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Vertex Structure

of Master Corner Polyhedra

Vladimir A. Shlyk

This paper focuses on vertices of the master corner polyhedra P (G, g0), the core of the group-

theoretical approach to integer linear programming. We introduce two combinatorial operations

that transform each vertex of P (G, g0) to adjacent ones. This implies that for any P (G, g0),

there exists a subset of basic vertices, we call them support vertices, from which all others can

be built. The class of support vertices is proved to be invariant under the automorphism group

of G, so this basis can be further reduced to a subset of pairwise non-equivalent support vertices.

Among other results, we characterize irreducible points of the master corner polyhedra, establish

relations between an integer point and the nontrivial facets that pass through it, construct

complete subgraphs of the graph of P (G, g0), and show that these polyhedra are of diameter 2.

1 Introduction

The group-theoretical approach is one of the main approaches to the integer linear pro-
gramming (ILP) [11]. It was originated by R. Gomory in the 1960s, cf. [6], [7]. When
applied to an ILP problem, this approach constructs its relaxation, an optimization prob-
lem over a finite Abelian group G. The polyhedron of its feasible solutions P (G,H, g0) is
the convex hull of solutions to the equation

∑

g∈H

t(g)g = g0,

where H is some subset of G, g0 ∈ G. P (G,H, g0) is called the corner polyhedron or
the Gomory polyhedron. On certain conditions, the optimal solution to the initial ILP
problem can be constructed from the optimal solution to the group optimization problem.
However, the main impact of the group-theoretical approach to the theory and practice
of ILP is that facets of corner polyhedra induce the most effective cuts for the initial
optimization problems, including the mixed integer case. These cuts are widely used
within the branch-and-cut framework, some are implemented in commercial softwares,
cf. [4]. As the ”encyclopedia” of all corner polyhedra on G with different H and g0 serves
the master corner polyhedron P (G, g0) = P (G,G+, g0), where G+ = G \ {0}, 0 is the
group zero element, since its vertices and facets contain vertices and facets of all corner
polyhedra P (G,H, g0) [7]. So, P (G, g0) is the convex hull of the non-negative integer
solutions t = (t(g), g ∈ G+) to the group equation

∑

g∈G+

t(g)g = g0 (1)

and it lies in the (D − 1)-dimensional space.
The computational potential of the group-theoretical approach remained unclear, if

not questionable, until the 1990s when a large variety of effective group cutting planes
were elaborated. This caused a revival of interest in the approach in general with the
master corner polyhedron as its core object. Since then, a great amount of research has
been devoted to facets of P (G, g0) and generating effective cuts from them, see [3], [8],
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[10], [1], [12]. By contrast, we are aware of only a few works, cf. [13] for references,
targeted on vertices during the 40 years period after the seminal Gomory’s paper [7]. To
quote R. Gomory and E. Johnson [9], ”Understanding of these polyhedra, which one may
well regard as the atoms of integer programming, is still at its beginning”.

This paper focuses on the vertices of the master corner polyhedra though many its
results can be transferred to the particular corner polyhedra.

We use three results due to R. Gomory [7]. The first, he proved that all vertices of
P (G, g0) are irreducible points, where a point t, a solution to (1), is irreducible if for any
points r = (r(g), g ∈ G+) and s = (s(g), g ∈ G+), the conditions

0 ≤ r(g), s(g) ≤ t(g),
∑

g∈G+

r(g)g =
∑

g∈G+

s(g)g, (2)

imply r = s.

The second, each automorphism ϕ of the group G transforms any vertex of P (G, g0)
to a vertex of P (G,ϕ(g0)).

The third is the subadditive description of facets of P (G, g0). The facets are canonically
considered as inequalities

∑

g∈G+

π(g)t(g) ≥ π0 (3)

and are denoted by (π, π0), with π = (π(g), g ∈ G+) as their coefficient vectors. Gomory
proved that facets of P (G, g0) are of two types. The trivial facets are inequalities t(g) ≥
0, g ∈ G+, determining coordinate hyperplanes in R

D−1. The nontrivial facets are the
inequalities (π, π0), π0 > 0, with π a basic feasible solution to the system

π(g0) = π0, (4a)

π(g) + π(g0 − g) = π0, g ∈ G+, g 6= g0,

π(g1) + π(g2) ≥ π(g1 + g2), g1, g2 ∈ G+, (4b)

π(g) ≥ 0, g ∈ G+,

where (4a) is omitted if g0 = 0.
This paper is organized as follows. In the next section, we prove a geometric char-

acterization of the irreducible points of master corner polyhedra: these are such integer
points of a P (G, g0) that cannot be expressed as a convex combination of any two its
integer points. In Section 3, we show that coefficients of the nontrivial facets passing
through a given integer vertex of P (G, g0) turn certain subadditive inequalities (4b) to
equalities and construct some other points in these facets. Section 4 is central to the
paper. We introduce two combinatorial µ-operations and prove that, when applied to
vertices of a P (G, g0), they result in adjacent vertices. This implies that every master
corner polyhedron can be determined by a subset of its basic vertices, those from which all
others can be built with the use of µ-operations; we call them support vertices. We prove
a support vertex analog of Gomory’s theorem on automorphisms: each automorphism ϕ
of G transforms any support vertex of P (G, g0) to a support vertex of P (G,ϕ(g0)). To-
gether with the concordance of the µ-operations with automorphisms, this result provides
a more detailed view of the vertex structure of master corner polyhedra and leads to a
description of their minimal (with respect to the tools at hand) vertex bases. In Section 5,
applying µ-operations recursively, we construct some vertex sequences that generate com-
plete subgraphs of the graph of P (G, g0). As a consequence it follows that master corner
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polyhedra are of diameter 2. Section 6 presents the conclusions of the work and discusses
some directions for future study.

We denote by V (G, g0) the set of vertices of P (G, g0) and for t ∈ P (G, g0), set Gt =
{g ∈ G+|t(g) > 0}. The standard notations Aut(G) and Auth(G) are used respectively
for the automorphism group of G and the stabilizer subgroup of Aut(G) at h ∈ G :

Auth(G) = {ϕ ∈ Aut(G)|ϕ(h) = h}.

We refer the reader to [5] and [2] for the details on the group automorphisms and the
group actions.

2 Geometric characterization of irreducibility

In this section, we prove a geometric characterization of irreducible points of master corner
polyhedra, thereby extending Theorem 2 in [7]. But first, we present several properties
of irreducible points.

Lemma 1 Let t ∈ P (G, g0) be an irreducible point and u = (u(g), g ∈ G+), u 6= t, have
the components 0 ≤ u(g) ≤ t(g), g ∈ G+. Then

(i)
∑

g∈G+ u(g)g /∈ Gt,

(ii)
∑

g∈G+ u(g)g 6= 0,

(iii)
∑

g∈G+ u(g)g 6= g0.

Proof. (i) is a straightforward consequence of irreducibility. To prove (ii), set r = t and
s = (t(g)−u(g), g ∈ G+). Then r and s satisfy (2), which together with r 6= s contradicts
irreducibility of t. To prove (iii), notice that otherwise the equality

∑

g∈G+(t(g)−u(g))g=0
would contradict (ii). �

Theorem 1 An integer point of P (G, g0) is irreducible if and only if it cannot be expressed
as a convex combination of any two its integer points.

Proof. Gomory proved irreducibility of vertices by showing that any reducible point
t ∈ P (G, g0) is a half-sum of two solutions to equation (1), which implies that t is a
convex combination of two integer points of P (G, g0).

