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Abstract

This paper presents two extensions for DGVNS (Decomposition Guided VNS) method,
that exploit both the graph of clusters and separators between these clusters, to effi-
ciently guide the exploration of large neighborhoods in VNS. Experiments performed
on challenging instances of the tagSNP selection problem show the appropriateness
and the efficiency of our approach.
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1 Introduction

Tree decomposition, introduced by Robertson and Seymour [7], aims to de-
compose a problem into sub-problems (called clusters) constituting an acyclic
graph. Each cluster corresponds to a subset of variables that are strongly
connected. For large problems that exhibit a highly structured constraints
graph, exploiting such structural properties will lead these problems to be
solved more efficiently (see [8,1] for complete search methods).

In a recent paper [2] we have introduced DGVNS (Decomposition Guided
VNS), a new approach that exploits the graph of clusters obtained from a tree
decomposition of the constraints graph, to efficiently guide the exploration
of large neighborhoods in VNS. In this paper, we propose two extensions for
DGVNS, noted SGVNS (Separator-Guided VNS) and ISGVNS (Intensified SGVNS),



that exploits both the graph of clusters and the separators between these clus-
ters. Experimental results over challenging instances of the tagSNP selection
problem show that (i) our two approaches clearly outperform VNS/LDS+CP [6],
and (ii) ISGVNS is very effective compared to DGVNS and SGVNS.

2 Definitions and Notations

A Cost Function Network (CFN) is a pair (X, W) where X = {z1,...,2,}
is a set of n variables (with a maximum domain size d) and W is a set of e
cost functions (see Fig. 3). Each variable z; € X has a finite domain D; of
values that can be assigned to it. A value a in D; is denoted (z;, a). For a set
of variables S C X, D® denotes the cartesian product of the domains of the
variables in S. A complete assignment t=(ay, ..., a,) is an assignment of all
variables; on the contrary, it will be called a partial assignment. For a given
complete assignment ¢, t[S] denotes the projection of ¢ over S. A cost function
wg € W, with scope S C X, is a function wg : D% — [0, kt] where , kT is a
maximum integer cost (finite or not) used to represent forbidden assignments
(expressing hard constraints). Costs are combined using the bounded addition
defined by o & f = max(kt,a + ). Solving a CFN consists in finding a
complete assignment ¢ minimizing @, ew ws(t[S]).

Definition 2.1 A tree decomposition of a connected CEN is a pair (Cr,T)
where T' = (I, A) is a tree with nodes set I and edges set A and Cr = {C; | i €
I} is a family of subsets of X (called clusters [7]) such that: (i) Ujer C; = X,
(ii) YVws € W, 3 C; € Cpst. S C G, (iii) Vi, j,k € I, if j is on the path
from i to k in T, then C; N Cy, C C.

Definition 2.2 The intersection of two clusters C; and C} is called a separa-
tor, and noted sep(C;, C}).

Definition 2.3 A graph of clusters for a tree decomposition (Cp,T') is an
undirected graph G = (Cp, E) that has a vertex for each cluster C; € Cr, and
there is an edge (C;, C;) € E when sep(C;, C;) # 0.

3 Decomposition Guided VNS

DGVNS (Decomposition Guided VNS [2]) extends VNDS [4], by exploiting the
graph of clusters in order to build neighborhood structures enabling a bet-
ter diversification. DGVNS uses neighborhood structures Ny ;, where k is the
neighborhood dimension and C} is the cluster the variables will be selected in.
Fig. 1 (left) depicts the pseudo-code of DGVNS. It starts from an initial solution
S which is randomly generated (function genInitSol, line 5). A subset of k



Function DGVNS(X P, kinit, kmax 5maz)' Function ISGVNS(X7 P, kinih kjmaz,dmaz)?
; Y ’ ’ ’ 1) begin
1) begin ( .
EQ% %et G be the constraints graph of P; (2) let G be the constraints grapl'l of P;
(3) let (Cr,T) a tree decomposition of 7G' 3) let (Cr,T) a tree decomposition of Gj
@) let Cp = {C1,Cn, ., Oy ol @) let Op = {C1,Ca, o, Gy
(5) S < genInitSol(); (5) S+ genIni}tSol();
i 7 ’ ; 7 Trist < 0, Prist < 0;
7 while (k <k A notTimeOut d ( s ’ ' )
E8§ Cs <(— ;mp?:leISSOte;Egi)-u ° (®) while (k < kmaa) A notTimeOut do
9) Xun < Hneighborhood(C's, Ny i, S); ©) Cs Compl'eteC1uster(Cl-);
(10) A S\{(@;,a) |25 € Xun}; (10) Xun + Hneighborhood(Cs, Ny ;, S);
(11) S’ ¢ Rebuild(A, Xun, Smaz, S); 8;3 ?/iSR\i(pl,dcz)fltz;(e /\;un}; 5
(12) ChangeNeighborDGVNS(S, S’, k, 1) eobut ) Aun, Omaz, 2);.
(13) endwhile (13) Chal}geNelghborISGVNS(S, S’ k,i,Cs)
(14) return S (14) endwhile
(15) end (15) return S
(16) end

