
An experimental comparison of Variable
Neighborhood Search variants for the

minimization of the vertex-cut in layout
problems

Jesús Sánchez-Oro 1 Abraham Duarte 1,2

Dept. Ciencias de la Computación, Universidad Rey Juan Carlos, Madrid, Spain

Abstract

Variable Neighborhood Search (VNS) is a metaheuristic for solving optimization
problems based on a systematic change of neighborhoods. In recent years, a large
variety of VNS strategies have been proposed. However, we have only found lim-
ited experimental comparisons among different VNS variants. This paper reviews
three VNS strategies for finding near-optimal solutions for vertex-cut minimization
problems. Specifically, we consider the min-max variant (Vertex Separation Prob-
lem) and the min-sum variant (SumCut Minimization Problem). We also present
an preliminary computational comparison of the methods on previously reported
instances.

Keywords: VNS, Profile, Vertex Separation, metaheuristic

1 This research has been partially supported by the Spanish government, grants TIN2009-
07516 and TIN2012-35632, and the Government of the Community of Madrid, grant
S2009/TIC-1542
2 Email:abraham.duarte@urjc.es

doi:10.1016/j.endm.2012.10.009

http://www.elsevier.com/locate/endm
http://dx.doi.org/10.1016/j.endm.2012.10.009
http://dx.doi.org/10.1016/j.endm.2012.10.009
http://www.sciencedirect.com

1 Introduction

Let G(V,E) be an undirected graph where V and E are the sets of vertices
and edges, respectively. A linear layout ϕ of the vertices of G is a bijection
ϕ : V → {1, 2, ..., n} in which each vertex receives a unique and different
integer between 1 and n. For vertex u, let ϕ(u) denote its position or label in
layout ϕ. Let L(p, ϕ,G) be the set of vertices in V with a position in the layout
ϕ lower than or equal to position p. Symmetrically, let R(p, ϕ,G) be the set of
vertices with a position in the layout ϕ larger than position p. In mathematical
terms, L(p, ϕ,G) = {v ∈ V : ϕ(v) ≤ p} and R(p, ϕ,G) = {v ∈ V : ϕ(v) > p}.

Layouts are usually represented in a straight line, where the vertex (say for
instance, u) in position 1 comes first (i.e., ϕ(u) = 1). Then, L(p, ϕ,G) can be
simply called the set of left vertices with respect to position p. Symmetrically,
R(p, ϕ,G) is the set of right vertices w.r.t. p.

The vertex-cut at position p of layout ϕ, denoted as Cut(p, ϕ,G) is defined
as the number of vertices in L(p, ϕ,G) with one or more adjacent vertices in
R(p, ϕ,G). Then, Cut(p, ϕ,G) = |{u ∈ L(p, ϕ,G) : ∃v ∈ R(p, ϕ,G) ∩N(u)}|,
where N(u) = {v ∈ V : (u, v) ∈ E}. Figure 1.a shows an example of an
undirected graph, G, with six vertices and nine edges. Figure 1.b shows an
example of a layout ϕ. For instance, the vertex-cut value in position p = 4 is
Cut(4, ϕ, G) = 2 because vertices B and D with ϕ(B) = 2 and ϕ(D) = 4 (whose
position is lower than or equal to 4) have an adjacent vertex in a position
larger than 4.

A B C D E F

Vertex-Cut 1 2 3 2 2

A

B

C

D

E

F

(a) (b)

V S(ϕ,G) = max1≤p≤n Cut(p, ϕ,G). The Vertex Separation Problem (V SP)
consists of finding a layout, say ϕ∗, that minimizes the V S over all possible
layouts. Attending to the layout depicted in Figure 1.b, the V S(ϕ,G) = 3.

Similarly, the SumCut objective function is computed as the sum of vertex-
cuts of each position. In mathematical terms, SC(ϕ,G) =

∑n
i=1 Cut(i, ϕ,G).

The SumCut Minimization Problem (SCP) then consists of minimizing the
value of SC over all possible layouts. Considering the example shown in Figure
1.b, SC(ϕ,G) = 1 + 2 + 3 + 2 + 2 = 10

These two problems are NP-complete (see [6] and [2]). Practical applica-
tions of the Vertex Separation and the SumCut problems can be found in [1]
and [5].

2 Variable Neighborhood Search

Variable Neighborhood Search (VNS) [4] is a metaheuristic aimed at solv-
ing optimization problems. It is based on a systematic change of neigh-
borhood combined with a local search. VNS variants are generally simple
algorithms and require few search parameters (compared with other meta-
heuristics). Therefore, VNS emerges as good alternative to solve a wide range
of optimization problems. From an algorithmic perspective, VNS consists of
three main strategies: local search, shaking, and neighborhood change. VNS
needs an initial solution to start, which is frequently constructed at random.
In this paper, we use the constructive procedures described in [3] (VSP) and
in [7] (SCP).