So, it remains only to show that if an integer point t ∈ P (G, g0) is a convex combination
of some integer points u, v ∈ P (G, g0) then t is reducible. One can easily see that if t, a
point of the n-dimensional integer grid, is a convex combination of two grid points u and
v then t is the half-sum of the two nearest to t grid points u′ and v′ in the line segment
[u, v]. The inclusions u′, v′ ∈ P (G, g0) hold by convexity. So, we can deal with t = 1

2
(u+v),

u, v ∈ P (G, g0). Then

t(g)− u(g) = v(g)− t(g) for all g ∈ G+ (5)

and we can construct integer points r and s as follows,

r(g) = t(g)− u(g), g ∈ Hu = {g ∈ G+ | u(g) < t(g)},
r(g) = 0, g ∈ G+ \Hv,
s(g) = t(g)− v(g), g ∈ Hv = {g ∈ G+ | v(g) < t(g)},
s(g) = 0, g ∈ G+ \Hv.

(6)
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Notice that Hu ∩ Hv = ∅ and if Hu = ∅ or Hv = ∅ is empty then r = t or s = t. By (5)
and (6), r and s satisfy (2). However, r 6= s, which means that t is reducible and ends
the proof. �

Theorem 1 clarifies why some irreducible points of master corner polyhedra are not
vertices: they are convex combinations of some more than two points. The following
example presents such a point.

Example 1. Consider the master corner polyhedron P (G16, 15), where G16 is the cyclic
group of order 16 with the elements 0, 1, 2, . . . , 15. We will use 0k for the sequence of k
zeroes. The point

t = (0, 0, 2, 1, 1, 010)

belongs to P (G16, 15) as it satisfies the equality 2·3+1·4+1·5 = 15. One can check that it
is irreducible by comparing pairwise the sums r(3) · 3+ r(4) · 4+ r(5) · 5 of 3 · 2 · 2−1 = 11
integer points r = (r(g), g ∈ G+

16), 0 ≤ r(g) ≤ t(g), r 6= (015). Since these sums are
distinct, Theorem 1 implies that t is not a convex combination of any two integer points
of P (G16, 15). However t is the convex combination of three points,

t =
1

3
(0, 0, 0, 0, 3, 010) +

1

3
(0, 0, 1, 3, 0, 010) +

1

3
(0, 0, 5, 0, 0, 010),

and thus is not a vertex.

3 Integer points and nontrivial facets

In this section, we obtain some relations between integer points of master corner polyhedra
and their nontrivial facets.

Theorem 2 Let a vertex t of the polyhedron P (G, g0) belong to its nontrivial facet (π, π0),
and let h =

∑

g∈G+ u(g)g with integer u(g), 0 ≤ u(g) ≤ t(g), g ∈ G+. Then

(i) the point w = (w(g), g ∈ G+) with the components w(g) = t(g)− u(g) for g ∈ G+,
g 6= h, and w(h) = t(h)+1 belongs to all nontrivial facets of P (G, g0) that contain t;

(ii) coefficients of the facet (π, π0) satisfy the relation

π(h) =
∑

g∈Gt

u(g)π(g).

Proof. To prove (i), observe that w is a solution to the group equation (1), hence
w ∈ P (G, g0). As (π, π0) is a facet, w satisfies the inequality

∑

g∈G+

w(g)π(g) ≥ π0.

It follows from the subadditivity condition (4b) that

∑

g∈G+

u(g)π(g) =
∑

g∈Gt

u(g)π(g) ≥ π(h),

4



while Lemma 1 (i) implies t(h) = 0. Therefore,

∑

g∈G+

w(g)π(g) =
∑

g∈G+

g 6=h

(t(g)− u(g))π(g) + (t(h) + 1)π(h)

≤
∑

g∈G+

g 6=h

t(g)π(g)−
∑

g∈G+

g 6=h

u(g)π(g) +
∑

g∈G+

g 6=h

u(g)π(g)

=
∑

g∈G+

t(g)π(g) = π0.

The two opposite inequalities imply the equality

∑

g∈G+

w(g)π(g) = π0, (7)

which proves (i). One can notice that (7) holds in the only case of π(h) =
∑

g∈Gt
u(g)π(g).

This proves (ii) and completes the proof of the theorem. �

4 Support vertices

This section concerns several topics related to some special vertices of the master corner
polyhedron. We introduce two combinatorial operations that can be applied to the most
of its integer points and prove that they transform vertices to adjacent vertices. This
leads to existence of a subset of vertices of each master corner polyhedron, called support
vertices, that do not result from any other vertex by these operations. Then we study the
structure of the orbit partition of the set of vertices of the P (G, g0) under the action of
the automorphism group of G. We prove that some orbits fully consist of support vertices
and describe bases of the set V (G, g0).

4.1 µ-operations and support vertices

Let us define two combinatorial operations applicable to some integer points of the
P (G, g0). We call them µ-operations.

Operation µh,f . Let t be an integer point of P (G, g0) and let h, f ∈ Gt; for certainty,
let t(h) ≤ f(h). Build the point s = µh,f(t) with the components

s(h) = 0,

s(f) = t(f)− t(h),

s(h+ f) = t(h + f) + t(h),

s(g) = t(g), g ∈ G+, g 6= h, f, h+ f.

Operation µh. Let t be an integer point of P (G, g0) and let h ∈ Gt satisfy t(h) > 1.
Build the point s = µh(t) with the components

s(h) = 0,

s(t(h)h) = t(t(h)h) + 1,

s(g) = t(g), g ∈ G+, g 6= h, t(h)h.
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Theorem 3 Let t be a vertex of P (G, g0) and the operation µh,f with some h, f ∈ Gt

(respectively, µh with some h ∈ Gt) be applicable to t. Then µh,f(t) (respectively, µh(t))
is a vertex of P (G, g0) adjacent to t.

Proof. We will prove the theorem for the case of µh,f since the case of µh can be considered
similarly. At first, prove that the point s = µh,f(t) is a vertex of P (G, g0) provided t is
a vertex. It is an easy exercise to check that s ∈ P (G, g0). Assume s is not a vertex.
Then s is a convex combination of some k ≥ 2 integer points sj, j = 1, 2, . . . , k, that

solve equation (1): s =
∑k

J=1 λjsj ,
∑k

J=1 λj = 1, λj > 0. It follows from s(h) = 0 that
sj(h) = 0 for all j. Define integer points tj, j = 1, 2, . . . , k, by setting

tj(h) = sj(h+ f); tj(f) = sj(h+ f) + sj(f);
tj(h + f) = 0; tj(g) = sj(g), g ∈ G+ \ {h, f, h+ f}

and check that all tj ∈ P (G, g0) :

∑

g∈G+

tj(g)g = tj(h)h+ tj(f)f + tj(h+ f)(h+ f) +
∑

g∈G+\{h,f,h+f}

tj(g)g

= sj(h+ f)h+ sj(h+ f)f + sj(f)f +
∑

g∈G+\{h,f,h+f}

sj(g)g

= sj(h+ f)(h+ f) + sj(f)f +
∑

g∈G+\{h,f,h+f}

sj(g)g

=
∑

g∈G+

sj(g)g = g0.

By Lemma 1 (i), t(h+f)=0. Using this equality, show that
∑k

j=1λjtj= t :

k
∑

j=1

λjtj(h) =

k
∑

j=1

λjsj(h+ f) = s(h+ f) = t(h+ f) + t(h) = t(h),

k
∑

j=1

λjtj(f) =

k
∑

j=1

λjsj(h+ f) +

k
∑

j=1

λjsj(f) = s(h + f) + s(f)

= t(h+ f) + t(h) + t(f)− t(h) = t(f),

k
∑

j=1

λjtj(h+ f) = 0 = t(h+ f),

k
∑

j=1

λjtj(g) = t(g), g ∈ G+ \ {h, f, h+ f}.

So, we have obtained that t admits a convex representation via k points of P (G, g0),
however this contradicts t being a vertex. Therefore, s is a vertex of P (G, g0).

