+1, and so
|B∪D∪E| ≤ 4ηn+1+6βn ≤ 5ηn. Let G′ := G[A∪C]. Then |G′| ≥ 2n−2−5ηn, and every
vertex v ∈ G′ has d+(v) ≤ n + εn. So by Proposition 2.4, G′ contains a γ∗-almost-regular
subtournament G′ on at least (2−γ∗)n vertices. Since |T∆∗ | ≥ 2, by Lemma 5.8 G′ contains
a copy of T , so G contains a copy of T also. If instead we have y < ηn, then we may similarly
embed T in G[C ∪ E]. So if z < ηn or y < ηn then G contains a copy of T , completing the
proof of (i). So for (ii), we may assume that y, z ≥ ηn.

Suppose now that |C| ≥ 5ε′n. Let disjoint subsets V1, . . . , Vk and a subgraph G∗ ⊆ G
satisfy the conditions of Corollary 4.2. So M ′ ≤ k ≤ M , and G∗ is an ε-regular cluster
tournament on clusters V1, . . . , Vk of equal size m, where

(1− ε)|G|
k

≤ m ≤ |G|
k

.

We shall show that G∗ has the property that for some i ∈ [k] we have

(10)
∑

j∈([k]\{i})

dij ≥
(1− 3ε′)k

2
and

∑

j∈([k]\{i})

dji ≥
(1− 3ε′)k

2
.

Indeed, if for some i ∈ [k] we have
∑

j∈([k]\{i}) dij < (1− 3ε′)k/2, then by Lemma 4.3 all but

at most ε′m vertices of Vi have at most

∑

j∈([k]\{i})

dijm+ ε′km <
(1− ε′)km

2
< n− 8εn

outneighbours in
⋃

j∈([k]\{i}) Vj (in the graph G∗), and hence at most n−8εn+(|G|−|G∗|)+
|Vi|+2ε|G| < n− εn outneighbours in G. So at most ε′m vertices of Vi lie in C. Similarly if
for some i ∈ [k] we have

∑

j∈([k]\{i}) dji < (1− 3ε′)k/2 then again at most ε′m vertices of Vi

lie in C. Since |C| ≥ 5ε′n > 2ε′mk+ (|G| − |G∗|), there must be some i ∈ [k] which satisfies
(10). Fix such an i. Then if at least αk values of j ∈ [k] \ {i} have dij ≥ α and dji ≥ α then
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G∗ contains a copy of T by Lemma 4.4 (applied with ε′ in the place of γ). Alternatively, if
at most αk values of j ∈ [k] \ {i} have dij ≥ α and dji ≥ α then since y, z ≥ ηn, G∗ contains
a copy of T by Lemma 4.5(iii) (again applied with ε′ in the place of γ). So in either case G
contains a copy of T , and so we may assume that |C| < 5ε′n.

So to prove (ii), observe that we must therefore have |B ∪ C ∪D| ≤ 5ε′n + 6βn ≤ 6ε′n.
Trivially |A| ≤ 2y + 2εn+ 1 and |E| ≤ 2z + 2εn+ 1, and so we must have

|A| ≥ 2n− 2− 6ε′n− 2z − 2εn − 1 ≥ 2y − 7ε′n, and

|E| ≥ 2n− 2− 6ε′n− 2y − 2εn− 1 ≥ 2z − 7ε′n.

So by Proposition 2.4, G[A] contains a γ-almost-regular subtournament on at least (2− γ)y
vertices, and G[E] contains a γ-almost-regular subtournament on at least (2− γ)z vertices.
Let Y and Z be the vertex sets of these subtournaments respectively. Then any vertex of
Y has at least (1− 2γ)y outneighbours in Y , and so has at most y + εn − (1− 2γ)y ≤ 3γn
outneighbours in Z. Similarly any vertex of Z has at least (1− 2γ)z inneighbours in Z, and
so has at most 3γn inneighbours in Y . So Y and Z are as required for (ii). �

The next lemma builds on the previous lemma and will in turn be used in the proof of
Lemma 6.4.

Lemma 6.3. Suppose that 1/n ≪ β, 1/∆′ ≪ α ≪ 1/∆ ≪ 1. Let T be a directed tree on
n vertices with |T∆′ | ≤ βn. Let y and z be the outweight and inweight of T∆′ respectively.
Suppose that forests F− and F+ are induced subgraphs of T which partition the vertices of
T , such that |F+| ≤ y + 2αn, |F−| ≤ z − αn, and every edge of T between F− and F+ is
directed from F− to F+. Suppose also that either

(i) no component of F+ has order greater than y − αn, or
(ii) the largest component T1 of F+ has |(T1)∆| ≥ 2.

Then any tournament G on 2n− 2 vertices contains a copy of T .

Proof. Let G be a tournament on 2n − 2 vertices, and let T1 and T2 be the largest and
second largest components of F+ respectively. Introduce new constants γ and η with

1/n≪ β, 1/∆′ ≪ γ ≪ α≪ 1/∆≪ η ≪ 1.

Then by Lemma 6.2 we may assume that y, z ≥ ηn. Also by Lemma 6.2 we may find subsets
Y,Z ⊆ V (G) such that |Y | ≥ (2 − γ)y, |Z| ≥ (2 − γ)z, G[Y ] is γ-almost-regular, each
vertex of Y has at most 3γn outneighbours in Z, and each vertex of Z has at most 3γn
inneighbours in Y . Then |Y | ≥ 3|F+|/2 + αn ≥ |F+| + |T2| + αn, and |Z| ≥ 2|F−| + αn,
and so by Lemma 2.7 any embedding of T1 in G[Y ] may be extended to an embedding of T
in G.

It therefore suffices to embed T1 in G[Y ]. If |T1| < y/2 then we may do this by The-
orem 1.3. If instead |T1| ≥ y/2 ≥ ηn/2 and we also have (i), then |T1| ≤ y − αn. Since
|Y | ≥ (2 − γ)y ≥ 2|T1| + αn we may embed T1 in G[Y ] by Theorem 1.2(i). Finally, if
|T1| ≥ ηn/2 and we also have (ii), then |T1| ≤ |F+| ≤ y + 2αn and |(T1)∆| ≥ 2. Since
γ ≤ 9α/η, G[Y ] is a 9α/η-almost-regular tournament on at least (2 − γ)y ≥ (2 − 9α/η)|T1|
vertices, and so we may embed T1 in G[Y ] by Lemma 5.8. So in any case we may embed T1

in G[Y ], completing the proof. �
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Observe that as with Lemma 2.7 a ‘dual’ form of Lemma 6.3 can be proved similarly. For
this we instead require that |F+| ≤ y − αn and |F−| ≤ z + 2αn, and also either that no
component of F− has order greater than z − αn or that the largest component T1 of F−

has |(T1)∆| ≥ 2. If these conditions are met then we may conclude that G contains a copy
of T . As with Lemma 2.7, we shall sometimes implicitly refer to this ‘dual’ when referring
to Lemma 6.3.

In the next lemma we show that Lemma 6.1 holds for any directed tree T whose core
tree T∆ is not a directed path in which most of the outweight and inweight of T∆ lies
at the endvertices of T∆. We say that a vertex t of a directed tree T is an outleaf if t
has one inneighbour and no outneighbours, or an inleaf if t has one outneighbour and no
inneighbours.

