$(3,1)^{*}$-choosability of planar graphs without adjacent short cycles

Min Chen ${ }^{a *}$ André Raspaud ${ }^{b \dagger}$
${ }^{a}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
${ }^{b}$ LaBRI UMR CNRS 5800, Universite Bordeaux I, 33405 Talence Cedex, France.

January 14, 2021

Abstract

A list assignment of a graph G is a function L that assigns a list $L(v)$ of colors to each vertex $v \in V(G)$. An $(L, d)^{*}$-coloring is a mapping π that assigns a color $\pi(v) \in L(v)$ to each vertex $v \in V(G)$ so that at most d neighbors of v receive color $\pi(v)$. A graph G is said to be $(k, d)^{*}$ choosable if it admits an $(L, d)^{*}$-coloring for every list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$. In 2001, Lih et al. [6] proved that planar graphs without 4- and l-cycles are $(3,1)^{*}$ choosable, where $l \in\{5,6,7\}$. Later, Dong and Xu [3] proved that planar graphs without 4 - and l-cycles are $(3,1)^{*}$-choosable, where $l \in\{8,9\}$.

There exist planar graphs containing 4 -cycles that are not $(3,1)^{*}$-choosable (Crown, Crown and Woodall, 1986 [1]). This partly explains the fact that in all above known sufficient conditions for the $(3,1)^{*}$-choosability of planar graphs the 4 -cycles are completely forbidden. In this paper we allow 4 -cycles nonadjacent to relatively short cycles. More precisely, we prove that every planar graph without 4 -cycles adjacent to 3 - and 4 -cycles is $(3,1)^{*}$-choosable. This is a common strengthening of all above mentioned results. Moreover as a consequence we give a partial answer to a question of Xu and $\mathrm{Zhang}[11]$ and show that every planar graph without 4 -cycles is $(3,1)^{*}$ choosable.

Keyword: Planar graphs; Improper choosability; Cycle.

1 Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges. A plane graph is a particular drawing of a planar graph in the Euclidean plane. For a graph G, we use $V(G), E(G),|G|$, $|E(G)|$ and $\delta(G)$ to denote its vertex set, edge set, order, size and minimum degree, respectively. For $v \in V(G), N_{G}(v)$ denotes the set of neighbors of v in G. If there is no confusion about the context, we write $N(v)$ for $N_{G}(v)$.

[^0]A k-coloring of G is a mapping π from $V(G)$ to a color set $\{1,2, \cdots, k\}$ such that $\pi(x) \neq \pi(y)$ for any adjacent vertices x and y. A graph is k-colorable if it has a k-coloring. Cowen, Cowen, and Woodall [1] considered defective colorings of graphs. A graph G is said to be d-improper k-colorable, or simply, $(k, d)^{*}$-colorable, if the vertices of G can be colored with k colors in such a way that each vertex has at most d neighbors receiving the same color as itself. Obviously, a $(k, 0)^{*}$-coloring is an ordinary proper k-coloring.

A list assignment of G is a function L that assigns a list $L(v)$ of colors to each vertex $v \in V(G)$. An L-coloring with impropriety of integer d, or simply an $(L, d)^{*}$-coloring, of G is a mapping π that assigns a color $\pi(v) \in L(v)$ to each vertex $v \in V(G)$ so that at most d neighbors of v receive color $\pi(v)$. A graph is k-choosable with impropriety of integer d, or simply $(k, d)^{*}$-choosable, if there exists an $(L, d)^{*}$-coloring for every list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$. Clearly, a $(k, 0)^{*}$-choosable is the ordinary k-choosability introduced by Erdős, Rubin and Taylor [5] and independently by Vizing [10].