Now prove that s is adjacent to t. As every vertex v of a full-dimensional polyhedron
P ⊂ R

n can be defined by a collection Fv of n linearly independent facets of P passing
through v, it is sufficient to find some collections Ft and Fs of D− 1 linearly independent
facets of P (G, g0) each, passing respectively through t and s and differing by only one
facet. Then their common facets define the edge (t, s) of P (G, g0).

First, include into Ft all trivial facets t(g) ≥ 0, g ∈ G+\Gt, of P (G, g0),which obviously
contain t. By Lemma 1 (i), t(h + f) ≥ 0 is one of these facets. Next, add into Ft the
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necessary amount (= D−1−|G+ \Gt| = |Gt|) of nontrivial facets (π, π0) passing through
t and such that all facets in Ft be linearly independent. As t is a vertex such facets exist.
The coefficient matrix Mt of the facets in Ft contains the identity submatrix disposed in
the rows corresponding to the trivial facets and the columns indexed by j ∈ G+ \ Gt;
notice that the (h + f)-th column is one of these. Therefore, the nontrivial facets in Ft

are linearly independent on the columns j ∈ Gt.
Now, build the collection Fs. Include into it all facets from Ft except t(h + f) ≥ 0,

instead of which use the trivial facet t(h) ≥ 0. The trivial facets in Fs contain s by its
construction, while the nontrivial facets contain s by Theorem 2 (i). So, the coefficient
matrix Ms of the facets in Fs contains the identity submatrix in the columns j ∈ J1 =
((G+ \ Gt) \ {h + f}) ∪ {h}. The nontrivial facets in Ft and Fs are the same and, by
Theorem 2 (ii), their coefficients satisfy the equality π(h) + π(f) = π(h+ f). This yields
linear independence of the nontrivial facets in Fs on the columns indexed by j ∈ J2 =
(Gt \ {h})∪{h+ f}. As J1 ∩J2 = ∅ the facets in Fs are linearly independent, so Fs is the
collection we strived to obtain. The theorem is proved. �

Definition 1 We call a vertex t of a master corner polyhedron P (G, g0) a support vertex
if t does not result from any other vertex of this polyhedron with the use of any µ-operation.

The inequality
∑

g∈G+ s(g)g <
∑

g∈G+ t(g)g, provided s = µh,f(t) or s = µh(t), implies
existence of support vertices of any P (G, g0). They are of special importance because by
Theorem 3, they form a basis for V (G, g0), since every other vertex can be build from
some support vertex by recursive application of some µ-operations.

Denote the set of support vertices of P (G, g0) by S(G, g0). The next example presents
support vertices of P (G6, 3).

Example 2. Let us continue using notation from Example 1. We find from Table 1 in [7]
that P (G6, 3) has 7 vertices:

t1 = (3, 0, 0, 0, 0), t2 = (1, 1, 0, 0, 0),

t3 = (0, 0, 1, 0, 0), t4 = (1, 0, 0, 2, 0),

t5 = (0, 2, 0, 0, 1), t6 = (0, 0, 0, 1, 1),

t7 = (0, 0, 0, 0, 3)

and four nontrivial facets. The support vertices are only t1, t4, t5, t7 since t2 = µ4(t4),
t3 = µ1,2(t2), and t6 = µ1,4(t4), though there are more ways to obtain t2, t3, t6. One can
observe all vertices of this polyhedron together with the µ-operations acting on them in
Figure 1 below.

The vertex t4 belongs to the nontrivial facets (π, π0) =

((1, 0, 1, 0, 1, 1), 1), ((1, 2, 3, 1, 2, 3), 3)

and the trivial facets t(2) ≥ 0, t(3) ≥ 0, t(5) ≥ 0. The vertex t2 belongs to the same
nontrivial facets, as well as to the facets

((2, 1, 3, 2, 1, 3), 3), ((1, 2, 3, 2, 1, 3), 3).

So, in fact, t2 belongs to all nontrivial facets of P (G6, 3) and to the trivial facets t(3) ≥ 0,
t(5) ≥ 0, and t(4) ≥ 0 instead of t(2) ≥ 0.

The vertex t3 = µ1,2(t2) belongs to all four nontrivial facets and the trivial facets
t(4) ≥ 0, t(5) ≥ 0, and t(1) ≥ 0, t(2) ≥ 0. Each of the last two can be considered as
substituting t(3) ≥ 0.

7



4.2 Automorphisms and support vertices

R. Gomory proved that each automorphism ϕ of the group G transforms any vertex t of
P (G, g0) to a vertex

t = {t(g), g ∈ G+} = {t(ϕ−1(g)), g ∈ G+} (8)

of P (G,ϕ(g0)), see [7], the Corollary following Theorem 14.
Let V(G) denote the set of vertices of all master corner polyhedra on G, V(G) =

∪g0∈GV (G, g0). Then (8) defines the binary function

V(G)× Aut(G) → V(G) : (t, ϕ) 7→ t · ϕ = t. (9)

Since (ϕσ)−1 = σ−1ϕ−1, this function satisfies two conditions

t · (ϕσ) = (t · ϕ) · σ for all t ∈ V(G) and ϕ, σ ∈ Aut(G),

t · ε = t for all t ∈ V(G) and ε, the identity automorphism of G.

This means that (9) defines a (right) group action of Aut(G) on V(G) : each automor-
phism ϕ ∈ Aut(G) is represented as the vertex transformation sending any t ∈ V(G) to
t ∈ V(G). By (8), the vertex t = t · ϕ has the same as t though permuted components.

As Gomory’s theorem specifies the polyhedron P (G, h), h ∈ G, of which t·ϕ is a vertex,
it particularly asserts that V (G, g0) is invariant under the action of Autg0(G) on V. We
will call vertices t and s of some P (G, g0) equivalent if s = t · ϕ for some ϕ ∈ Autg0(G).
Note that then by (8), t = s · ϕ−1, ϕ−1 ∈ Autg0(G).

The next lemma states that up to a slight change in the the group elements h, f the
µ-operations commute with automorphisms of G acting on V(G).

Lemma 2 Let t be a vertex of P (G, g0) such that some operation µh,f with h, f ∈ Gt, or
some operation µh with h ∈ Gt, be applicable to t, and let ϕ ∈ Aut(G). Then

(µh,f(t)) · ϕ = µϕ(h),ϕ(f)(t · ϕ) (10)

or, respectively,
(µh(t)) · ϕ = µϕ(h)(t · ϕ). (11)

Proof. We will prove only (10) since (11) can be proved similarly. Denote s = µh,f(t)
and t = t ·ϕ. By Theorem 3 and Gomory’s theorem, s and t are some vertices of P (G, g0)
and P (G,ϕ(g0)), respectively, and we must prove that

s · ϕ = µϕ(h),ϕ(f)(t). (12)

We show this equality component-wise using the rule (8) and the definition of µh,f .

(s · ϕ)(ϕ(h)) =s(ϕ−1ϕ(h)) = s(h) = 0 =
[

µϕ(h),ϕ(f)(t)
]

(ϕ(h)),

(s · ϕ)(ϕ(f)) =s(ϕ−1ϕ(f)) = s(f) = t(f)− t(h)

=t(ϕ(f))− t(ϕ(h)) =
[

µϕ(h),ϕ(f)(t)
]

(ϕ(f)),

(s · ϕ)(ϕ(h+ f)) =s(ϕ−1ϕ(h + f)) = s(h + f) = t(h) = t(ϕ(h)) =

=
[

µϕ(h),ϕ(f)(t)
]

(ϕ(h)) =
[

µϕ(h),ϕ(f)(t)
]

(ϕ(h+ f),

(s · ϕ)(ϕ(g)) =s(ϕ−1ϕ(g)) = s(g) = t(g) = t(ϕ(g)) =
[

µϕ(h),ϕ(f)(t)
]

(ϕ(g))

for g ∈ G+, g 6= h, f, h+ f.
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Thus (12), (10), and the lemma are proved. �

Paraphrasing the lemma brings us to two assertions advantageous to a better view of
the vertex set structure. Now, we will omit the group elements h and f determining the
µ-operation in use, though leave the index ϕ to determine the new µ-operation µϕ(h),ϕ(f)

or µϕ(h) induced by an automorphism ϕ.