Fig. 1. Pseudo-codes of DGVNS (left) and ISGVNS (right).

variables C is randomly selected among conflicted ones by the neighborhood
heuristic Hneighborhood (line 9). A partial assignment A is generated from
the current solution S by unassigning the k selected variables (line 10). Then,
unassigned variables are rebuilt (line 11) by a partial tree search LDS [5] com-
bined with Constraint Propagation (see [6] for more details). The search stops
when the maximal dimension size k,,q, is reached or the TimeOut (line 7).

DGVNS favors moves on regions that are closely linked. The con-
cept of cluster embodies this criterion, because of its size, and by the strong
connection of the variables it contains. The k variables to be unassigned are
selected in a same cluster C;. If (k > |C;|), then the set of potential variables
Cs is completed by adding the clusters C; adjacent to C; in order to take
into account the topology of the graph of clusters (function CompleteCluster
(line 8)). So, the neighborhood structure NN ; is constituted by the set of all
subsets of k variables among C (line 9).

The aim of diversification is to sample a large number of different
regions, in order to explore the whole search space, and to locate the region
containing the global optimum. To perform a better diversification, DGVNS con-
siders successively all the C; (see procedure ChangeNeighborDGVNS, Fig. 2).
Let p be the total number of clusters in Cp, succ a successor function!, and
Ny; the current neighborhood structure: if the rebuild step finds a better
solution S in the neighborhood of S (line 2), then S” becomes the current so-
lution (line 3), k is reset to Kini (line 4), and the next cluster is considered (line
5). Otherwise, DGVNS looks for improvements in N1y, suces) (neighborhood
structure where (k+1) variables of Cy will be unassigned (line 7)).

b suce(i) = i+ 1 if i < p, otherwise succ(p) = 1.



First, diversification performed by moving from cluster C; to cluster Cyyce(s)
is necessary. Experiments we performed have shown that remaining in the
same cluster leads to lower improvements: selecting a new cluster enables to
visit new parts of the search space. Second, when a local minimum is got
in the current neighborhood, moving from & to (k+1) will also provide some
diversification by enlarging the neighborhood size.

4 Exploiting Separators to Guide VNS

Variables occurring in a separator sep(C;, C;) constitute "key-points” of the
problem because their re-assignments (in the rebuild-step) will directly im-
pact the variables of both C; and C;. SGVNS (Separator-Guided VNS) exploits
variables occurring in separators in order to guide the diversification
effort towards clusters that are more likely to lead to larger improvements.

Let S’ be a new solution better than the current solution S and C; be the
current cluster. Let V, be the set of all the variables that have been re-assigned
to obtain S’. Let C,, be the set of clusters C; such that sep(C;, C;) shares at
least one variable with V. (except those of Cs?). DGVNS performs diversifica-
tion by considering Cj,e.(;) as the next cluster (see Section 3). SGVNS performs
diversification by considering successively the clusters C; € C,,. These clusters
are more appropriate because they contain at least one re-assigned variable in
their separators and therefore are more likely to lead to larger improvements.

ISGVNS (Intensified SGVNS) aims to intensify the exploration around the
re-assigned variables. To achieve this goal, a propagation list endowed with a
dynamic tabu list are used. The first list manages the set of candidate clusters
to be examined after each improvement, while the second list ensures that
variables involved in the selection of these candidate clusters (i.e. variables
of V) will not be considered in Nj; by the function Hneighborhood. Fig. 2
(right) depicts the pseudo-code of procedure ChangeNeighborISGVNS. It uses
a propagation list Pp;; and a dynamic tabu list T, of size L.

The intensification effort of ISGVNS is performed using a propaga-
tion list. As for SGVNS, V. is the set of all variables that have been re-assigned
(line 4), and C,,, is the set of clusters C; having at least one re-assigned variable
in a separator (line 5). Contrary to SGVNS, each cluster C; € C,, is added to
Prist (line 7), and each variable x € V, is made tabu for the next L iterations
(line 9). The value of L is set to the size of Pp;s. This prevents re-assigning z
until all the clusters C; € C,, of Pp;s have been considered. Finally, the next
cluster to be considered is selected from Pp;g, if it is not empty (lines 13 and
14). Otherwise, the successor of C; in Cr is considered (line 16).