The concept of list improper coloring was independently introduced by Škrekovski [7] and Eaton and Hull [4]. They proved that every planar graph is $(3,2)^{*}$-choosable and every outerplanar graph is $(2,2)^{*}$-choosable. These are both improvement of the results showed in [1] which say that every planar graph is $(3,2)^{*}$-colorable and every outerplanar graph is $(2,2)^{*}$-colorable. Let $g(G)$ denote the girth of a graph G, i.e., the length of a shortest cycle in G. The $(k, d)^{*}$-choosability of planar graph G with given $g(G)$ has been studied by Škrekovski in [9]. He proved that every planar graph G is $(2,1)^{*}$-choosable if $g(G) \geq 9,(2,2)^{*}$-choosable if $g(G) \geq 7,(2,3)^{*}$-choosable if $g(G) \geq 6$, and $(2, d)^{*}$-choosable if $d \geq 4$ and $g(G) \geq 5$. Recently, Cushing and Kierstead [2] proved that every planar graph is $(4,1)^{*}$-choosable. So it would be interesting to investigate the sufficient conditions of $(3,1)^{*}$-choosability of subfamilies of planar graphs where some families of cycles are forbidden. Škrekovski proved in [8] that every planar graph without 3 -cycles is $(3,1)^{*}$-choosable. Lih et al. [6] proved that planar graphs without 4 - and l-cycles are $(3,1)^{*}$-choosable, where $l \in\{5,6,7\}$. Later, Dong and Xu [3] proved that planar graphs without 4- and l-cycles are $(3,1)^{*}$-choosable, where $l \in\{8,9\}$. Moreover, Xu and Zhang [11] asked the following question:

Question 1 Is it true that every planar graph without adjacent triangles is $(3,1)^{*}$-choosable?

Recall that there is a planar graph containing 4-cycles that is not $(3,1)^{*}$-colorable [1]. Therefore, while describing $(3,1)^{*}$-choosability planar graphs, one must impose these or those restrictions on 4 -cycles. Note that in all previously known sufficient conditions for the $(3,1)^{*}$-choosability of planar
graphs, the 4 -cycles are completely forbidden. In this paper we allow 4-cycles, but disallow them to have a common edge with relatively short cycles.

The purpose of this paper is to prove the following

Theorem 1 Every planar graph without 4-cycles adjacent to 3 - and 4 -cycles is $(3,1)^{*}$-choosable.
Clearly, Theorem 1 implies Corollary 1 which is a common strengthening of the results in [6, 3].

Corollary 1 Every planar graph without 4 -cycles is $(3,1)^{*}$-choosable.
Moreover, Theorem 1 partially answers Question 1 since adjacent triangles can be regarded as a 4-cycle adjacent to a 3-cycle.

2 Notation

A vertex of degree k (resp. at least k, at most k) will be called a k-vertex (resp. k^{+}-vertex, k^{-}-vertex). A similar notation will be used for cycles and faces. A triangle is synonymous with a 3-cycle. For $f \in F(G)$, we use $b(f)$ to denote the boundary walk of f and write $f=\left[u_{1} u_{2} \cdots u_{n}\right]$ if $u_{1}, u_{2}, \cdots, u_{n}$ are the boundary vertices of f in cyclic order. For any $v \in V(G)$, we let $v_{1}, v_{2}, \cdots, v_{d(v)}$ denote the neighbors of v in a cyclic order. Let f_{i} be the face with $v v_{i}$ and $v v_{i+1}$ as two boundary edges for $i=1,2, \cdots, d(v)$, where indices are taken modulo $d(v)$. Moreover, we let $t(v)$ denote the number of 3 -faces incident to v and let $n_{3}(v)$ denote the number of 3 -vertices adjacent to v.