Corollary 1 (i) Let t and s be some vertices of P (G, g0) and let ϕ ∈ Aut(G). Then
s = µ(t) for some µ-operation µ if and only if s · ϕ = µϕ(t · ϕ).

(ii) Let t and s be some vertices of respectively P (G, g0) and P (G,ϕ(g0)), where ϕ ∈
Aut(G), and let some µ-operation µ be applicable to t. Then s = t · ϕ if and only if
µϕ(s) = µ(t) · ϕ.

Note that (ii) does not preclude the equality µϕ(s) = µ(t) for s 6= t. One can observe
this case in Figure 1 for the vertices t1 = (3, 0, 0, 0, 0), t7 = t1 · ϕ5 = (0, 0, 0, 0, 3), and
t3 = (0, 0, 1, 0, 0) = µ1(t1) = µ5(t7).

The next theorem provides the support vertex analog of Gomory’s theorem.

Theorem 4 For any support vertex t of some P (G, g0) and any automorphism ϕ of G,
t · ϕ is a support vertex of P (G,ϕ(g0)).

Proof. Assume t = t · ϕ ∈ V (G,ϕ(g0)) is not support, then t = µ(r) for some µ and
r ∈ V (G,ϕ(g0)). By Corollary 1 (i), t = t · ϕ−1 = µϕ−1(r · ϕ−1), where r · ϕ−1 ∈ V (G, g0).
This contradicts t ∈ S(G, g0), so the theorem is proved. �

Corollary 2 (i) The set of support vertices of any P (G, 0) is invariant under Aut(G)
acting on V(G).

(ii) The set of support vertices of any P (G, g0) with g0 6= 0 is invariant under Autg0(G)
acting on V (G, g0).

Proof. The corollary follows from the theorem since for any ϕ ∈ Aut(G) and g ∈ G,
ϕ(g) = 0 if and only if g = 0. �

Example 3. Now, we can consider support vertices

t1 = (3, 0, 0, 0, 0), t4 = (1, 0, 0, 2, 0),

t5 = (0, 2, 0, 0, 1), t7 = (0, 0, 0, 0, 3).

of P (G6, 3) found in Example 2 more thoroughly. There is only one non-identity auto-
morphism ϕ5 of the cyclic group G6, which maps each group element r to 5r (mod 6),
r = 0, 1, . . . , 5. Luckily, ϕ5 leaves the right-hand-side element 3 fixed, so ϕ5 ∈ Aut3(G6).
Thus, by Corollary 3 (ii), ϕ5 transforms each support vertex of P (G6, 3) to a support
vertex of this polyhedron (which may be the same vertex). One can see that

t1 · ϕ5 = t7, t4 · ϕ5 = t5,

and vice versa. As a result, the set {t1, t4} of two support vertices can be regarded as a
basis of V (G6, 3), as well as three more pairs of support vertices, see Figure 1. If we take
into account only automorphisms of G6 but not the µ-operations, we will come to a basis
consisting of four vertices, {t1, t2, t3, t4} as an instance.
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✞

✝

☎

✆

✻
❄

ϕ5

ϕ5

✞

✝

☎

✆

✻
❄

ϕ5

ϕ5

✲ϕ5

✞

✝

☎

✆

✻

❄

ϕ5

ϕ5

✉

✉

❣

❣

✉

✉

✉

✉

✉

❣

❣

✲

✲

µ4

µ2

❙
❙
❙
❙
❙
❙
❙
❙❙✇✓

✓
✓
✓
✓
✓
✓
✓✓✼µ1,4

µ5,2

◗
◗
◗
◗
◗
◗◗s

✑
✑
✑
✑
✑
✑✑✸

µ1,2

µ5,4

✑
✑

✑
✑

✑
✑✑✰

◗
◗

◗
◗

◗
◗◗❦

µ1

µ5

t4 = (1, 0, 0, 2, 0)

t5 = (0, 2, 0, 0, 1)

t2 = (1, 1, 0, 0, 0)

t6 = (0, 0, 0, 1, 1)

t1 = (3, 0, 0, 0, 0)

t7 = (0, 0, 0, 0, 3)

t3 = (0, 0, 1, 0, 0)

Figure 1 Vertices of P (G6, 3) with µ-operations and automorphisms.
Support vertices are marked by additional circles;
the bars over the group elements are suppressed.

Recall that for a group H acting on a set X, the orbit xH of x ∈ X is the equivalence
class of x under H :

xH = {y ∈ X|y = x · h, for some h ∈ H}.

Then the orbits xH, x ∈ X, form a partition of X.
For an integer point t ∈ P (G, g0), let us call the non-ordered tuple of its non-

zero components t(g), g ∈ Gt, the multiplicity type of t. For example the point t =
(3, 0, 1, 2, 0, 1, 014) of P (G21, 20) (not a vertex) is of the multiplicity type 〈3, 2, 1, 1〉. As
every ϕ ∈ Aut(G), when applied to some t ∈ V (G, g0), rearranges its components without
changing their values, any s ∈ tAut(G) is of the same multiplicity type as t, hence the
multiplicity type is the orbit attribute. However, this does not mean that vertices from
different orbits are necessarily of different multiplicity types.

Using Gomory’s theorem, Corollary 1, Theorem 4, and Corollary 2, we can summarize
the description of V (G, g0).

Theorem 5 The set V (G, g0) of vertices of any master corner polyhedron P (G, g0), g0 6=0,
is the disjoint union of orbits under the action of Autg0(G). All vertices in each orbit are
of the same multiplicity type. For any t ∈ V (G, g0) and any µ-operation µ applicable to
t, the map t ·ϕ → µϕ(t ·ϕ), ϕ ∈ Autg0(G), sends the orbit tAutg0(G) vertex-wise onto the
orbit µ(t)Autg0(G). Some orbits consist exclusively of support vertices, while the others
are free of them. The set S(G, g0) of support vertices of P (G, g0) is the disjoint union of
the orbits formed by support vertices.

For the master corner polyhedron P (G, 0), the analogous assertions hold under Aut(G)
acting on the set V (G, 0) of its vertices.

As we see in Figure 1, the set of vertices of P (G6, 3) is partitioned to four orbits under
Aut3(G6) = {ε, ϕ5}, while S(G6, 3) is the union of two orbits, the very left and the very
right ones.

4.3 Bases

In this subsection, we describe the bases of the sets of vertices of master corner polyhedra.
These are in some sense the minimal subsets of V (G, g0), from which one can build all

10



other vertices with the use of the specified tools. Since extreme rays of all P (G, g0) are
the g-axes, g ∈ G+, every basis completely determines the polyhedron P (G, g0).

We have at hand two types of instruments that transform vertices to vertices: the
automorphisms of the underlying group G that fix the element g0 and the µ-operations.
So we can talk about three types of vertex bases:

BA — a minimal subset of vertices of a P (G, g0) such that any other vertex is equivalent
to some b ∈ BA;

BS — a minimal subset of vertices of a P (G, g0) such that any other vertex results by
recursive application of some µ-operations to some b ∈ BS;

BAS — a minimal subset of vertices of a P (G, g0) such that any other vertex results
by recursive application of some automorphisms of G and/or some µ-operations to
some b ∈ BAS.

It follows from Theorem 5 that any system of the orbit representatives for Autg0(G)
acting on V (G, g0) is a BA-basis, hence such basis is unique up to the vertex equivalence.

By the definition of support vertices, the BS-basis is exactly the set of support vertices,
thus it is unique.