Lemma 6.4. Suppose that 1/n ≪ β, 1/∆′ ≪ 1/∆ ≪ σ ≪ 1. Let T be a directed tree on n
vertices with |T∆′ | ≤ βn, and let y and z be the outweight and inweight of T∆′ respectively.
Let G be a tournament on 2n − 2 vertices. Then either G contains a copy of T , or T∆ is a
directed path whose outleaf has outweight at least y − σn and whose inleaf has inweight at
least z − σn.

Proof. Introduce new constants α and η with

1/n≪ β, 1/∆′ ≪ α≪ 1/∆≪ σ ≪ η ≪ 1.

Then by Lemma 6.2 we may assume that y, z ≥ ηn. Also, if |T∆| = 1 then G contains a
copy of T by Lemma 3.1, so we may assume that |T∆| ≥ 2.

Suppose that some vertex t ∈ T has the property that w−(t) ≤ z − αn− 1, and also that
every outcomponent of t contains at most w+(t) − 3αn = |V +| − 3αn vertices. Then let
the set V − consist of t and every vertex in an incomponent of t, and let V + := V (T ) \ V −.
Then |V −| ≤ w−(t) + 1 ≤ z − αn, and every edge of T between V − and V + is directed
from V − to V +. Also, each component of T [V +] contains at most w+(t) − 3αn vertices.
Now, select a source vertex from the largest component of T [V +], delete this vertex from
V +, and add it to V −. Repeat this step until we have |V +| ≤ y + 2αn and |V −| ≤ z − αn.
For these final V + and V −, let F+ := T [V +] and let F− := T [V −]. Then F− and F+ are
forests which partition the vertices of T , with |F+| ≤ y + 2αn and |F−| ≤ z − αn. Also,
every edge of T between F− and F+ is directed from F− to F+. Finally, since we always
deleted a vertex from the largest component of T [V +], no component of F+ contains more
than |F+| − 3αn ≤ y−αn vertices. So by Lemma 6.3(i) G contains a copy of T . So we may
assume that

there is no vertex t ∈ T such that w−(t) ≤ z − αn − 1 and every outcomponent of

t contains at most w+(t) − 3αn vertices. In particular, this implies that for every

inleaf t of T∆, at least n/2∆ vertices of T lie in incomponents of t.
(†)

Indeed, if T∆ contains some inleaf t such that fewer than n/2∆ ≤ z−αn− 1 vertices of T
lie in incomponents of t, then by the definition of T∆ at least n/2∆ − 1 vertices of T lie in
outcomponents of t other than the outcomponent containing the remaining vertices of T∆.
Moreover, the definition of T∆ also implies that at least n/∆ vertices of T lie in the one
component of T − t containing T∆ − t. Altogether this shows that every outcomponent of t
contains at most w+(t) − n/2∆ + 1 ≤ w+(t) − 3αn vertices, a contradiction. By the same
argument with the roles of incomponents and outcomponents switched, we may assume that



28 DANIELA KÜHN, RICHARD MYCROFT, AND DERYK OSTHUS

there is no vertex t ∈ T such that w+(t) ≤ y − αn − 1 and every incomponent of t
contains at most w−(t) − 3αn vertices. It follows from this that for every outleaf t
of T∆, at least n/2∆ vertices of T lie in outcomponents of t.

(††)

Claim. If T∆ has at least two inleaves or at least two outleaves, then G contains a copy
of T .

To prove the claim, suppose that T∆ has two outleaves t and t′ (the proof for inleaves is
similar). Then we shall form a set V + of size between n− z+αn and y+2αn such that any
edge of T between V + and V − := V (G) \ V + is directed from V − to V +. We may do this
by repeatedly selecting a sink vertex of T , adding it to V + and removing it from T . Now,
by (††) at least n/2∆ vertices lie in outcomponents of t, and at least n/2∆ vertices lie in
outcomponents of t′. Furthermore, if T ′ is an outcomponent of t, then any sink vertex in
T ′ is a sink vertex in T , and the same is true if T ′ is instead an outcomponent of t′. So we
may form V + and V − as described above so that additionally V + contains at least n/2∆
vertices from outcomponents of t and at least n/2∆ vertices from outcomponents of t′. Fix
such a choice of V + and V −, and let F+ := T [V +] and F− := T [V −] be the induced forests.
Then |F+| ≤ y + 2αn and |F−| = n − |F+| ≤ z − αn, and every edge of T between F−

and F+ is directed from F− to F+. So if every component of F+ contains at most y − αn
vertices, then G contains a copy of T by Lemma 6.3(i). We may therefore assume that the
largest component T+ of F+ contains more than y − αn ≥ |F+| − n/4∆ vertices. Since F+

includes at least n/2∆ vertices from outcomponents of t and at least n/2∆ vertices from
outcomponents of t′, it follows that T+ contains at least n/4∆ vertices from outcomponents
of t and at least n/4∆ vertices from outcomponents of t′. As a consequence T+ must contain
t and t′. Furthermore, we must have t, t′ ∈ (T+)4∆, and so |(T+)4∆| ≥ 2. So G contains a
copy of T by Lemma 6.3(ii), which proves the claim.

We may therefore assume that T∆ has at most one outleaf and at most one inleaf. So T∆

is a path with one inleaf and one outleaf. Let t1, . . . , tx be the vertices of this path, labelled
so that t1 is the inleaf of T∆ (so t1 → t2), tx is the outleaf of T∆ (so tx−1 → tx), and for each
i ∈ [x− 1] there is an edge of T∆ between ti and ti+1.

Now suppose that the inweight of T∆ is less than z − 2αn. Let the set V − consist of all
vertices of T which lie in T∆ or in incomponents of T∆. Then |V −| ≤ z−2αn+ |T∆| ≤ z−αn
(since |T∆| ≤ |T∆′ | ≤ βn). Also, every edge of T between V − and V + := V (T ) \ V − is
directed from V − to V +. Choose a source vertex of T [V +], delete it from V +, and add
it to V −, and repeat this step until we have |V −| ≤ z − αn and |V +| ≤ y + 2αn. For
these final V − and V +, let F+ := T [V +] and F− := T [V −] be the induced forests. Then
|F−| ≤ z − αn, |F+| ≤ y + 2αn, and every edge of T between F− and F+ is directed from
F− to F+. Also, every component of F+ is contained within a component of T − T∆, and
so has order at most n/∆ ≤ y − αn by Proposition 2.1. So G contains a copy of T by
Lemma 6.3(i). We may therefore assume that the inweight of T∆ is at least z − 2αn, and
by a similar argument we may also assume that the outweight of T∆ is at least y − 2αn. It
follows that the outweight of T∆ is at most n− (z − 2αn) ≤ y + 3αn and that the inweight
of T∆ is at most n− (y − 2αn) ≤ z + 3αn.