An m-face $f=\left[v_{1} v_{2} \cdots v_{m}\right]$ is called an $\left(a_{1}, a_{2}, \cdots, a_{m}\right)$-face if the degree of the vertex v_{i} is a_{i} for $i=1,2, \cdots, m$. Suppose v is a 4 -vertex incident to a 4^{-}-face f and adjacent to two 3 -vertices not on $b(f)$. If $d(f)=3$, then we call v a light 4 -vertex. Otherwise, we call v a soft 4 -vertex if $d(f)=4$. A vertex v is called an \mathcal{S}-vertex if it is either a 3 -vertex or a light 4 -vertex. Moreover, we say a 3 -face $f=\left[v_{1} v_{2} v_{3}\right]$ is an $\left(a_{1}, *, a_{3}\right)$-face if $d\left(v_{i}\right)=a_{i}$ for each $i \in\{1,3\}$ and v_{2} is an \mathcal{S}-vertex. Suppose v is a 5 -vertex incident to two 3 -faces $f_{1}=\left[v v_{1} v_{2}\right]$ and $f_{3}=\left[v v_{3} v_{4}\right]$. Let v_{5} be the neighbour of v not belonging to the 3 -faces. If $d\left(v_{5}\right)=3$ and f_{1} is a $(5, *, 4)$-face, then we call v a bad 5 -vertex.

For all figures in the following section, a vertex is represented by a solid circle when all of its incident edges are drawn; otherwise it is represented by a hollow circle. Moreover, we use a hollow square to denote an \mathcal{S}-vertex.

Figure 1: A light 4 -vertex v, a soft 4 -vertex w and a bad 5 -vertex u.

3 Proof of Theorem 1

The proof of Theorem 1 is done by reducible configurations and discharging procedure. Suppose the theorem is not true. Let G be a counterexample with the least number of vertices and edges embedded in the plane. Thus, G is connected. We will apply a discharging procedure to reach a contradiction.

We first define a weight function ω on the vertices and faces of G by letting $\omega(v)=3 d(v)-10$ if $v \in V(G)$ and $\omega(f)=2 d(f)-10$ if $f \in F(G)$. It follows from Euler's formula $|V(G)|-|E(G)|+$ $|F(G)|=2$ and the relation $\sum_{v \in V(G)} d(v)=\sum_{f \in F(G)} d(f)=2|E(G)|$ that the total sum of weights of the vertices and faces is equal to

$$
\sum_{v \in V(G)}(3 d(v)-10)+\sum_{f \in F(G)}(2 d(f)-10)=-20 .
$$

We then design appropriate discharging rules and redistribute weights accordingly. Once the discharging is finished, a new weight function ω^{*} is produced. The total sum of weights is kept fixed when the discharging is in process. Nevertheless, after the discharging is complete, the new weight function satisfies $\omega^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$. This leads to the following obvious contradiction,

$$
-20=\sum_{x \in V(G) \cup F(G)} \omega(x)=\sum_{x \in V(G) \cup F(G)} \omega^{*}(x) \geq 0
$$

and hence demonstrates that no such counterexample can exist.

3.1 Reducible configurations of G

In this section, we will establish structural properties of G. More precisely, we prove that some configurations are reducible. Namely, they cannot appear in G because of the minimality of G. Since G does not contain a 4 -cycle adjacent to an i-cycle, where $i=3,4$, by hypothesis, the following fact is easy to observe and will be frequently used throughout this paper without further notice.

Observation $1 G$ does not contain the following structures:
(a) adjacent 3 -cycles;
(b) a 4-cycle adjacent to a 3-cycle;
(c) a 4-cycle adjacent to a 4-cycle.

We first present Lemma 1 whose proof was provided in [6].

Lemma 1 [6]

(A1) $\delta(G) \geq 3$.
(A2) No two adjacent 3-vertices.
(A3) There is no (3, 4, 4)-face.
Before showing Lemmas 2-7] we need to introduce some useful concepts, which were firstly defined by Zhang in [12].