We have seen in Example 3 that {t1, t4} is one of the BAS-bases for P (G6, 3). The
BAS-bases are described in the next corollary.

Corollary 3 Each BAS-basis of the set of vertices of P (G, g0) is a system of the orbit
representatives for Autg0(G) acting on the subset of support vertices.

Proof. By Gomory’s theorem on automorphisms, V (G, g0) is the union of the orbits
under Autg0(G). By Theorem 5, each orbit consists of either only support or non-support
vertices. So, each BAS-basis must contain exactly one vertex from every orbit consisting
of support vertices. Conversely, each set of such orbit representatives can be taken as a
BAS-basis. Corollary is proved. �

It is clear that each BA- and BS-basis contains some BAS-subbasis, though the in-
clusion BAS ⊆ BS is not necessarily strict. Introducing of support vertices is evidently
advantageous for the polyhedra P (G, g0) with |Autg0(G)| = 1. Any P (GD, D − 1), D > 3,
is of this kind since the congruence k(D − 1) ≡ D − 1 (mod D) is not fulfilled for any
k, 1 < k < D. Hence, not any two vertices of P (GD, D − 1) are equivalent, though many
of them are not support. In particular the evidently non-support vertex s0 with the single
nonzero component s0(g0) = 1 belongs to every BA-basis as it is the only vertex of the
multiplicity type 〈1〉. This yields the strict inclusion BAS ⊂ BA for these polyhedra. The
same inclusion holds for all P (GD, 0) with D > 4, since the vertex t = (1, 0D−3, 1) ∈ BA

equals µD−2,1(s) for the vertex s = (2, 0D−4, 1, 0) and thus t is not support.
On the other hand, the strict inclusion BAS ⊂ BS holds in particular for all P (GD, r),

r 6= 0, 1, with |Autr(GD)| > 1, since for any ϕk ∈ Autr(GD), k 6= 1, the vertices (r, 0D−2)
and (0k−1, r, 0D−1−k) are both support and equivalent.

Thus, the BAS-bases are really the smallest vertex bases for the master corner poly-
hedra known by now. Some number characteristics related to vertices of master corner
polyhedra P (G, g0) for all groups G of the order D < 12 and all right-hand-side elements
g0 in the equation (1) are presented in Table 1 below. Actually, these are all polyhedra
used in [7]. For each P (G, g0), one can observe there

• |V (G, g0)|, the number of its vertices,
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• |S(G, g0)|, the number of its support vertices,

• |BA|, the number of its non-equivalent vertices,

• |BAS|, the cardinality of its BAS-bases,

• |Autg0(G)|−1, the number of non-identity automorphisms of G that fix g0.

The specific values for G and g0 are given in the title of each mini-column. For example
G4,2 and (3,0) over the last mini-column of the last but one macro-line say that this mini-
column refers to the polyhedron P (G4,2, (3, 0)), where G4,2 is the direct sum of the cyclic
groups G4 and G2 and g0 = (3, 0). The bars over the group elements are suppressed.

Table 1: Vertex characteristics of the P (G, g0), |G| < 12

P (·, ·) G2,0 G2,1 G3,0 G3,2 G4,0 G4,2 G4,3 G5,0 G5,4
|V (G, g0)| 1 1 3 2 4 3 3 10 5
|S(G, g0)| 1 1 3 2 4 2 2 8 4
|BA| 1 1 2 2 3 2 3 3 5
|BAS | 1 1 2 2 3 1 2 2 4
|Autg0(G)|−1 0 0 1 0 0 1 0 3 0

P (·, ·) G6,0 G6,3 G6,4 G6,5 G7,0 G7,6 G8,0 G8,4 G8,6 G8,7
|V (G, g0)| 9 7 5 7 23 10 22 9 10 16
|S(G, g0)| 7 4 4 4 14 7 14 8 7 9
|BA| 6 4 5 7 5 10 9 4 7 16
|BAS | 4 2 4 4 3 7 5 3 4 9
|Autg0(G)|−1 1 1 0 0 5 0 3 3 1 0

P (·, ·) G9,0 G9,6 G9,8 G10,0 G10,5 G10,8 G10,9 G11,0 G11, 10
|V (G, g0)| 36 14 19 39 29 17 31 85 32
|S(G, g0)| 20 10 9 22 16 10 14 40 16
|BA| 7 6 19 11 8 17 31 9 32
|BAS | 4 4 9 5 4 10 14 4 16
|Autg0(G)|−1 5 2 0 3 3 0 0 9 0

P (·, ·) G2,2,(0,0) G2,2,(1,0) G4,2,(0,0) G4,2,(2,0) G4,2,(3,0)
|V (G, g0)| 3 2 9 6 14
|S(G, g0)| 3 1 9 6 6
|BA| 3 2 7 4 8
|BAS | 3 1 7 4 3
|Autg0(G)|−1 0 0 1 1 1

P (·, ·) G2,2,2,(0,0,0) G2,2,2,(1,0,0) G3,3,(0,0) G3,3,(3,0)
|V (G, g0)| 7 8 12 14
|S(G, g0)| 7 4 12 3
|BA| 7 8 6 9
|BAS | 7 4 6 2
|Autg0(G)|−1 0 0 3 1

More details on these polyhedra, including the lists of vertices and support vertices,
can be found in the Appendix.
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5 Adjacency

By Theorem 3, µ-operations produce adjacent vertices of master corner polyhedra. In this
section, we show how to construct some complete subgraphs of the graph of the P (G, g0)
applying these operations recursively, which will help us determine the diameter of this
polyhedron.

Let an operation µh,f (or µh) be applied to a vertex t ∈ V (G, g0). Let us call h ∈ Gt

the leading element of t and h + f ∈ G+ (or t(h)h ∈ G+) the new element of µh,f(t) (or
of µh(t)). Construct a sequence of vertices

t = t0, t1, t2, . . . , tm = s (13)

such that ti = µ(ti−1), i = 1, . . . , m, for an appropriate µ-operation and the new element
of ti is always the leading element in constructing ti+1, i = 1, . . . , m− 1.

Theorem 6 The subgraph of the graph of P (G, g0) generated by the vertices of the se-
quence (13) is complete.

Proof. By Theorem 3, theorem is true for m = 1, so we consider m > 1. It is sufficient
to prove that s is adjacent to t as this would imply that each pair of vertices in (13) are
adjacent. All vertices in (13) are distinct since otherwise there would exist a tuple of
integers u = (u(g), g ∈ H ⊂ Gt), u(g) ≤ t(g), such that

∑

g∈H u(g)g = 0, which would
contradict Lemma 1 (ii). Therefore, (13) is a chain in the graph of P (G, g0).

Using the notation from the proof of Theorem 3, a collection Ft1 of D − 1 linearly
independent facets of P (G, g0) that pass through t1 can be chosen in a way to differ from
the analogous collection Ft0 by containing the trivial facet t(h0) ≥ 0 instead of t(h1) ≥ 0.
As the leading elements h1, h2, . . . , hm−1 of t1, t2, . . . , tm−1 are their new elements, the
analogous assertions hold true for some collections Ft2 , . . . ,Ftm. They differ from Ft0 by
the only one facet: t(h0) ≥ 0 instead of t(h2) ≥ 0, t(h3) ≥ 0, . . . , t(hm−1+ fm−1) ≥ 0 with
some fm−1 ∈ Gtm−1

, fm−1 6= hm−1, or t(h0) ≥ 0 instead of t(t(hm−1)hm−1) ≥ 0, depending
on the type of the µ-operation used at last step.

So, at the end, we obtain that some collection Fs differs from Ft by the only one facet,
therefore s is adjacent to t. Theorem is proved. �

Corollary 4 The vertex s0 with the components s0(g0) = 1, s0(g) = 0 for all g ∈ G+,
g 6= g0, is adjacent to every other vertex of P (G, g0).