2.1 Local search procedures

The first local search (LS1) is based on interchanges. An interchange(i, j) is
the exchange of positions of vertices v, u that are currently in positions i and j,
respectively. That is, ϕ(i) = v and ϕ(j) = u. It starts by sorting the vertices
according to their contribution to the objective function in descending order.
This is based on the idea that moving the vertices with the largest contribution
would reduce the objective function. Then, the method evaluates all possible
interchanges for each vertex, finally performing the better one. The local
search ends when no improvement is found.

The second local search (LS2) is based on insertions. An insert(i, j) is
the movement of vertex v = ϕ(i) to position j. After the move, v precedes u
if i > j and v follows u if i < j. LS2 starts inserting each vertex in all the
positions, placing it in the best one. LS2 ends when, after examining all the

J. Sánchez-Oro, A. Duarte / Electronic Notes in Discrete Mathematics 39 (2012) 59–66 61

vertices, no improvements is found.

The third local search (LS3) is based on interchanges of a node and its
associated adjacent vertices. The local search selects a vertex v at random
and then starts moving it by interchanges to its best position in the layout.
Then, LS3 do the same with the adjacent vertices of v, placing them in their
best positions. The idea of moving the adjacent vertices is based on the
hypothesis that they are the ones that would be affected by the move of v,
and it may eventually ends in a better solution. If the movement of a vertex
does not improve the objective function, LS3 discard it for future moves (to
save CPU time). This local search ends when there are no available vertices
to be moved.

2.2 Basic Variable Neighborhood Search

Figure 2.a shows the pseudocode of the Basic Variable Neighborhood Search
(BVNS). For both VSP and SCP we consider LS2 as local search and the
shaking procedure is implemented as a sequence of k consecutive insertions, as
recommended in [3] and [7], respectively. In both problems, the neighborhood
change strategy basically consists of increasing the value of k (non improving
move) or setting it to 1 (improving move). The procedure ends when k reaches
a pre-specified value (kmax).

2.3 Reduced Variable Neighborhood Search

Reduced Variable Neighborhood Search (RVNS) is an appropriate algorithm
when we face large instances (the local search can be very time consuming).
As it can be seen in Figure 2.b, this strategy does not consider a local search
within the VNS framework. In our study, for the neighborhood change, the
termination criterion, and shaking strategies, we consider the same configura-
tion aforementioned.

2.4 Variable Neighborhood Descent

Variable Neighborhood Descent (VND) changes the neighborhood definition
in order to obtain better solutions in the shaking step. The new neighborhood
is defined by different local search methods. Specifically, the method starts
with kmax different local searches. Then, in neighborhood k, the shaking step
obtains a local optimum for local search k. The VND proposed in this work
uses the three local searches (LS1, LS2 and LS3) described in Section 2.1.
Figure 2.c illustrates the pseudocode of this algorithm.

J. Sánchez-Oro, A. Duarte / Electronic Notes in Discrete Mathematics 39 (2012) 59–6662

BVNS(x, kmax, tmax)
while (t < tmax)
k = 1
while (k < kmax)

x′ ← Shake(x,k)
x′′ ← LocalSearch(x′)
NeighChange(x,x′′,k)

endwhile
t← Time()

endwhile

RVNS(x, kmax, tmax)
while (t < tmax)

k = 1
while (k < kmax)

x′ ← Shake(x,k)
NeighChange(x,x′,k)

endwhile
t← Time()

endwhile

VND(x, kmax, tmax)
while (t < tmax)

k = 1
while (k < kmax)

x′ ← LSSelection(x, k)
NeighChange(x,x′,k)

endwhile
t← Time()

endwhile

Fig. 2. Pseudocode for BVNS, RVNS, and VND

3 Computational experience

This section reports the computational experiments that we performed to
compare the previously described VNS variants for solving both, VSP and
SCP problems. All procedures were implemented in Java SE 6 and all the
experiments were conducted on an Intel Core i7 2600 CPU (3.4 GHz) and 4
GB RAM. We derived 62 instances from the Harwell-Boeing Sparse Matrix
Collection, where the number of vertices and edges range from 24 to 960 and
from 34 to 3721, respectively. This set was previously used in [3] and [7].

In the first experiment we determine the best value of kmax for BVNS. In
particular, we consider kmax ∈ {0.05n, 0.10n, 0.25n, 0.50n} for both problems
(VSP and SCP), where n = |V |. In order to have a fair comparison we limit
the CPU time to 60 seconds for all experiments. Table 1 reports the average
objective function (FO), the average deviation from the best known solution
(Dev %) and the number of instances in which the algorithm matches the best
solution (# Best).

Results reported in Table 1 clearly show that the best value for the VSP is
kmax = 0.05, achieving the lowest average deviation, and matching the largest
number of best values. In the case of the SCP, the BVNS with kmax = 0.25
clearly outperforms the other variants.