Definition 1 For $S \subseteq V(G)$, let $G[S]$ denote the subgraph of G induced by S. We simply write $G-S=G[V(G) \backslash S]$. Let L be an arbitrary list assignment of G, and π be an $(L, 1)^{*}$-coloring of $G-S$. For each $v \in S$, let $L_{\pi}(v)=L(v) \backslash\left\{\pi(u): u \in N_{G-S}(v)\right\}$, and we call L_{π} an induced assignment of $G[S]$ from π. We also say that π can be extended to G if $G[S]$ admits an $\left(L_{\pi}, 1\right)^{*}$ coloring.

Figure 2: The configuration (Q) in Lemma2.

Lemma 2 Suppose that G contains the configuration (Q), depicted in Figure 2 Let π be an $(L, 1)^{*}$ coloring of $G-S$, where $S=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Denote by L_{π} an induced list assignment of $G[S]$. If $\left|L_{\pi}\left(v_{i}\right)\right| \geq 1$ for each $i \in\{1, \cdots, 4\}$, then π can be extended to the whole graph G.

Proof. Since $\left|L_{\pi}\left(v_{i}\right)\right| \geq 1$ for each $i \in\{1, \cdots, 4\}$, we can color each v_{i} with a color $\pi\left(v_{i}\right) \in L_{\pi}\left(v_{i}\right)$ properly. Note that $\left|L_{\pi}(v)\right| \geq 2$. If there exists a color in $L_{\pi}(v)$ which appears at most once on the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, then we assign such a color to v. It is easy to check that the resulting coloring is
an $(L, 1)^{*}$-coloring and thus we are done. Otherwise, w.l.o.g., suppose $L(v)=\{1,2,3\}, \pi\left(v_{5}\right)=1$, and each color in $\{2,3\}$ appears exactly twice on the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. W.l.o.g., suppose $\pi\left(v_{1}\right)=2$.

By definition, we see that v_{1} is either a 3 -vertex or a light 4 -vertex. We label two steps in the proof for future reference.
(i) If $d\left(v_{1}\right)=3$, then $\left|L_{\pi}\left(v_{1}\right)\right| \geq 2$. We may assign color 2 to v and then recolor v_{1} with a color in $L_{\pi}\left(v_{1}\right) \backslash\{2\}$.
(ii) If v_{1} is a light 4 -vertex, denote by x_{1}, y_{1} the other two neighbors which are different from v and v_{2}. Erase the color of v_{1}, color v with 2 , and recolor x_{1} and y_{1} with a color different from its neighbors. We can do this since $d\left(x_{1}\right)=d\left(y_{1}\right)=3$ by definition. Next, we will show how to extend the resulting coloring, denoted by π^{\prime}, to G. If $\pi^{\prime}\left(v_{2}\right) \notin\left\{\pi^{\prime}\left(x_{1}\right), \pi^{\prime}\left(y_{1}\right)\right\}$, then color v_{1} with a color in $L\left(v_{1}\right) \backslash\left\{2, \pi^{\prime}\left(x_{1}\right)\right\}$. Otherwise, we color v_{1} with a color in $L\left(v_{1}\right) \backslash\left\{2, \pi^{\prime}\left(v_{2}\right)\right\}$. In each case, one can easily check that the obtained coloring of G is an $(L, 1)^{*}$-coloring.

Therefore, we complete the proof of Lemma, 2 .

Lemma 3 G satisfies the following.

(B1) A 4-vertex is adjacent to at most two 3-vertices.
(B2) There is no $\left(4^{-}, 4^{-}, 4^{-}\right)$-face.
(B3) There is no $\left(5^{+}, 4,4\right)$-face which is incident to two light 4-vertices.
(B4) There is no 5 -vertex incident to $a(5, *, 4)$-face f and adjacent to two 3 -vertices not on $b(f)$.
(B5) There is no 6 -vertex incident to two $\left(6,4^{-}, 4^{-}\right)$-faces and one $(6, *, 4)$-face.