We now suppose that fewer than y − σn vertices of T lie in outcomponents of tx. Let
T1 be the subtree of T formed by T∆ and all of its outcomponents. Initially let the set
V + := V (T1), so |V +| ≤ y + 4αn, and every edge of T between V + and V − := V (G) \ V +

is directed from V − to V +. Choose a sink vertex of T [V −], delete it from V − and add
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it to V +, and repeat this step until we have |V +| ≤ y + 4αn and |V −| ≤ z − 2αn. Fix
these final V + and V − and let F− := T [V −] and F+ := T [V +] be the induced forests. So
|F+| ≤ y + 4αn, |F−| ≤ z − 2αn, and every edge of T between F− and F+ is directed from
F− to F+. Also T1 ⊆ F+, so T1 is contained within a single component T+ of F+. Since
at least y − 2αn vertices of T lie in outcomponents of T∆, at least σn/2 vertices of T lie in
outcomponents of T∆ other than the outcomponents of tx. Moreover, since tx is an outleaf
of T∆, by (††) at least n/2∆ vertices lie in outcomponents of tx. So tx−1 ∈ (T+)2∆ and
tx ∈ (T+)2∆, and so |(T+)2∆| ≥ 2. But since the outweight of T∆ is at least y−2αn we have
|T+| ≥ |T1| ≥ y − 2αn, and so T+ must be the largest component of F+. So G contains a
copy of T by Lemma 6.3(ii).

So we may assume that at least y−σn vertices of T lie in outcomponents of tx, as desired.
If fewer than z − σn vertices of T lie in incomponents of t1, then we may similarly embed
T in G, so we may also assume that at least z − σn vertices of T lie in incomponents of
t1. So at most 3σn vertices of T do not lie in incomponents of t1 or outcomponents of tx.
It remains only to show that T∆ is a directed path. So suppose for a contradiction that
T∆ is not a directed path. Then there is some i ∈ [x − 1] such that ti ← ti+1. Choose the
minimal such i (note i > 1 as t1 is an inleaf of T∆). Then ti has two inneighbours and no
outneighbours in T∆. So at least two incomponents of ti contain at least n/∆ vertices, and
so no incomponent of ti contains more than w−(ti)−n/∆ ≤ w−(ti)− 3αn vertices. Also, at
most 3σn ≤ y − αn− 1 vertices of T lie in outcomponents of ti, contradicting (††). �

We can now prove that Sumner’s universal tournament conjecture holds for any large
directed tree T whose core tree T∆ contains precisely two vertices.

Lemma 6.5. Suppose that 1/n ≪ 1/∆′ ≪ 1. Let T be a directed tree on n vertices with
|T∆′ | = 2, and let G be a tournament on 2n− 2 vertices. Then G contains a copy of T .

Proof. Introduce new constants ∆, ε, γ and η with

1/n≪ β, 1/∆′ ≪ 1/∆≪ ε≪ γ ≪ η ≪ 1.

Then |T∆′ | = 2 ≤ βn. Also, since ∆ ≤ ∆′ we have T∆ ⊆ T∆′ . If |T∆| = 1, then by Lemma 3.1
G contains a copy of T . So we may assume that T∆ = T∆′ . Let t2 and t1 be the vertices of
T∆, labelled so that t2 → t1. Let y be the outweight of T∆, and let z be the inweight of T∆,
so y + z = n − 2. Then by Lemma 6.4 (with ε in the place of σ), we may assume that t2
has inweight at least z − εn, and also that t1 has outweight at least y − εn. Let T1 be the
subtree of T consisting of all vertices which lie in T∆ or in outcomponents of T∆, and let T2

be the subtree of T consisting of all vertices which lie in T∆ or in incomponents of T∆. So
|T1| = y + 2 and |T2| = z + 2. By Lemma 6.2(i) we may assume that y, z ≥ ηn.

As in the proof of Lemma 6.2, we partition the vertices of G into sets A,B,C,D and E,
where:

A := {v ∈ G : d+(v) ≤ y + εn},
B := {v ∈ G : y + εn < d+(v) < n− εn},
C := {v ∈ G : d+(v), d−(v) ≥ n− εn},
D := {v ∈ G : z + εn < d−(v) < n− εn},
E := {v ∈ G : d−(v) ≤ z + εn}.
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Since y, z ≥ ηn and ε ≪ η this is indeed a partition. Suppose first that |B| ≥ 2. Then we
may embed T∆ in G[B]. Let S∆ ⊆ B be the set of vertices occupied by T∆. Then every
vertex of S∆ has at least y + εn − 1 ≥ y + 2n/∆ outneighbours outside S∆ and at least
|G| − 2 − (n − εn) ≥ y + z + 2n/∆ inneighbours outside S∆. So by Lemma 2.6(c) we may
extend the embedding of T∆ in S∆ to an embedding of T1 in G. This embedding of T1

occupies at most y vertices of G outside S∆, and so we may apply Lemma 2.6(c) again to
extend the embedding of T∆ in S∆ to an embedding of T2 in G so that the embeddings of
T1 and T2 do not overlap outside T∆. Then together the embeddings of T1 and T2 form an
embedding of T in G. So we may assume that |B| ≤ 1. If |D| ≥ 2 we may embed T in G
in the same way by embedding T∆ in D and then extending this embedding to embeddings
of first T2 and then T1 in G which do not overlap outside T∆. So we may also assume that
|D| ≤ 1.

Now suppose that |C| ≥ 3. Then we may choose vertices v2, v1 ∈ C with v2 → v1
and |N+(v1) ∩ N+(v2)| ≥ ηn ≥ ηn/2 + 2n/∆. Embed t1 to v1 and t2 to v2. Then since
|N+(v1)|, |N+(v2)| ≥ n − εn ≥ y + 2n/∆, by Lemma 2.6(b) and (c) we may extend the
embedding of T∆ in {v1, v2} to an embedding of T1 in G so that at least ηn/2 vertices of T1

are embedded in N+(v1)∩N+(v2). Then at most y+2− ηn/2 vertices of N−(v1)∪N−(v2)
are occupied by this embedding, and so in each of N−(v1) and N−(v2) at least n− εn− (y+
2 − ηn/2) ≥ z + 2n/∆ vertices remain unoccupied. So by Lemma 2.6(a) and (c) we may
extend the embedding of T∆ in {v1, v2} to an embedding of T2 in G which does not overlap
with the embedding of T1 outside T∆. Then together these embeddings form an embedding
of T in G. So we may assume that |C| ≤ 2, and hence that |A ∪ E| ≥ 2n− 6.

Claim. Either some vertex of A has at least y outneighbours in A ∪B ∪D or some vertex
of E has at least z inneighbours in B ∪D ∪E.

Indeed, suppose for a contradiction that both of these statements are false. Then certainly
every vertex of A has fewer than y outneighbours in A and every vertex of E has fewer than z
inneighbours in E. So |A| ≤ 2y−1 and |E| ≤ 2z−1. Since y+z = n−2 and |A∪E| ≥ 2n−6,
we must have |A| = 2y − 1 and |E| = 2z − 1, and also |B| = 1, |D| = 1 and |C| = 2. Then
every vertex of A must have y − 1 outneighbours in A, and so no vertex of A can have an
outneighbour in B or in D. Likewise, every vertex of E must have z − 1 inneighbours in E,
and so no vertex of E can have an inneighbour in B or in D. But then if we let b be the
vertex in B and d be the vertex in D we have d+(b) = d+(d)±3, contradicting the definition
of B and D. So either some vertex of A has at least y outneigbours in A ∪ B ∪D or some
vertex of E has at least z inneighbours in B ∪D∪E. This completes the proof of the claim.