Proof. At first, notice that s0 is a vertex of P (G, g0). For arbitrary t ∈ V (G, g0), t 6= s0,
we can build a chain (13) with the end vertex s = s0 in the following way. If t(h0) > 1 for
some h0 ∈ Gt then let t1 = µh0

(t), so that h1 = th0
h0. Otherwise, if t(g) = 1 for all g ∈ Gt,

set t1 = t and take arbitrary g ∈ Gt as h1. In any case, by Lemma 1 (i), t1(h1) = 1.
From this step ahead, we can build the sequence (13) as far as possible, applying only the
operations µh,f and taking care only of choosing the leading h elements but not of the f
elements. No matter how we deal forth, we will always obtain a chain with the end vertex
s0 since finally all elements of Gt will be added together, giving g0 as the total sum. Now,
it remains to apply Theorem 6 to complete the proof. �

Recall that the diameter of a polyhedron is the diameter of its graph.

Theorem 7 All master corner polyhedra are of diameter 2.

Proof follows straightforwardly from Corollary 4 as each pair of vertices of P (G, g0) is
connected by a path of the length 2 going through s0. �
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6 Conclusion

This paper goes some distance to a better understanding of the vertex-facial structure
of the master corner polyhedra. Any advance in this direction may eventually find im-
plementation in the algorithms to solve the ILP problems. Our results on the vertex
adjacency and on the dependence of nontrivial facets on the vertices they pass through
appear to answer this purpose most directly. The first might be of help to solve the group
optimization problem, while the second — to build facets of corner polyhedra and then
the cutting planes.

However, since corner polyhedra are tightly related to the polyhedra of the ILP prob-
lems, a comprehension of the intriguing vertex structure of the master corner polyhedron
might occur of greater importance. In particular, the very fact that there exists a ba-
sic subset of support vertices that often is much smaller in cardinality compared to the
total amount of vertices and even to the number of non-equivalent vertices (see Table 1
and the Appendix) looks promising. Introducing µ-operations helped us to disclose the
non-symmetric relationships between vertices that complement the symmetric relation-
ships traditionally studied by automorphisms. If the automorphisms partition the set of
vertices to orbits, the new operations connect some pairs of orbits. The concordance of
µ-operations with the subadditivity relations, that play a crucial role in the facet charac-
terization, and the first computational results move us to believe that hardly any other
operation can reduce the bases ever more.

This paper was significantly influenced by the author’s recent study of another polyhe-
dron — the polytope of integer partitions, which can be regarded as a polyhedron on a set
with one partial operation, cf. [14], [15], [16]. Both polyhedra turn out to be rather close
relatives. In particular the nontrivial facets of the partition polytope satisfy a subadditive
characterization similar to (4) and it also has support vertices. Numerical data manifest
in considerable decrease in the cardinality when going from partitions to vertices and then
to support vertices. One can expect a similar picture for the master corner polyhedron.
What are the numbers of vertices, support vertices, orbits consisting of support vertices
(= |BAS|), and the multiplicity types of support vertices — these are some questions for
the future study.

Of special importance is the search for a combinatorial or any other more or less
effective characterization of vertices and support vertices. By now, such characterization
is known only for the points inexpressible as a convex combination of two others. Convex
combination is not an easy operation.
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8 Appendix

The Appendix presents the tables of vertices of master corner polyhedra P (G, g0) for all
groups G of the order D < 12 and all right-hand-side elements g0 in the equation (1).
These tables extend description of their vertex-facet structure presented in [7], where
R. Gomory listed all their facets, vertices, and the vertex-to-facet incidence matrices.
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Each vertex is written as a (|G| − 1)-dimensional point with zero components sup-
pressed. The support vertices are marked by the symbol ’+’ as well as those forming
one of the many possible BAS-bases. In the column ’Non-equivalent’, we mark by ’+’ the
vertices forming a BA-bases, i.e. one of the many possible sets of the orbit representatives
of V (G, g0) under the action of Autg0(G).

Table 2: Vertices of P (G3, 0)

1 2 Support Non-equivalent BAS

3 + + +
1 1 + + +

3 +

Table 3: Vertices of P (G3, 2)

1 2 Support Non-equivalent BAS

2 + + +
1 + + +

Table 4: Vertices of P (G4, 0)

1 2 3 Support Non-equivalent BAS

4 + + +
2 + + +

1 1 + + +
4 +
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Table 5: Vertices of P (G4, 2)

1 2 3 Support Non-equivalent BAS

2 + + +
1 +

2 + + +

Table 6: Vertices of P (G4, 3)

1 2 3 Support Non-equivalent BAS

3 + + +
1 1 + + +

1 +

Table 7: Vertices of P (G2,2, (0, 0))

(1,0) (0,1) (1,1) Support Non-equivalent BAS

2 + + +
2 + + +

2 + + +
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Table 8: Vertices of P (G2,2, (1, 0))

(1,0) (0,1) (1,1) Support Non-equivalent BAS

1 +
1 1 + + +

Table 9: Vertices of P (G5, 0)

1 2 3 4 Support Non-equivalent BAS

5 + + +
1 2 + + +

5 +
2 1 +

1 1 +
5 +

1 1 +
1 1 +

1 2 +
5 +

Table 10: Vertices of P (G5, 4)

1 2 3 4 Support Non-equivalent BAS

4 + + +
2 + + +

1 1 + + +
3 + + +

1 +
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Table 11: Vertices of P (G6, 0)

1 2 3 4 5 Support Non-equivalent BAS

6 + + +
2 1 + + +
1 1 +

3 + + +
1 1 +
1 2 +

2 + + +
3 +

6 +

Table 12: Vertices of P (G6, 3)

1 2 3 4 5 Support Non-equivalent BAS

3 + + +
1 1 +

1 +
1 2 +

2 1 + + +
1 1

3 +

Table 13: Vertices of P (G6, 4)

t1 2 3 4 5 Support Non-equivalent BAS

4 + + +
2 + + +

1 1 + + +
1 +

2 + + +
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Table 14: Vertices of P (G6, 5)

t1 2 3 4 5 Support Non-equivalent BAS

5 + + +
2 1 + + +
1 2 + + +
1 1 +

1 1 +
1 2 + + +

1 +

Table 15: Vertices of P (G7, 0)

1 2 3 4 5 6 Support Non-equivalent BAS

7 + + +
3 1 + + +
2 1 +
1 3 +
1 1 1 + + +
1 2
1 1 +

7 +
2 1
1 3 +
1 1
1 2 +

7 +
3 1 +
1 1
1 1 1 +
1 3 +

7 +
2 1
1 2

7 +
3 1 +

7 +
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Table 16: Vertices of P (G7, 6)

1 2 3 4 5 6 Support Non-equivalent BAS

6 + + +
2 1 + + +
1 1 +

3 + + +
1 1 +

2 + + +
5 + + +
2 1 + + +

4 + + +
1 +

Table 17: Vertices of P (G8, 0)

1 2 3 4 5 6 7 Support Non-equivalent BAS

8 0 0 0 0 0 0 + + +
3 0 0 0 1 0 0 + + +
2 0 2 0 0 0 0 + + +
2 0 0 0 0 1 0 +
1 1 0 0 1 0 0 + + +
1 0 0 0 3 0 0 +
1 0 0 0 0 0 1 +
0 4 0 0 0 0 0 + + +
0 1 2 0 0 0 0
0 1 0 0 0 1 0 +
0 1 0 0 0 0 2
0 0 8 0 0 0 0 +
0 0 3 0 0 0 1 +
0 0 1 0 1 0 0
0 0 1 0 0 1 1 +
0 0 1 0 0 0 3 +
0 0 0 2 0 0 0 +
0 0 0 0 8 0 0 +
0 0 0 0 2 1 0
0 0 0 0 2 0 2 +
0 0 0 0 0 4 0 +
0 0 0 0 0 0 8 +
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Table 18: Vertices of P (G8, 4)