Proof. Let L be a list assignment such that $|L(v)|=3$ for all $v \in V(G)$. We make use of contradiction to show (B1)-(B5).
(B1) Suppose that v is adjacent to three 3 -vertices v_{1}, v_{2} and v_{3}. Denote $G^{\prime}=G-\left\{v, v_{1}, v_{2}, v_{3}\right\}$. By the minimality of G, G^{\prime} admits an $(L, 1)^{*}$-coloring π. Let L_{π} be an induced list assignment of $G-G^{\prime}$. It is easy to deduce that $\left|L_{\pi}(v)\right| \geq 2$ and $\left|L_{\pi}\left(v_{i}\right)\right| \geq 1$ for each $i \in\{1,2,3\}$. So for each v_{i}, we assign the color $\pi\left(v_{i}\right) \in L_{\pi}\left(v_{i}\right)$ to it. Now we observe that there exists a color in $L_{\pi}(v)$ appearing at most once on the set $\left\{v_{1}, v_{2}, v_{3}\right\}$. We color v with such a color. The obtained coloring is an $(L, 1)^{*}$-coloring of G. This contradicts the choice of G.
(B2) It suffices to prove that G does not contain a (4, 4, 4)-face by (A3). Suppose $f=\left[v_{1} v_{2} v_{3}\right]$ is a 3 -face with $d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(v_{3}\right)=4$. For each $i \in\{1,2,3\}$, let x_{i}, y_{i} denote the other two neighbors of v_{i} not on $b(f)$. Denote by G^{\prime} the graph obtained from G by deleting
edge $v_{1} v_{2}$. By the minimality of G, G^{\prime} has an $(L, 1)^{*}$-coloring π. If $\pi\left(v_{1}\right) \neq \pi\left(v_{2}\right)$, then G itself is $(L, 1)^{*}$-colorable and thus we are done. Otherwise, suppose $\pi\left(v_{1}\right)=\pi\left(v_{2}\right)$. If π is not an $(L, 1)^{*}$-coloring of the whole graph G, then without loss of generality, assume that $\pi\left(v_{1}\right)=\pi\left(v_{2}\right)=\pi\left(x_{1}\right)=1$ and $\pi\left(v_{3}\right)=2$. Moreover, none of x_{1} 's neighbors except v_{1} is colored with 1 . First, we recolor each v_{i} with a color $\pi^{\prime}\left(v_{i}\right)$ in $L\left(v_{i}\right) \backslash\left\{\pi\left(x_{i}\right), \pi\left(y_{i}\right)\right\}$, where $i \in\{1,2,3\}$. We should point out that $\pi^{\prime}\left(v_{i}\right)$ may be the same as $\pi\left(v_{i}\right)$, but it does not matter. Note that if at most two of $\pi^{\prime}\left(v_{1}\right), \pi^{\prime}\left(v_{2}\right), \pi^{\prime}\left(v_{3}\right)$ are equal then the resulting coloring is an $(L, 1)^{*}$-coloring and thus we are done. Otherwise, suppose that $\pi^{\prime}\left(v_{1}\right)=\pi^{\prime}\left(v_{2}\right)=\pi^{\prime}\left(v_{3}\right)$. Since $\pi^{\prime}\left(v_{1}\right) \neq 1$ and $1 \in L\left(v_{1}\right)$, we may further reassign color 1 to v_{1} to obtain an $(L, 1)^{*}$ coloring of G. This contradicts the choice of G.