2 This prevents selecting clusters already considered in the current neighborhood Ny ;.



Procedure ChangeNeighborISGVNS(S, S’, k,1i,Cs);
(1) begin
(2) if f(S’) < f(S) then
(3) S« 85k Einit;
Procedure ChangeNeighborDGVNS(S, S’,k,i); | (4) Ve « {x|S'[z] # S[z]};
(1) begin (5) Cw —{C;1C; ¢ Cs N CyjNVe # 0}
(2) if f(S') < f(S) then (6) for each C; € Cy do
(3) S+ S (7) insert 4 in Pps
(4) k < kinit; (8) endfor
(5) 1 < succ(i); 9) make tabu each x € V. ;
(6) else (10) else
(7) k—k4+1; (11) E—k+1
(8) i < succ(1) (12) endif
9) endif (13) if Pr;st is not empty then
(10) end (14) i < Ppigp.mnext
(15) else
(16) 1+ succ(i)
(17) endif
(18) end

Fig. 2. Steps of neighborhood change for DGVNS (left) and ISGVNS (right).

ISGVNS enforces a balance between intensification and diversification. As
long as no improvement is made, ISGVNS behaves as DGVNS by considering
successively all the C;. But, when a solution is improved, ISGVNS switches to
an intensification scheme until all clusters of Pr; have been examined.

5 The tagSNP Selection Problem

The selection of tagSNPs has became a very active area of research in genotyp-
ing [3]. A Single Nucleotide Polymorphism (SNP) is a DNA sequence variation
occurring when a single nucleotide - A, T, C or G - in the genome differs between
members of a biological species or paired chromosomes in an individual. SNPs
act as biological markers that may help predict risk of developing particular
diseases. The tagSNP problem consists in selecting a small subset of SNPs,
called tagSNPs, that captures most of the genetic information.

A correlation measure r? between any pair of SNPs has been introduced
in [3]. A tagSNP p; is said to be representative of another SNP p; if p; and
p; are considered as enough correlated (i.e., r%(p;,p;) > 79, where ry is a
minimum threshold). The tagSNP problem consists in selecting a minimum
number of SNPs such that all SNPs are covered. Other criteria [8] can also
be considered: (i) maximizing the weighted coverage sum of unselected SNPs
and (ii) maximizing the dispersion between selected SNPs (i.e., tagSNPs).

This problem is modeled as a binary CFN (see Section 2). Two variables
is and 7, are associated to each SNP p;: i, is a boolean variable that indicates
if p; is a tagSNP; i, is a variable representing the tagSNP covering p; (its



domain is the set of neighbors of p; together with p; itself). For each pair of
SNPs (pi,p;) s.t. r*(pi, p;)>70, the following (hard) constraints are enforced:
is = (i, = p;) and (i, = p;) = js. Such constraints are encoded as binary
cost functions (with 0 or kv costs). Preferences (i) and (ii) are respectively
captured by unary and binary cost functions (see [8] for more details).

6 Experiments

Experimental protocol. We have selected ten challenging instances derived
from human chromosome-1-data® with ry=0.5. Seven instances are of medium
size, while the three other ones are large ones. Fig. 3 (leftmost column) gives
the characteristics of each instance: its name, its number of variables (n),
its number of cost functions (e) and its maximum domain size (d). We used
the following parameter settings, which are the best values found (see [6] for
more details): k=4, knaz=n and 6,4.=3. TimeOut was set to 2 hours
(resp. 4 hours) for medium-size (resp. large-size) instances. A set of 50 runs
per instance has been performed using an AMD-Opteron with 2.1 GHz CPU
and 256 GB of RAM. All search strategies have been implemented in C++-.
For each instance and each method, Fig. 3 reports the number of successful
runs to reach the optimum, the average number of performed iterations, the
average CPU time (in seconds) for the successful runs, the average cost and
the best cost (between parentheses) for unsuccessful runs. Four methods are
compared: DGVNS, SGVNS, ISGVNS and VNS/LDS+CP [6] (an instance of VNDS [4]
which uses neighborhood structures Ny, of dimension k). Tree decompositions
are built using the Mazimum Cardinality Search (MCS) heuristic [9].

Impact of the tree decomposition. For medium-size instances, DGVNS,
SGVNS and ISGVNS clearly outperform VNS/LDS+CP (see Fig. 3). The three
methods reach the optimum on each run. VNS/LDS+CP gets the same success
rates on two instances, but is on average 3 times slower. On instances #3792
and #8956, VNS/LDS+CP gets successful runs only very few times. It remains
less competitive both in terms of successful runs and CPU times on the other
instances. On large-size instances, VNS/LDS+CP never finds the optimum.