1 2 3 4 5 6 7 Support Non-equivalent BAS

4 + + +
1 1 + + +

2 + + +
4 +

1 +
4 +
1 1 +

2 +
4 +

Table 19: Vertices of P (G8, 6)

1 2 3 4 5 6 7 Support Non-equivalent BAS

6 + + +
2 1 + + +
1 1 +

3 + + +
1 1 +

2 + + +
1 2 +

6 +
1 +

2 +
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Table 20: Vertices of P (G8, 7)

1 2 3 4 5 6 7 Support Non-equivalent BAS

7 + + +
3 1 + + +
2 1 +
1 3 + + +
1 1 1 + + +
1 2 + + +
1 1 +

2 1 +
1 1 +

5 + + +
1 1 +
1 2 +

1 1 1 + + +
3 + + +
1 3 + + +

1 +

Table 21: Vertices of P (G4,2, (0, 0))

(1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) Support Non-equivalent BAS

4 0 0 0 0 0 0 + + +
1 0 1 0 0 0 0 + + +
0 2 0 0 0 0 0 + + +
0 0 4 0 0 0 0 + + +
0 0 0 2 0 0 0 + + +
0 0 0 0 4 0 0 +
0 0 0 0 0 2 0 + + +
0 0 0 0 1 0 1 + + +
0 0 0 0 0 0 4 +

22



Table 22: Vertices of P (G4,2, (2, 0))

(1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) Support Non-equivalent BAS

2 0 0 0 0 0 0 + + +
0 1 0 0 0 0 0 + + +
0 0 2 0 0 0 0 +
0 0 0 1 0 1 0 + + +
0 0 0 0 2 0 0 + + +
0 0 0 0 0 0 2 +

Table 23: Vertices of P (G4,2, (3, 0))

(1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) Support Non-equivalent BAS

3 0 0 0 0 0 0 + + +
1 1 0 0 0 0 0 +
1 0 0 1 0 1 0 + + +
1 0 0 0 2 0 0 +
1 0 0 0 0 0 2 + + +
0 1 0 1 1 0 0 + + +
0 1 0 0 0 1 1 + + +
0 0 1 0 0 0 0 +
0 0 0 1 3 0 0 + + +
0 0 0 1 0 0 1 +
0 0 0 0 1 1 0 +
0 0 0 0 0 1 3 + + +
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Table 24: Vertices of P (G4,2, (0, 1))

(1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) Support Non-equivalent BAS

3 0 0 0 1 0 0 + + +
2 0 0 0 0 1 0 +
1 1 0 0 1 0 0 + + +
1 0 0 0 3 0 0 + + +
1 0 0 0 0 0 1 +
0 1 1 0 0 0 1 +
0 1 0 0 0 1 0 +
0 0 3 0 0 0 1 +
0 0 2 0 0 1 0
0 0 1 0 1 0 0
0 0 1 0 0 0 3 +
0 0 0 1 0 0 0 +
0 0 0 0 2 1 0 +
0 0 0 0 0 1 2

Table 25: Vertices of P (G2,2,2, (0, 0, 0))

(1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1) Support Non-equivalent BAS

2 0 0 0 0 0 0 + + +
0 2 0 0 0 0 0 + + +
0 0 2 0 0 0 0 + + +
0 0 0 2 0 0 0 + + +
0 0 0 0 2 0 0 + + +
0 0 0 0 0 2 0 + + +
0 0 0 0 0 0 2 + + +

Table 26: Vertices of P (G2,2,2, (1, 0, 0))

(1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1) Support Non-equivalent BAS

1 0 0 0 0 0 0 +
0 1 1 0 0 0 0 +
0 1 0 1 0 0 1 + + +
0 1 0 0 1 1 0 + + +
0 0 1 1 0 1 0 + + +
0 0 1 0 1 0 1 + + +
0 0 0 1 1 0 0 +
0 0 0 0 0 1 1 +
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Table 27: Vertices of P (G9, 0)

1 2 3 4 5 6 7 8 Support Non-equivalent BAS

9 0 0 0 0 0 0 0 + + +
4 0 0 0 1 0 0 0 + + +
3 0 0 0 0 1 0 0 +
2 0 0 0 0 0 1 0 +
1 4 0 0 0 0 0 0 +
1 1 0 0 0 1 0 0 + + +
1 0 0 2 0 0 0 0
1 0 1 0 1 0 0 0 +
1 0 0 0 0 0 0 1
0 9 0 0 0 0 0 0 +
0 3 1 0 0 0 0 0
0 2 0 0 1 0 0 0
0 1 1 1 0 0 0 0 +
0 1 0 4 0 0 0 0 +
0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 2
0 0 3 0 0 0 0 0 + + +
0 0 1 0 3 0 0 0
0 0 1 0 0 1 0 0 +
0 0 1 0 0 0 1 1 +
0 0 1 0 0 0 0 3
0 0 0 9 0 0 0 0 +
0 0 0 3 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 0 1 0 1 +
0 0 0 1 0 0 2 0
0 0 0 1 0 0 0 4 +
0 0 0 0 9 0 0 0 +
0 0 0 0 4 0 1 0 +
0 0 0 0 2 0 0 1
0 0 0 0 1 1 1 0 +
0 0 0 0 0 3 0 0 +
0 0 0 0 0 1 3 0
0 0 0 0 0 0 9 0 +
0 0 0 0 0 0 4 1 +
0 0 0 0 0 0 0 9 +
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Table 28: Vertices of P (G9, 6)

1 2 3 4 5 6 7 8 Support Non-equivalent BAS

6 0 0 0 0 0 0 0 + + +
2 0 0 1 0 0 0 0 + + +
1 0 0 0 1 0 0 0 +
1 0 0 0 0 0 2 0 +
0 3 0 0 0 0 0 0 + + +
0 1 0 1 0 0 0 0
0 0 2 0 0 0 0 0 + + +
0 0 0 6 0 0 0 0 +
0 0 0 2 0 0 1 0 +
0 0 0 0 3 0 0 0 +
0 0 0 0 0 1 0 0 +
0 0 0 0 0 0 6 0 +
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 3 +

Table 29: Vertices of P (G9, 8)

1 2 3 4 5 6 7 8 Support Non-equivalent BAS

8 0 0 0 0 0 0 0 + + +
3 0 0 0 1 0 0 0 + + +
2 0 2 0 0 0 0 0 + + +
2 0 0 0 0 1 0 0 +
1 1 0 0 1 0 0 0 + + +
1 0 0 0 0 0 1 0 +
0 4 0 0 0 0 0 0 + + +
0 1 2 0 0 0 0 0 +
0 1 0 0 3 0 0 0 + + +
0 1 0 0 0 1 0 0 +
0 0 1 0 1 0 0 0 +
0 0 1 0 0 0 2 0 +
0 0 0 2 0 0 0 0 +
0 0 0 0 7 0 0 0 + + +
0 0 0 0 2 0 1 0 +
0 0 0 0 1 2 0 0 +
0 0 0 0 0 2 2 0 + + +
0 0 0 0 0 0 5 0 + + +
0 0 0 0 0 0 0 1 +
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Table 30: Vertices of P (G3,3, (0, 0))

(1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2) Support Non-equivalent BAS

3 0 0 0 0 0 0 0 + + +
1 1 0 0 0 0 0 0 + + +
0 3 0 0 0 0 0 0 +
0 0 3 0 0 0 0 0 + + +
0 0 1 0 0 1 0 0 + + +
0 0 0 3 0 0 0 0 + + +
0 0 0 0 3 0 0 0 +
0 0 0 1 0 0 0 1 + + +
0 0 0 0 1 0 1 0 +
0 0 0 0 0 3 0 0 +
0 0 0 0 0 0 3 0 +
0 0 0 0 0 0 0 3 +