(B3) Suppose $f=\left[v_{1} v_{2} v_{3}\right]$ is a $\left(5^{+}, 4,4\right)$-face incident to two light 4 -vertices v_{2} and v_{3}. By definition, we see that each $v_{i}(i \in\{2,3\})$ is incident to two other 3 -vertices, denoted by x_{i} and y_{i}, which are not on $b(f)$. Let G^{\prime} denote the graph obtained from G by deleting edge $v_{2} v_{3}$. Obviously, G^{\prime} has an $(L, 1)^{*}$-coloring π by the minimality of G. Similarly, if $\pi\left(v_{2}\right) \neq \pi\left(v_{3}\right)$, then G itself is $(L, 1)^{*}$-colorable and thus we are done. Otherwise, suppose $\pi\left(v_{2}\right)=\pi\left(v_{3}\right)$. If π is not an $(L, 1)^{*}$-coloring of G, then w.l.o.g., assume that $\pi\left(v_{2}\right)=\pi\left(v_{3}\right)=\pi\left(x_{2}\right)=1$ and $\pi\left(v_{1}\right)=2$. Erase the color of v_{2} and recolor y_{2} with a color $a \in L\left(y_{2}\right)$ different from its neighbors. If $L\left(v_{2}\right) \neq\{1,2, a\}$, then color v_{2} with a color in $L\left(v_{2}\right) \backslash\{1,2, a\}$. Otherwise, color v_{2} with a. It is easy to verify that the resulting coloring is an $(L, 1)^{*}$-coloring of G, which is a contradiction.
(B4) Suppose that a 5 -vertex v is incident to a $(5, *, 4)$-face $f_{1}=\left[v v_{1} v_{2}\right]$ and adjacent to two 3vertices v_{3} and v_{4}. Let $G^{\prime}=G-\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$. By the minimality of G, G^{\prime} has an $(L, 1)^{*}$ coloring π. Let L_{π} be an induced list assignment of $G-G^{\prime}$. Obviously, $\left|L_{\pi}\left(v_{i}\right)\right| \geq 1$ for each $i \in\{1, \cdots, 4\}$ and $\left|L_{\pi}(v)\right| \geq 2$. By Lemma, π, can be extended to G, which is a contradiction.
(B5) Suppose that a 6-vertex v is incident to two $\left(6,4^{-}, 4^{-}\right)$-faces f_{1}, f_{3} and one $(6, *, 4)$-face f_{5} such that $d\left(v_{i}\right) \leq 4$ for each $i=\{1,2,3,4\}, d\left(v_{6}\right)=4$ and v_{5} is an \mathcal{S}-vertex. Namely, v_{5} is either a 3 -vertex or a light 4 -vertex. Let $G^{\prime}=G-\left\{v, v_{1}, v_{2}, \cdots, v_{6}\right\}$. By minimality, G^{\prime} admits an $(L, 1)^{*}$-coloring π. Denote by L_{π} an induced list assignment of $G-G^{\prime}$. It is easy to verify that $\left|L_{\pi}\left(v_{i}\right)\right| \geq 1$ for each $i \in\{1, \cdots, 6\}$ and $\left|L_{\pi}(v)\right| \geq 3$. So we can color v_{i} with $\pi\left(v_{i}\right) \in L_{\pi}\left(v_{i}\right)$ for each $i \in\{1,2, \cdots, 6\}$. If there exists a color $a \in L_{\pi}(v)$ appearing at most once on the set $\left\{v_{1}, v_{2}, \cdots, v_{6}\right\}$, then we further assign color a to v and thus obtain an $(L, 1)^{*}$-coloring of G.