The next experiment is devoted to study the effect of kmax on RVNS,
considering again VSP and SCP. We use the same values aforementioned for
kmax. Table 2 shows the experimental behavior of the 4 RVNS variants. As
in the previous experiment, the best result for the VSP and SCP is obtained
when kmax is 0.05 and 0.10, respectively. It is important to remark that, the
differences among the for RVNS variants are smaller than in BVNS variants.

In the next experiment, we investigate the effect of the order of the local

J. Sánchez-Oro, A. Duarte / Electronic Notes in Discrete Mathematics 39 (2012) 59–66 63

VSP SCP

kmax FO Dev (%) Best FO Dev (%) # Best

0.05 24.66 0.16 61 8061.05 1.29 44

0.10 24.76 0.58 58 8052.50 0.98 41

0.25 24.81 1.34 56 8046.74 0.63 51

0.50 24.79 0.80 57 8054.19 0.91 50

Table 1
kmax selection for BVNS

VSP SCP

kmax FO Dev (%) Best FO Dev (%) # Best

0.05 26.73 0.00 62 8432.87 0.11 60

0.10 26.74 0.20 61 8433.16 0.08 54

0.25 26.74 0.20 61 8433.32 0.13 53

0.50 26.74 0.20 61 8433.60 0.17 51

VSP SCP

kmax FO Dev (%) Best FO Dev (%) # Best

LS1 - LS3 - LS2 30.55 17.61 31 11140.37 25.73 6

LS1 - LS2 - LS3 26.85 0.91 57 8393.53 0.70 37

LS3 - LS1 - LS2 30.73 19.19 17 10782.00 24.51 4

LS3 - LS2 - LS1 30.39 17.89 26 10771.10 25.06 3

LS2 - LS1 - LS3 26.74 0.43 58 8432.37 0.60 36

LS2 - LS3 - LS1 26.74 0.43 58 8432.37 0.60 36

Table 3
Local search order in VND

Finally, the VND seems to be the method with the worst results. However, it
could be partially explained since one of the proposed local search strategies
clearly outperforms the other two (LS1 in the SCP and LS2 in the VSP).
Therefore, the change of neighborhood (by using other local search) does not
really improve the results.

VSP SCP

kmax FO Dev (%) Best FO Dev (%) # Best

BVNS 24.66 0.00 62 8046.74 0.01 60

RVNS 26.73 10.94 29 8432.87 8.43 6

VND 26.74 11.63 28 8393.53 8.73 5

Table 4
Final comparison with a time horizon of 60 seconds

VSP SCP

kmax FO Dev (%) Best FO Dev (%) # Best

BVNS 23.26 0.00 62 7615.50 0.00 62

RVNS 26.69 15.73 27 8428.68 12.65 3

VND 26.74 17.01 25 8393.53 13.12 3

4 Conclusions

A experimental comparison of three VNS variants for two vertex-cut mini-
mization problems has been presented. In particular, we have considered the
Vertex Separation Problem and the SumCut Minimization Problem. Experi-
ments with 62 instances have been performed in order to compare this three
variants over two hard optimization problems. Our experimentation reveals
that the Basic VNS strategy is the best option when considering short and
long time horizons. However we believe that this experimental study should
be enlarged in order to draw more robust conclusions.

References

[1] Botafogo, R. A., Cluster analysis for hypertext systems, Proceedings of the 16th
annual international ACM SIGIR conference on Research and development in
information retrieval (1993), 116–125.

[2] D́ıaz, J., A.M. Gibbons, M. S. Paterson, and J. Torán, The Minsumcut problem.
Algorithms and Data Structures 519 (1991), 65–79.

[3] Duarte, A., L. F. Escudero, R. Mart́ı, N. Mladenovic, J.J. Pantrigo and J.
Sánchez-Oro, Variable Neighborhood Search for the Vertex Separation Problem,
Computers & Operations Research, 39 (2012), 3247–3255.

[4] Hansen, P., N. Mladenović, J. Brimberg, and J. A. Moreno Pérez, Variable
neighbourhood search. Handbook of Metaheuristics, (second edition) Springer
(2010) 61–86.

[5] Leiserson C. E., Area-efficient graph layouts (for VLSI), Proceedings of IEEE
symposium on foundations of computer science (1980), 270–281.

[6] Lengauer T, Black-white pebbles and graph separation, Acta Informatica 16
(1981), 465–475.

[7] Sánchez-Oro, J., and A. Duarte, GRASP with Path Relinking for the SumCut
Problem, International Journal of Combinatorial Optimization Problems and
Informatics 3 (2011), 3–11.

J. Sánchez-Oro, A. Duarte / Electronic Notes in Discrete Mathematics 39 (2012) 59–6666

	Introduction
	Variable Neighborhood Search
	Local search procedures
	Basic Variable Neighborhood Search
	Reduced Variable Neighborhood Search
	Variable Neighborhood Descent

	Computational experience
	Conclusions
	References