If some v ∈ A has at least y outneighbours in A∪B∪D, then we shall embed T1 in G[A] so
that we may then embed the incomponents of t2 and t1 in the unoccupied vertices of E and
A respectively. For this, note that |E| ≤ 2(z+εn)+1, so |A| ≥ 2n−2z−2εn−7 ≥ 2y−3εn
(and similarly we have |E| ≥ 2z−3εn). Since every a ∈ A has at most y+ εn outneighbours
in A, by Proposition 2.4 G[A] contains a γ-almost-regular subtournament on at least (2−γ)y
vertices. Let Y be the vertex set of this subtournament. Now,

|(A ∪B ∪D) \ Y | ≤ 2 + (2y + 2εn + 1)− (2− γ)y ≤ 2γy,

so v must have at least (1− 2γ)y outneighbours in Y . Also, since v ∈ A we have

(1− 2γ)y ≤ |N+(v) ∩ Y | ≤ y + εn ≤ (1 + 2γ)y.
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So at most 10γy vertices of N+(v)∩Y have more than (1−3γ)y outneighbours in N+(v)∩Y ,
and at most 10γy vertices of N+(v)∩Y have more than (1−3γ)y inneighbours in N+(v)∩Y .
Since every vertex of Y has at least (1 − 2γ)y inneighbours in Y and at least (1 − 2γ)y
outneighbours in Y , this means that at least |N+(v)∩Y |−20γy ≥ 3n/∆ vertices of N+(v)∩Y
have at least γy ≥ 6n/∆ outneighbours in Y \ N+(v) and at least 6n/∆ inneighbours in
Y \ N+(v). Let T+ be the tree formed by t1 and its outcomponents, so |T+| ≤ y + 1.
Then every component of T+ − t1 is a component of T − T∆ and so has order at most
n/∆ by Proposition 2.1. So by Lemma 2.5 (applied with N := N+(v) ∩ (A ∪ B ∪ D) and
X := Y \N+(v)), we may embed T+ in G[A ∪ B ∪D] so that t1 is embedded to v and at
most 4n/∆ vertices are embedded outside N+(v).

Since v ∈ A we have d+(v) ≤ y + εn, and so v has at least

(11) |Y | − 1− (y + εn)− 4n/∆ ≥ 7εn

inneighbours in Y which are not occupied by the embedding of T+. Let T ∗ be the tree formed
by all vertices of T which do not lie in outcomponents of t1 or incomponents of t2. Then every
edge incident to t1 in T ∗ is directed towards t1. Also, |T ∗| ≤ n−(y−εn)−(z−εn) = 2εn+2,
so certainly every component of T ∗ − t1 has order at most 2εn+ 1. Together with (11) and
Theorem 1.3 this shows that we may extend the embedding of t1 in {v} to an embedding of
T ∗ in {v} ∪ (N−(v) ∩ Y ) so that the embeddings of T+ and T ∗ only overlap in the vertex
t1. Then in particular t2 is embedded to some vertex v2 ∈ Y .

To complete the embedding, observe that every vertex of Y has at least (1 − 2γ)y out-
neighbours in Y , and therefore at most 3γy outneighbours outside Y . So v2 has at least
|E| − 3γy ≥ z + 2n/∆ inneighbours in E, none of which have been occupied by the embed-
dings of T+ and T ∗. Let T− be the subtree of T consisting of t2 and all of its incomponents.
Then |T−| ≤ z+1, and each component of T−−t2 is a component of T−T∆ and so has order
at most n/∆ by Proposition 2.1. So by Lemma 2.6(c) we may extend the embedding of t2
in {v2} to an embedding of T− in {v2}∪E. These embeddings together form an embedding
of T in G.

If instead some v ∈ E has at least z inneighbours in B ∪ D ∪ E then we may similarly
embed T in G by choosing Z to be the vertex set of a γ-almost-regular subtournament
of G[E] on at least (2 − γ)z vertices and embedding T− in G[B ∪D ∪ E], then embedding
T ∗ − t2 in the unoccupied vertices of Z, before finally embedding T+ − t1 in G[A]. �

We can now give the proof of Lemma 6.1. It was necessary to prove Lemma 6.5 separately
from this as the method of proof does not hold for |T∆| = 2 (we cannot obtain the partition
of V (G) into Y ∗ and Z∗ in this case).

Proof of Lemma 6.1. Introduce new constants γ, α,∆ and η with

1/n≪ β, 1/∆′ ≪ 1/∆≪ γ ≪ α≪ η ≪ 1.

Let y′ be the outweight of T∆′ and let z′ be the inweight of T∆′ . Then by Lemma 6.2 we
may assume that y′, z′ ≥ ηn. Similarly let y and z be the outweight and inweight of T∆

respectively. If |T∆| = 1, then G contains a copy of T by Lemma 3.1. If instead |T∆| = 2
then G contains a copy of T by Lemma 6.5. So we may assume that ℓ := |T∆| ≥ 3, and by
Lemma 6.4 we may assume that T∆ is a directed path. Let t1, . . . , tℓ be the vertices of T∆,
labelled so that ti → ti+1 for each i ∈ [ℓ− 1]. Then by Lemma 6.4 we may also assume that
the inweight of t1 is at least z′ − γn and that the outweight of tℓ is at least y′ − γn. This
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implies that z ≥ z′ − γn and y ≥ y′ − γn. Since y′ + z′ + |T∆′ | = y + z + |T∆| = n it follows
that we must have

(12) y = y′ ± 2γn and z = z′ ± 2γn.

Finally, by Lemma 6.2 we may assume that there are disjoint sets Y,Z ⊆ V (G) such that:

(a) |Y | ≥ (2− γ)y′ and |Z| ≥ (2− γ)z′,
(b) G[Y ] and G[Z] are γ-almost-regular, and
(c) any vertex of Y has at most 3γn outneighbours in Z and any vertex of Z has at

most 3γn inneighbours in Y .

Let X := V (G)\(Y ∪Z), so |X| ≤ 2γn. Let T ∗ be the subtree of T formed by deleting from T
all vertices in outcomponents of tℓ or incomponents of t1. So |T ∗| ≤ n−(z′−γn)−(y′−γn) ≤
3γn. Let T+ be the subtree of T formed by tℓ and its outcomponents, and let T− be the
subtree of T formed by t1 and its incomponents. So |T+| ≤ y + 1 and |T−| ≤ z + 1. Also,
each component of T+ − tℓ and each component of T− − t1 is a component of T − T∆ and
so has order at most n/∆ by Proposition 2.1.