Otherwise, each color in $L_{\pi}(v)$ appears exactly twice on the set $\left\{v_{1}, v_{2}, \cdots, v_{6}\right\}$. Since v_{5} is an \mathcal{S}-vertex, we can apply versions of arguments (i) and (ii) in the proof of Lemma 2 to obtain an $(L, 1)^{*}$-coloring of G.

Lemma 4 Suppose that $f=[u v x y]$ is a $(3,4, m, 4)$-face. Then
(F1) $m \neq 3$.
(F2) x cannot be a soft 4-vertex.
Proof. (F1) Suppose to the contrary that $m=3$. Let $G^{\prime}=G-\{u, v, x, y\}$. By the minimality of G, G^{\prime} admits an $(L, 1)^{*}$-coloring π. Let L_{π} be an induced list assignment of $G-G^{\prime}$. Notice that $\left|L_{\pi}(y)\right| \geq 1,\left|L_{\pi}(v)\right| \geq 1,\left|L_{\pi}(u)\right| \geq 2$ and $\left|L_{\pi}(x)\right| \geq 2$. First, we color v with $a \in L_{\pi}(v)$ and color y with $b \in L_{\pi}(y)$. Then color u with $c \in L_{\pi}(u) \backslash\{a\}$ and x with $d \in L_{\pi}(x) \backslash\{b\}$. One can easily check that the resulting coloring of G is an $(L, 1)^{*}$-coloring. This contradicts the assumption of G.
(F2) Suppose to the contrary that x is a soft 4-vertex. By definition, x has other two neighbors whose degree are both 3 , say x_{1} and x_{2}. Observe that neither x_{1} nor x_{2} is on $b(f)$. Let $G^{\prime}=G-$ $\left\{u, v, x, y, x_{1}, x_{2}\right\}$. Obviously, G^{\prime} admits an $(L, 1)^{*}$-coloring π. Let L_{π} be an induced list assignment of $G-G^{\prime}$. For each $w \in\left\{v, y, x_{1}, x_{2}\right\}$, we deduce that $\left|L_{\pi}(w)\right| \geq 1$. Moreover, $\left|L_{\pi}(u)\right| \geq 2$. We first color w with $\pi(w) \in L_{\pi}(w)$ and color u with a color in $L_{\pi}(u) \backslash\{\pi(v)\}$. If at least one of x_{1} and x_{2} has the same color as $\pi(v)$, we can color x with a color different from that of v and y. Otherwise, we can color x with a color different from x_{1} and y. Therefore, we achieve an $(L, 1)^{*}$-coloring of G, which is a contradiction.

Figure 3: Adjacent soft 4-vertices u and v.

Lemma 5 There is no adjacent soft 4-vertices.

Proof. Suppose to the contrary that u and v are adjacent soft 4 -vertices such that $[u x y v]$ is a 4 -face and $u_{1}, u_{2}, v_{1}, v_{2}$ are 3 -vertices, which is depicted in Figure 3, By Observation [(b), u_{i} cannot be coincided with v_{j}, where $i, j \in\{1,2\}$. Let $G^{\prime}=G-\left\{u_{1}, u_{2}, v_{1}, v_{2}, u, v\right\}$. For each $i \in\{1,2\}$,
we color u_{i} and v_{i} with a color in $L_{\pi}\left(u_{i}\right)$ and $L_{\pi}\left(v_{i}\right)$, respectively. If $L(u) \neq\left\{\pi(x), \pi\left(u_{1}\right), \pi\left(u_{2}\right)\right\}$, then color u with $a \in L(u) \backslash\left\{\pi(x), \pi\left(u_{1}\right), \pi\left(u_{2}\right)\right\}$. It is easy to see that there exists at least one color in $L(v) \backslash\{\pi(y)\}$ which appears at most once on the set $\left\{u, v_{1}, v_{2}\right\}$. So we may assign such a color to v. Now suppose that $L(u)=\left\{\pi(x), \pi\left(u_{1}\right), \pi\left(u_{2}\right)\right\}$. By symmetry, we may suppose that $L(v)=\left\{\pi(y), \pi\left(v_{1}\right), \pi\left(v_{2}\right)\right\}$. This implies that $\pi\left(v_{1}\right) \neq \pi\left(v_{2}\right)$. Thus, we can first color u with $\pi\left(u_{1}\right)$ and then assign a color in $L(v) \backslash\left\{\pi\left(u_{1}\right), \pi(y)\right\}$ to v.