Impact of the separators. Fig. 3 also compares SGVNS with DGVNS.
For medium-size instances, SGVNS and DGVNS reach the optimum on each run.
However, SGVNS is faster on three instances, and slower on four instances. For
large-size instances, DGVNS clearly outperforms SGVNS. For instance #17034,
the success rate is improved about 16% (from 66% to 82%), the mean deviation
from the optimum decreases from 1.43% to 0.63%, and DGVNS is 4 times faster
than SGVNS. These results show that SGVNS is competitive for medium-size

3 http://www.costfunction.org/benchmark



Instance Method Succ. Iter Time Avg
#3792 DGVNS 50/50 1,248 954 6,359,805
n =528, d = 59 SGVNS 50/50 1,240 1,033 6,359,805
e = 12,084 ISGUNS 50/50 | 1,192 853 6,359,805
S* = 6,359,805 VNS/LDS+CP | 15/50 5,713 2,806 6,359,856
#4449 DGVNS 50/50 1,107 665 5,094,256
n =464, d = 64 SGVNS 50/50 | 1,113 661 5,094,256
e = 12, 540 ISGUNS 50/50 | 1,0512 675 5,094,256
S* = 5,094, 256 VNS/LDS+CP | 48/50 5,181 2,616 5,004256
#8956 DGVNS 50/50 | 1,477 | 4,911 6,660,308
n = 486, d = 106 SGVNS 50/50 1,513 5,483 6,660,308
e = 20,832 ISGUNS 50/50 1,457 4,118 6,660,309
S* = 6, 660, 308 VNS/LDS+CP | 12/50 4776 8,665 6,660327
#9319 DGVNS 50/50 818.7 788 6,477,229
n =562, d = 58 SGVNS 50/50 797 500 6,477,229
e = 14,811 ISGVNS 50/50 923 672 6,477,229
S* = 6,477,229 VNS/LDS+CP | 47/50 6,171 2,434 6,477,229
#15757 DGVNS 50/50 511 60 2,278,611
n = 342, d = 47 SGVNS 50/50 525 104 2,278,611
e = 5,091 ISGUNS 50/50 527 80 2,278,611
S* = 2,278,611 VNS/LDS+CP | 50/50 2,800 229 2,278,611
#16421 DGVNS 50/50 1,688 2,673 3,436,849
n =404, d = 75 SGVNS 50/50 | 1,587 | 2,025 3,436,849
e =12,138 ISGUNS 50/50 4,240 5,863 3,436,849
S* = 3,436, 849 VNS/LDS+CP | 37/50 5,095 3,146 3,436,924
#16706 DGVNS 50/50 1,167 153 2,632,310
n = 438, d = 30 SGVNS 50/50 888 159 2,632,310
e = 6,321 ISGVNS 50/50 872 89 2,632,310
S* = 2,632,310 VNS/LDS+CP | 50/50 5,494 629 2,632,310
410442 DGVNS 50/50 | 2,264 | 4,552 21,591,913
n =908, d = 76 SGVNS 50/50 2,496 7,153 21,591,913
e = 28,554 ISGUNS 50/50 2,395 7,291 21,591,913
S* = 21,591, 913 VNS/LDS+CP | 0/50 5,887 B 22,778,811 (22,490,938)
414226 DGVNS 46/50 1,802 7,606 25,688,751
n=1,058, d=095 | SGUNS 40/50 1,776 7,646 25,805,242
e = 36,801 ISGUNS 50/50 | 1,818 | 9,596 25,665,437
S* = 25,665, 437 VNS/LDS+CP | 0/50 4,041 B 28,299,904(26,830,579)
#17034 DGVNS 41/50 | 2,098 | 8,900 38,563,232
n =1142, d = 123 | SGUNS 33/50 1,825 | 10,212 38,869,514
e = 47,967 ISGUNS 36/50 1,857 | 10,579 38,746,957
S* = 38,318,224 VNS/LDS+CP | 0/50 3,315 B 41,352,709 (39,850,974)

Fig. 3. Comparison on medium-size and large-size instances.

instances, and less effective for large-size ones.

For medium-size instances, ISGVNS is faster than DGVNS on four instances,
slower on two instances, and similar on instance #4449. For large-size in-
stances, ISGVNS performs better than DGVNS on instance #14226, and worse
on instance #17034. Both methods obtain the same success rates on instance
#10442, but DGVNS remains faster. These results show that ISGVNS is more
effective than DGVNS, and confirm the importance of exploiting separators.

For medium-size instances, ISGVNS and SGVNS obtain the same success
rates. However, ISGVNS is faster than SGVNS on four instances. For large-size



instances, ISGVNS improves the success rates on two instances. These results
highlight the importance of the propagation list to enforce a tradeoff between
intensification and diversification.

7 Conclusions

We have proposed two extensions of DGVNS that exploit both the graph of
clusters and the separators to efficiently guide VNS. Experimental results over
challenging instances of the tagSNP selection problem show that SGVNS and
ISGVNS clearly outperform VNS/LDS+CP, and ISGVNS is very effective compared
to DGVNS and SGVNS. We are currently parallelizing the exploration of clusters.
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