Suppose that some vertex v ∈ X has at least αn inneighbours in Y and at least αn
outneighbours in Z. Since ℓ ≥ 3, we may choose i with 1 < i < ℓ. Embed ti to v. Let Ta

be the subtree of T ∗ consisting of ti and all of its outcomponents, and let Tb be the subtree
of T ∗ consisting of ti and all of its incomponents. Then |Ta|, |Tb| ≤ |T ∗| ≤ 3γn. So by
Lemma 2.6 we may extend the embedding of ti in {v} to an embedding of Ta in Z∪{v}, and
similarly we may extend the embedding of ti in {v} to an embedding of Tb in Y ∪{v}. Then
in particular t1 is embedded to some v1 ∈ Y and tℓ is embedded to some vℓ ∈ Z. So v1 has
at least |Z| − 3γn ≥ z + 3γn+ 2n/∆ inneighbours in Z, at most 3γn of which are occupied
by the embedding of Ta. Similarly vℓ has at least |Y |−3γn ≥ y+3γn+2n/∆ outneighbours
in Y , at most 3γn of which are occupied by the embedding of Tb. So by Lemma 2.6 we
may extend the embedding of t1 in {v1} to an embedding of T− in {v1}∪Z and also extend
the embedding of tℓ in {vℓ} to an embedding of T+ in {vℓ} ∪ Y so that these embeddings
together form a copy of T in G.

So we may assume that no vertex of X has at least αn inneighbours in Y and at least
αn outneighbours in Z. Let X+ ⊆ X consist of all vertices of X with fewer than αn
inneighbours in Y , and let X− ⊆ X \X+ consist of all vertices of X \X+ with fewer than
αn outneighbours in Z. Let Y ∗ := Y ∪X− and let Z∗ := Z ∪X+, so Y ∗ and Z∗ partition
the vertices of G. Then any vertex of Y ∗ has at most αn outneighbours in Z, and thus at
least z+αn inneighbours in Z∗ (by (a), (12) and the fact that z′ ≥ ηn). Similarly any vertex
of Z∗ has at most αn inneighbours in Y , and therefore at least y+αn outneighbours in Y ∗.
Let W ⊆ V (G) consist of all vertices in Y ∗ with at least y + αn outneighbours in Y ∗ and
all vertices in Z∗ with at least z + αn inneighbours in Z∗.

Now suppose that |W | ≥ |T∆|. Since T∆ is a directed path, by Theorem 1.5 we may
embed T∆ in G[W ]. Let S∆ ⊆ W be the set of vertices occupied by this embedding. Then
|S∆| = |T∆| ≤ |T∆′ | ≤ βn. So every vertex of S∆ has at least y + αn/2 ≥ y + 2n/∆
outneighbours in Y ∗ \S∆ and at least z+αn/2 ≥ z+2n/∆ inneighbours in Z∗ \S∆. Let T1

be the subtree of T consisting of T∆ and all of its outcomponents, and let T2 be the subtree
of T consisting of T∆ and all of its incomponents. So |T1| = ℓ + y and |T2| = ℓ + z. Also,
each component of T1−T∆ and each component of T2−T∆ is a component of T −T∆, and so
has order at most n/∆ by Proposition 2.1. So by Lemma 2.6 we may extend the embedding
of T∆ in S∆ to an embedding of T1 in Y ∗ ∪S∆. Similarly by Lemma 2.6 we may extend the
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embedding of T∆ in S∆ to an embedding of T2 in Z∗ ∪ S∆. These embeddings of T1 and T2

do not overlap outside T∆, and so together form an embedding of T in G.
We may therefore assume that |W | < |T∆|, and hence that |G−W | ≥ 2n − 1 − ℓ. Since

y+z = n−ℓ, we must have either |Y ∗\W | ≥ 2y or |Z∗\W | ≥ 2z. Suppose that |Y ∗\W | ≥ 2y.
Then Y ∗ \W contains a vertex vℓ with at least y outneighbours in Y ∗. So we may choose a
set N ⊆ N+(vℓ) ∩ Y ∗ with |N | = y. Then |N ∩ Y | ≥ y − (|Y ∗| − |Y |) ≥ y − 2γn. Now, by
(a), (b) and (12) every vertex of Y has at least (1 − 2

√
γ)y inneighbours in Y and at least

(1− 2
√
γ)y outneighbours in Y . Since |N | = y, at most 6

√
γy vertices of N ∩ Y have more

than (1 − 3
√
γ)y inneighbours in N ∩ Y , and at most 6

√
γy vertices of N ∩ Y have more

than (1− 3
√
γ)y outneighbours in N ∩ Y . So at least |N ∩ Y | − 12

√
γn ≥ 3n/∆ vertices of

N have at least 6n/∆ inneighbours in Y ∗ \ (N ∪ {vℓ}) and at least 6n/∆ outneighbours in
Y ∗ \ (N ∪ {vℓ}). This means that by Lemma 2.5 (applied with Y ∗ \ (N ∪ {vℓ}) playing the
role of X) we may embed T+ in Y ∗ with tℓ embedded to vℓ, and at most 4n/∆ vertices of
T+ embedded outside N . Since vℓ /∈W , vℓ has at most y+αn outneighbours in Y ∗, and so
vℓ has at least |Y | − 1− (y + αn)− 4n/∆ ≥ 9γn inneighbours in Y which are not occupied
by the embedding of T+. Since |T ∗| ≤ 3γn, by Lemma 2.6 we may extend the embedding
of tℓ in vℓ to an embedding of T ∗ in Y which only overlaps the embedding of T+ in tℓ. The
vertex t1 of T will therefore be embedded to some vertex v1 ∈ Y . By (3), v1 then has at
least |Z|−3γn ≥ z+2n/∆ inneighbours in Z, none of which will have been occupied by the
embeddings of T ∗ and T+ so far. So by Lemma 2.6 we may extend the embedding of t1 in
{v1} to an embedding of T− in Z ∪ {v1}. Then the embeddings of T+, T− and T ∗ combine
to form an embedding of T in G. If instead we have |Z∗ \W | ≥ 2z, then we may embed T
in G similarly, first embedding T− in Z∗, then embedding T ∗ in the unoccupied vertices of
Z, and finally embedding T+ in Y . So in either case G contains a copy of T , completing the
proof. �

7. Proof of Theorem 1.1

Having proved that Sumner’s conjecture holds for directed trees of small core, we now
show that the same is true for directed trees of large core, which will complete the proof of
Theorem 1.1. We begin with an embedding result similar to Lemma 6.3.

Lemma 7.1. Suppose that 1/n ≪ 1/∆ ≪ µ ≪ ν ≪ η ≪ γ ≪ α ≪ β ≪ 1. Let T
be a directed tree on n vertices, and let forests F− and F+ be induced subgraphs of T
which partition the vertices of T such that |F+| ≥ 6αn. Suppose also that every edge of T
between F− and F+ is directed from F− to F+. Let Y and Z be disjoint sets with |Y | ≥
2|F+|−2αn and |Z| ≥ 2|F−|+αn, and let G be a tournament on vertex set Y ∪Z such that
every vertex of Y has at most γ|G| outneighbours in Z and every vertex of Z has at most
γ|G| inneighbours in Y . Finally, let T+

1 be the largest component of F+, and suppose that
either

(i) |T+
1 | ≤ |F+| − 3αn,

(ii) G[Y ] is a robust (µ, ν)-outexpander with δ0(G[Y ]) ≥ η|Y | and |(T+
1 )∆| ≥ βn, or

(iii) ∆(T+
1 ) ≤ ∆.