Table 31: Vertices of P (G3,3, (1, 0))

(1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2) Support Non-equivalent BAS

1 0 0 0 0 0 0 0 +
0 2 0 0 0 0 0 0 +
0 0 2 1 0 0 0 0 +
0 0 2 0 0 0 0 2 + + +
0 0 1 0 2 0 0 0 +
0 0 1 0 0 0 1 0 +
0 0 0 2 1 0 0 0 +
0 0 0 2 0 0 2 0 + + +
0 0 0 1 0 1 0 0
0 0 0 0 2 2 0 0 +
0 0 0 0 1 0 0 1 +
0 0 0 0 0 2 1 0
0 0 0 0 0 1 0 2
0 0 0 0 0 0 2 1
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Table 32: Vertices of P (G10, 0)

1 2 3 4 5 6 7 8 9 Support Non-equivalent BAS

10 0 0 0 0 0 0 0 0 + + +
4 0 0 0 0 1 0 0 0 + + +
3 0 0 0 0 0 1 0 0 +
2 0 0 2 0 0 0 0 0 + + +
2 0 0 0 0 0 0 1 0 +
1 0 3 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 + + +
1 0 1 0 0 1 0 0 0 +
1 0 0 0 0 0 0 0 1 +
0 5 0 0 0 0 0 0 0 + + +
0 2 2 0 0 0 0 0 0 +
0 2 0 0 0 1 0 0 0 +
0 1 0 2 0 0 0 0 0
0 1 0 0 0 0 4 0 0 +
0 1 0 0 0 0 0 1 0 +
0 1 0 0 0 0 0 0 2
0 0 10 0 0 0 0 0 0 +
0 0 4 0 0 0 0 1 0 +
0 0 2 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 +
0 0 1 0 0 0 0 0 3
0 0 0 5 0 0 0 0 0 +
0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 1 +
0 0 0 1 0 0 0 2 0
0 0 0 1 0 0 0 0 4 +
0 0 0 0 2 0 0 0 0 +
0 0 0 0 1 1 0 0 1 +
0 0 0 0 1 0 1 1 0 +
0 0 0 0 0 5 0 0 0 +
0 0 0 0 0 2 0 1 0
0 0 0 0 0 2 0 0 2 +
0 0 0 0 0 1 2 0 0
0 0 0 0 0 0 10 0 0 +
0 0 0 0 0 0 3 0 1
0 0 0 0 0 0 2 2 0 +
0 0 0 0 0 0 0 5 0 +
0 0 0 0 0 0 0 0 10 +
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Table 33: Vertices of P (G10, 5)

1 2 3 4 5 6 7 8 9 Support Non-equivalent BAS

5 + + +
2 1 + + +
1 2 +
1 1 +
1 4 +
1 1 1 +
1 2 +
1 3

4 1 + + +
3 1 +
1 1
1 1 1 +
1 1 1 +

5 +
2 1 +
1 3
1 1 1 + + +
1 4 +
1 2

4 1 +
2 1

1 +
3 1
1 1

5 +
1 1
1 2 +

2 1
5 +
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Table 34: Vertices of P (G10, 8)

1 2 3 4 5 6 7 8 9 Support Non-equivalent BAS

8 0 0 0 0 0 0 0 0 + + +
3 0 0 0 1 0 0 0 0 + + +
2 0 2 0 0 0 0 0 0 + + +
2 0 0 0 0 1 0 0 0 +
1 1 0 0 1 0 0 0 0 + + +
1 0 0 0 0 0 1 0 0 +
0 4 0 0 0 0 0 0 0 + + +
0 1 2 0 0 0 0 0 0 +
0 1 0 0 0 1 0 0 0 +
0 0 6 0 0 0 0 0 0 + + +
0 0 1 0 1 0 0 0 0 +
0 0 0 2 0 0 0 0 0 +
0 0 0 0 1 1 1 0 0 + + +
0 0 0 0 0 3 0 0 0 + + +
0 0 0 0 0 0 4 0 0 + + +
0 0 0 0 0 0 0 1 0 +
0 0 0 0 0 0 0 0 2 + + +
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Table 35: Vertices of P (G10, 9)

1 2 3 4 5 6 7 8 9 Support Non-equivalent BAS

9 0 0 0 0 0 0 0 0 + + +
4 0 0 0 1 0 0 0 0 + + +
3 0 0 0 0 1 0 0 0 +
2 0 0 0 0 0 1 0 0 +
1 4 0 0 0 0 0 0 0 + + +
1 1 0 0 0 1 0 0 0 + + +
1 0 1 0 1 0 0 0 0 + + +
1 0 0 2 0 0 0 0 0 +
1 0 0 0 0 3 0 0 0 +
1 0 0 0 0 0 4 0 0 + + +
1 0 0 0 0 0 0 1 0 +
0 3 1 0 0 0 0 0 0 +
0 2 0 0 1 0 0 0 0 +
0 1 1 1 0 0 0 0 0 + + +
0 1 0 0 0 0 1 0 0 +
0 0 3 0 0 0 0 0 0 + + +
0 0 1 4 0 0 0 0 0 + + +
0 0 1 0 0 1 0 0 0 +
0 0 1 0 0 0 0 2 0 +
0 0 0 3 0 0 1 0 0 +
0 0 0 1 1 0 0 0 0 +
0 0 0 1 0 0 1 1 0 + + +
0 0 0 0 1 4 0 0 0 + + +
0 0 0 0 1 1 0 1 0 + + +
0 0 0 0 1 0 2 0 0 +
0 0 0 0 1 0 0 3 0 +
0 0 0 0 0 2 1 0 0 +
0 0 0 0 0 0 7 0 0 + + +
0 0 0 0 0 0 3 1 0 +
0 0 0 0 0 0 1 4 0 + + +
0 0 0 0 0 0 0 0 1 +
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Table 36: Vertices of P (G11, 10)

1 2 3 4 5 6 7 8 9 10 Support Non-equivalent BAS

10 0 0 0 0 0 0 0 0 0 + + +
4 0 0 0 0 1 0 0 0 0 + + +
3 0 0 0 0 0 1 0 0 0 +
2 0 0 0 0 0 0 1 0 0 +
2 0 0 2 0 0 0 0 0 0 + + +
1 1 0 0 0 0 1 0 0 0 + + +
1 0 3 0 0 0 0 0 0 0 + + +
1 0 1 0 0 1 0 0 0 0 + + +
1 0 0 0 0 0 0 0 1 0 +
0 5 0 0 0 0 0 0 0 0 + + +
0 2 2 0 0 0 0 0 0 0 + + +
0 2 0 0 0 1 0 0 0 0 +
0 1 0 2 0 0 0 0 0 0 +
0 1 0 0 0 0 0 1 0 0 +
0 0 7 0 0 0 0 0 0 0 + + +
0 0 2 1 0 0 0 0 0 0 +
0 0 1 0 0 3 0 0 0 0 +
0 0 1 0 0 0 1 0 0 0 +
0 0 1 0 0 0 0 0 2 0 + + +
0 0 0 8 0 0 0 0 0 0 + + +
0 0 0 3 0 0 0 0 1 0 + + +
0 0 0 1 0 1 0 0 0 0 +
0 0 0 1 0 0 0 1 1 0 + + +
0 0 0 0 2 0 0 0 0 0 +
0 0 0 0 0 9 0 0 0 0 + + +
0 0 0 0 0 4 0 1 0 0 + + +
0 0 0 0 0 2 0 0 1 0 +
0 0 0 0 0 1 1 1 0 0 + + +
0 0 0 0 0 0 3 0 0 0 + + +
0 0 0 0 0 0 0 4 0 0 + + +
0 0 0 0 0 0 0 0 6 0 + + +
0 0 0 0 0 0 0 0 0 1 +
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