Then G contains a copy of T .

Proof. First observe that if |G| ≥ 3n, then G contains a copy of T by Theorem 1.3. So we
may assume that |G| < 3n, and hence that every vertex of Y has at most 3γn outneighbours
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in Z and every vertex of Z has at most 3γn inneighbours in Y . Let T+
2 be the second largest

component of F+. Then |F+| − |T+
2 | ≥ |F+|/2 ≥ 3αn, so |Y | ≥ |F+| + |T+

2 | + αn. Since
|Z| ≥ 2|F−| + αn, by Lemma 2.7 any embedding of T+

1 in G[Y ] may be extended to an
embedding of T in G. So it is sufficient to embed T+

1 in G[Y ].
Note that |Y | ≥ 10αn, so if |T+

1 | < αn, then G[Y ] contains a copy of T+
1 by Theorem 1.3.

Alternatively, suppose that |T+
1 | ≥ αn. If (i) holds, then |T+

1 | ≤ |Y |/2 − 2αn, and so
|Y | ≥ (2 + α)|T+

1 |. So G[Y ] contains a copy of T+
1 by Theorem 1.2(i). If instead (ii) holds

then G contains a copy of T+
1 by Lemma 5.3. Finally, if (iii) holds then G contains a copy

of T+
1 by Theorem 1.2(ii), completing the proof. �

Observe that as with Lemma 2.7 and Lemma 6.3, a ‘dual’ form of Lemma 7.1 can be
proved similarly. For this we instead require that that |F−| ≥ 6αn, |Y | ≥ 2|F+| + αn and
|Z| ≥ 2|F−| − 2αn, and also either that the largest component (T−

1 )∆ of F− contains at
most |F−| − 3αn vertices, or that G[Z] is a robust (µ, ν)-outexpander with δ0(G[Z]) ≥ η|Z|
and |(T−

1 )∆| ≥ βn, or that ∆(T−
1 ) ≤ ∆. If these conditions are met we may conclude that G

contains a copy of T . As with Lemma 2.7, we shall sometimes implicitly refer to this ‘dual’
when referring to Lemma 7.1.

The next lemma is our final result we need to proof Theorem 1.1. It states that if we can
find disjoint subsets Y,Z ⊆ V (G) containing almost all of the vertices of G, so that G[Y ] and
G[Z] are robust outexpanders of large minimum semidegree with almost all edges between
Y and Z directed the same way, then G contains a copy of T .

Lemma 7.2. Suppose that 1/n ≪ 1/∆ ≪ µ ≪ ν ≪ η ≪ γ ≪ α ≪ β ≪ 1. Let T be a
directed tree on n vertices with |T∆| ≥ βn. Let Y and Z be disjoint sets with |Y ∪ Z| ≥
(2− α)n, and let G be a tournament on vertex set Y ∪ Z such that

(i) G[Y ] is a robust (µ, ν)-outexpander with δ0(G[Y ]) ≥ η|Y |,
(ii) G[Z] is a robust (µ, ν)-outexpander with δ0(G[Z]) ≥ η|Z|, and
(iii) every vertex of Y has at most γ|G| outneighbours in Z, and every vertex of Z has at

most γ|G| inneighbours in Y .

Then G contains a copy of T .

Proof. If |Y ∪ Z| ≥ (2 + α)n, then G contains a copy of T by Theorem 1.2(i). So we may
assume that |Y ∪ Z| = (2 ± α)n. Suppose first that |Z| < 64αn. Then |Y | ≥ (2 − 65α)n,
and hence G[Y ] contains a copy of T by (i) and Lemma 5.3. Similarly if |Y | < 64αn, then
by (ii) and Lemma 5.3 G[Z] contains a copy of T . So we may assume that |Y | ≥ 64αn and
|Z| ≥ 64αn.

So we may form a forest F+
1 of order between |Y |/2+4αn and |Y |/2+5αn by repeatedly

choosing a sink vertex of T , deleting it from T and adding it to F+
1 . Let F−

1 := T − F+
1 , so

that

(13)
|Z|
2
− 6αn ≤ n− |Y |

2
− 5αn ≤ |F−

1 | ≤ n− |Y |
2
− 4αn ≤ |Z|

2
− 3αn.

We therefore have |Y | ≥ 2|F+
1 | − 10αn and |Z| ≥ 2|F−

1 |+6αn. Note also that |F+
1 | ≥ 36αn.

Let T ′ be the largest component of F+
1 . If |T ′| ≤ |F+

1 |−18αn or |T ′
∆| ≥ βn/3 then G contains

a copy of T by (i), (iii) and Lemma 7.1. So we may assume that |T ′| > |F+
1 | − 18αn, and

that |T ′
∆| < βn/3.
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Next we form a forest F−
2 which is a subgraph of T and which contains F−

1 . To do this,
take F−

2 initially to be F−
1 . Then select a source vertex of F+

1 , delete it from F+
1 and add it

to F−
2 , and repeat this step until |Z|/2+4αn ≤ |F−

2 | ≤ |Z|/2+5αn, and let F+
2 := T −F−

2 .
Then by (13) we have |F+

1 ∩ F−
2 | = |F−

2 | − |F−
1 | ≤ 11αn. Also |F+

2 | ≤ |Y |/2 − 3αn, and so
we have both |Z| ≥ 2|F−

2 | − 10αn and |Y | ≥ 2|F+
2 |+ 6αn. Observe also that |F−

2 | ≥ 36αn.
Let T ′′ be the largest component of F−

2 . Then if |T ′′| ≤ |F−
2 | − 18αn then G contains a

copy of T by (ii), (iii) and Lemma 7.1. So we may assume that |T ′′| > |F−
2 | − 18αn. Clearly

|T ′ ∩ T ′′| ≤ |F+
1 ∩ F−

2 | ≤ 11αn, and so |T ′ ∪ T ′′| ≥ |T ′| + |T ′′| − |T ′ ∩ T ′′| > (1 − 47α)n.
This implies that |T ′′

∆| ≥ βn/3, as otherwise by Lemma 2.3 we would have |T∆| < βn, a
contradiction. Thus G contains a copy of T by (ii), (iii) and Lemma 7.1, as desired. �

Proof of Theorem 1.1. Introduce new constants with

1/n≪ 1/∆≪ µ≪ ν ≪ η ≪ γ ≪ α≪ α′ ≪ β ≪ 1.

If |T∆| < βn then G contains a copy of T by Lemma 6.1. So we may assume that |T∆| ≥ βn.
Let x := |T∆|, let y be the outweight of T∆, and let z be the inweight of T∆, so x+y+z = n.
Also let T1 be the subtree of T formed by T∆ and all outcomponents of T∆, and let T2 be
the subtree of T formed by T∆ and all incomponents of T∆, so |T1| = x+y, and |T2| = x+z.

By Lemma 5.2 we may choose disjoint subsets S1, . . . , Sr of V (G) such that

(i) |⋃i∈[r] Si| ≥ (1− γ)|G|,
(ii) for each i ∈ [r], any vertex v ∈ Si has at most γ|G| inneighbours in ⋃

j>i Sj and at

most γ|G| outneighbours in ⋃

j<i Sj, and

(iii) for each i ∈ [r], either G[Si] is a robust (µ, ν)-outexpander with δ0(G[Si]) ≥ η|G| or
|Si| < γ|G|.

Let i be maximal such that |S1 ∪ · · · ∪ Si−1| < max{2(z − αn), 4αn}, and let j be minimal
such that |Sj+1 ∪ · · · ∪ Sr| < max{2(y − αn), 4αn}. Since y + z ≤ n − βn, by (i) we have
i ≤ j (though equality is possible here). Let Z := S1 ∪ · · · ∪ Si, let Y := Sj ∪ · · · ∪ Sr and
let X := Si+1 ∪ · · · ∪ Sj−1. Then we have

(14) |Z \ Si| < max{2(z − αn), 4αn} and |Y \ Sj| < max{2(y − αn), 4αn}.
Also, by the maximality of i and the minimality of j we have

(15) |Z| ≥ z + αn and |Y | ≥ y + αn.

Claim. If |Z \ Si| ≥ 11αn or |Y \ Sj | ≥ 11αn then G contains a copy of T .

To prove the claim, suppose first that |Y \ Sj| ≥ 11αn. Let X− := Z ∪ X ∪ Sj and
X+ := Y \ Sj . By (14) we have |X+| < 2y − 2αn. Also, by (ii) every vertex in X− has
at most γ|G| inneighbours in X+ and every vertex in X+ has at most γ|G| outneighbours
in X−. Now, T1 − T∆ is a forest on y > |X+|/2 + αn vertices in which each component
has order at most n/∆ by Proposition 2.1(iv). So by repeatedly deleting a source vertex
of T1 − T∆, we may obtain a subforest F+ on between |X+|/2 + 2αn/3 and |X+|/2 + αn
vertices. So |F+| ≥ 6αn, and each component of F+ has order at most n/∆ ≤ |F+| − 3αn.
Let F+ := T − F−, so every edge of T between F− and F+ is directed from F− to F+.
Since |X+|+ |X−| ≥ (1− γ)|G| by (i), we have

|F−| = n− |F+| ≤ n− |X
+|
2
− 2αn

3
≤ |X

−|
2
− αn

2
.
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So |X−| ≥ 2|F−| + αn, and |X+| ≥ 2|F+| − 2αn, and so G contains a copy of T by
Lemma 7.1(i). If instead |Z \Si| ≥ 11αn then G contains a copy of T similarly. This proves
the claim.

We may therefore assume that |Z \ Si| < 11αn and |Y \ Sj | < 11αn. Suppose first that
i = j. Then |Si| ≥ (1 − γ)|G| − 22αn ≥ (2 − α′)n, so by (iii) G[Si] is a robust (µ, ν)-
outexpander with δ0(G[Si]) ≥ η|G| ≥ η|Si|. Thus G contains a copy of T by Lemma 5.3.
Now suppose instead that i 6= j, and also that |X| < 12α′n. Then |Si ∪ Sj | ≥ (1− γ)|G| −
|X| − 22αn ≥ (2− 13α′)n. Now if |Si| < γ|G|, then we must have |Sj | ≥ (2− 14α′)n. Then
by (iii) G[Sj ] must be a robust (µ, ν)-outexpander with δ0(G[Sj ]) ≥ η|G| ≥ η|Sj |, so G[Sj ]
contains a copy of T by Lemma 5.3. Alternatively, if |Sj | < γ|G| then G[Si] contains a copy
of T similarly. Finally, if |Si|, |Sj | ≥ γ|G|, then by (iii) G[Si] and G[Sj ] must both be robust
(µ, ν)-outexpanders with δ0(G[Si]) ≥ η|G| ≥ η|Si| and δ0(G[Sj ]) ≥ η|Sj |. Also, by (ii) every
vertex of Si has at most γ|G| inneighbours in Sj, and every vertex of Sj has at most γ|G|
outneighbours in Si. So G[Si ∪ Sj] contains a copy of T by Lemma 7.2.

So we may assume that i 6= j, and also that |X| ≥ 12α′n. We next consider two cases for
the size of X, in each case showing that T may be embedded in G.

Case 1: |X| ≥ (1 + α)x.
Since by Proposition 2.1(iii) we have ∆(T∆) ≤ ∆, by Theorem 1.2(ii) we may embed T∆

in G[X]. Let X ′ ⊆ X consist of the vertices occupied by this embedding. Now, by (ii)
every vertex of X ′ has at most γ|G| inneighbours in Y , and hence by (15) at least y+αn/2
outneighbours in Y . Since by Proposition 2.1(iv) every component of T1 − T∆ has order at
most n/∆, by Lemma 2.6 we may extend the embedding of T∆ in G[X ′] to an embedding
of T1 in G[X ′∪Y ]. Similarly by (ii) every vertex of X ′ has at most γ|G| outneighbours in Z,
and hence by (15) at least z + αn/2 inneighbours in Z. Since by Proposition 2.1(iv) every
component of T2−T∆ has order at most n/∆, by Lemma 2.6 we may extend the embedding
of T∆ in G[X ′] to an embedding of T2 in G[X ′ ∪ Z]. Since these embeddings of T1 and T2

only overlap in T∆, they together form an embedding of T in G.

Case 2: |X| < (1 + α)x.
Observe that if |Z| ≤ 2z+αn and |Y | ≤ 2y+αn, then by (i) and the fact that x = |T∆| ≥

βn we have

|X| ≥ (1− γ)|G| − |Z| − |Y | ≥ 2n − 2z − 2y − 3αn ≥ 2x− 3αn ≥ (1 + α)x,

contradicting our assumption on X. So at least one of |Z| > 2z + αn and |Y | > 2y + αn
must hold. This gives us three further cases, which we consider separately.

Case 2(a): |Z| > 2z + αn, |Y | ≤ 2y + αn.
In this case it is sufficient to embed T2 in G[X ∪Z]. Indeed, by (ii) every vertex of X ∪Z

has at most γ|G| inneighbours in Y , and therefore by (15) at least y + αn/2 outneighbours
in Y . Since by Proposition 2.1(iv) every component of T − T2 has order at most n/∆, any
embedding of T2 in G[X ∪ Z] can be extended to an embedding of T in G by Lemma 2.6.

Now, if |X ∪ Z| ≥ 2|T2| + 2αn, then we may embed T2 in G[X ∪ Z] by Theorem 1.2(i).
So we may assume that |X ∪ Z| < 2|T2|+ 2αn. Also, by (i) we have

|X ∪ Z| ≥ (1− γ)|G| − |Y | ≥ 2n− 2y − 2αn = 2x+ 2z − 2αn = 2|T2| − 2αn.

So |X ∪ Z| = 2|T2| ± 2αn. In particular, since |T2| ≥ |T∆| ≥ βn, we have |X ∪ Z| ≥ βn.
By repeatedly deleting a source vertex of T∆, we may form a forest F which is an induced
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subgraph of T∆ (consisting of the undeleted vertices of T∆) so that every edge between
T∆ − F and F is directed from T∆ to F , and also so that

|X|
2

+
2α′|T2|

3
≤ |F | ≤ |X|

2
+ α′|T2|.

Let F− := T2 − F . Then

|F−| = |T2| − |F | ≤ |T2| −
|X|
2
− 2α′|T2|

3
≤ |Z|

2
− α′|T2|

2
.

So |X| ≥ 2|F | − 2α′|T2| and |Z| ≥ 2|F−|+ α′|T2|. Also, |F | ≥ |X|/2 ≥ 6α′|T2|, and since F
is a subtree of T∆, by Proposition 2.1(iii) each component C of F has ∆(C) ≤ ∆. Since
by (ii) every vertex of X has at most γ|G| ≤ 2γ|X ∪ Z|/β outneighbours in Z and every
vertex of Z has at most γ|G| ≤ 2γ|X ∪ Z|/β inneighbours in X, G[X ∪ Z] contains a copy
of T2 by Lemma 7.1, as required.

Case 2(b): |Z| ≤ 2z + αn, |Y | > 2y + αn.
In this case T may be embedded in G by the same method as in the previous case, with

the roles of inneighbours and outneighbours switched. So we begin by embedding T1 in
G[X ∪ Y ], and then use Lemma 2.6 to extend this embedding to an embedding of T in G.

Case 2(c): |Z| > 2z + αn, |Y | > 2y + αn.
In this case, we shall partition T into three forests as follows. Initially take F− to be the

forest formed by all incomponents of T∆, and F+ to be the forest formed by all outcompo-
nents of T∆. Then select a source vertex of T∆, delete it from T∆ and add it to F−. Repeat
this step until 2|F−| + αn ≤ |Z| ≤ 2|F−|+ 2αn. Next, select a sink vertex of T∆, delete it
from T∆ and add it to F+. Repeat this step until 2|F+|+ αn ≤ |Y | ≤ 2|F+| + 2αn. Then
let F consist of all vertices remaining in T∆. So F is a subgraph of T∆. Also, by (i)

|F | = n− |F−| − |F+| ≤ n− |Y |/2− |Z|/2 + 2αn ≤ |X|/2 + 3αn,

so (since |X| ≥ α′n) |X| ≥ |F |+ αn. We shall embed the components of F−, F and F+ in
turn amongst the vertices of Z, X and Y respectively. Indeed, the proof is similar to the
proof of Lemma 2.7, but with three forests instead of two.

Let C1, . . . , Cs be the components of F−, F and F+, ordered so that C1 is a component of
F , and for each i ∈ [s−1], Ci+1 has precisely one neighbour in C1∪· · ·∪Ci. We shall embed
the Ci in turn, so that each component of F− is embedded in G[Z], each component of F is
embedded in G[X], and each component of F+ is embedded in G[Y ]. We also require that
after each Ci is embedded, the embeddings of C1, . . . , Ci together form an embedding in G of
the subtree of T induced by the vertices of C1, . . . , Ci. So suppose that we have successfully
embedded C1, . . . , Ci−1 in this manner, and we now wish to extend this embedding to include
Ci. Then if i ≥ 2, there is precisely one edge of T between Ci and C1 ∪ · · · ∪ Ci−1. Let
t be the endvertex of this edge in C1 ∪ · · · ∪ Ci−1, and let v be the vertex to which t was
embedded. If Ci is a component of F−, then i ≥ 2, the edge between t and Ci is directed
towards t and v ∈ X ∪ Y . So we may let S consist of the inneighbours of v in Z. Then by
(ii) we have |S| ≥ |Z| − γ|G|. Let S′ ⊆ S consist of the unoccupied vertices of S. Since at
most |F−| − |Ci| vertices of S are occupied by the embeddings of C1, . . . , Ci−1,

|S′| ≥ |Z| − γ|G| − |F−|+ |Ci| ≥ 2|Ci|+ αn/2.

So if |Ci| < αn/2 then G[S′] contains a copy of T by Theorem 1.3, and if |Ci| ≥ αn/2
then G[S′] contains a copy of T by Theorem 1.2(i). Alternatively, if Ci is a component of
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F+, then i ≥ 2, the edge between t and Ci is directed towards Ci and v ∈ X ∪ Z. So we
may let S consist of the outneighbours of v in Y , and let S′ ⊆ S consist of the unoccupied
vertices of S. Then we may embed Ci in S′ by the same argument as used when Ci is
a component of F−. Finally, suppose that Ci is a component of F . Then if i ≥ 2 and
t ∈ F+, let S consist of the inneighbours of v in X. If instead i ≥ 2 and t ∈ F−, let S
consist of the outneighbours of v in X. If i = 1 then let S = X. Then by (ii) we have
|S| ≥ |X| − γ|G|. Again let S′ ⊆ S consist of the unoccupied vertices of S. Then it suffices
to embed Ci in G[S′]. Since at most |F | − |Ci| vertices have been embedded in S, we have
|S′| ≥ |X| − γ|G| − |F | + |Ci| ≥ |Ci|+ αn/2. Now, Ci is a subtree of T∆, so ∆(Ci) ≤ ∆ by
Proposition 2.1(iii). So if |Ci| ≥ αn/4, then G[S′] contains a copy of Ci by Theorem 1.2(ii).
On the other hand, if |Ci| < αn/4, then G[S′] contains a copy of Ci by Theorem 1.3. So in
any case we may embed Ci as desired, completing the proof. �
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[7] F. Havet and S. Thomassé, Median orders of tournaments: a tool for the second neighbourhood problem

and Sumner’s conjecture, Journal of Graph Theory 35 (2000), 244–256.
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[12] D. Kühn, D. Osthus and A. Treglown, Hamiltonian degree sequences in digraphs, Journal of Combina-

torial Theory, Series B 100 (2010), 367–380.
[13] L. Redei, Ein kombinatorischer Satz, Acta Lit. Szeged 7 (1934), 39–43.
[14] K.B. Reid and N.C. Wormald, Embedding oriented n-trees in tournaments, Studia Scientiarum Mathe-

maticarum Hungarica 18 (1983) 377–387.
[15] A. Thomason, Paths and cycles in tournaments, Transactions of the American Mathematical Society

296 (1986), 167–180.
[16] N.C. Wormald, Subtrees of large tournaments, Combinatorial Mathematics X, Springer Lecture Notes

in Mathematics 1036 (1983) 417–419.

Daniela Kühn, Deryk Osthus,

School of Mathematics,

University of Birmingham,

Birmingham,

B15 2TT,

United Kingdom,

{kuehn,osthus}@maths.bham.ac.uk



A PROOF OF SUMNER’S UNIVERSAL TOURNAMENT CONJECTURE FOR LARGE TOURNAMENTS39

Richard Mycroft,

School of Mathematical Sciences,

Queen Mary, University of London,

London,

E1 4NS,

United Kingdom,

r.mycroft@qmul.ac.uk


	1. Introduction
	1.1. Introduction
	1.2. Outline of the proof

	2. Definitions and basic tools
	2.1. Notation
	2.2. The core tree
	2.3. Almost-regular tournaments.
	2.4. Some embedding results

	3. Embedding trees whose core tree is a single vertex
	4. The regularity lemma and its applications to embedding trees
	5. Embedding trees in robust outexpander tournaments
	6. Embedding trees whose core tree is small
	7. Proof of Theorem 1.1
	References