Lemma 6 Suppose v is a 5 -vertex incident to two 3 -faces $f_{1}=\left[v v_{1} v_{2}\right]$ and $f_{3}=\left[v v_{3} v_{4}\right]$. Let v_{5} be the neighbour of v not belonging to f_{1} and f_{3}. Then the following holds.
(C1) If f_{1} and f_{3} are both $\left(5,4^{-}, 4^{-}\right)$-faces, then $d\left(v_{5}\right) \geq 4$.
(C2) If f_{1} is a $(5, *, 4)$-face and f_{3} is a $\left(5, *, 4^{+}\right)$-face, then $d\left(v_{5}\right) \geq 4$.
(C3) f_{1} and f_{3} cannot be both $(5, *, 4)$-faces.

Proof. In each of following cases, we will show that an $(L, 1)^{*}$-coloring of $G^{\prime} \subset G$ can be extended to G, which is a contradiction.
(C1) We only need to show that $d\left(v_{5}\right) \neq 3$ since $\delta(G) \geq 3$ by (A1). Suppose that v_{5} is a 3 -vertex. Let $G^{\prime}=G-\left\{v, v_{1}, \cdots, v_{5}\right\}$. By the minimality of G, G^{\prime} has an $(L, 1)^{*}$-coloring π. Let L_{π} be an induced list assignment of $G-G^{\prime}$. It is easy to deduce that $\left|L_{\pi}\left(v_{i}\right)\right| \geq 1$ for each $i \in\{1, \cdots, 5\}$ and $\left|L_{\pi}(v)\right| \geq 3$. So we first color each v_{i} with $\pi\left(v_{i}\right) \in L_{\pi}\left(v_{i}\right)$. Observe that there exists a color $a \in L_{\pi}(v)$ that appears at most once on the set $\left\{v_{1}, v_{2}, \cdots, v_{5}\right\}$. Therefore, we can color v with a to obtain an $(L, 1)^{*}$-coloring of G.
(C2) Suppose that $d\left(v_{2}\right)=4, d\left(v_{5}\right)=3$ and v_{1} and v_{3} are both \mathcal{S}-vertices. By definition, we see that v_{i} is either a 3 -vertex or a light 4 -vertex, where $i \in\{1,3\}$. Let $G^{\prime}=G-\left\{v, v_{1}, v_{2}, v_{3}, v_{5}\right\}$. By the minimality of G, G^{\prime} has an $(L, 1)^{*}$-coloring π. Let L_{π} be an induced list assignment of $G-G^{\prime}$. The proof is split into two cases in light of the conditions of v_{3}.

- Assume v_{3} is a 3 -vertex. It is easy to calculate that $\left|L_{\pi}\left(v_{i}\right)\right| \geq 1$ for each $i \in\{1,2,3,5\}$ and $\left|L_{\pi}(v)\right| \geq 2$. By Lemma2, π can be extended to G.
- Assume v_{3} is a light 4 -vertex. By definition, let x_{3}, y_{3} denote the other two neighbors of v_{3} not on $b\left(f_{3}\right)$. Recolor x_{3} and y_{3} with a color different from its neighbors. Next, we will show how to extend the resulting coloring π^{\prime} to G. Denote $L_{\pi^{\prime}}$ be the induced assignment of $G-G^{\prime}$. Notice that $\left|L_{\pi^{\prime}}\left(v_{i}\right)\right| \geq 1$ for each $i \in\{1,2,5\}$. If $\left|L_{\pi^{\prime}}\left(v_{3}\right)\right| \geq$ 1, then by Lemma 2 π^{\prime} can be extended to G. Otherwise, we derive that $L\left(v_{3}\right)=$
$\left\{\pi^{\prime}\left(x_{3}\right), \pi^{\prime}\left(y_{3}\right), \pi^{\prime}\left(v_{4}\right)\right\}$. First we assign a color in $L_{\pi^{\prime}}\left(v_{i}\right)$ to each v_{i}, where $i \in\{1,2,5\}$. It is easy to see that there is at least one color, say a, belonging to $L(v) \backslash\left\{\pi^{\prime}\left(v_{4}\right)\right\}$ that appears at most once on the set $\left\{v_{1}, v_{2}, v_{5}\right\}$. We assign such a color a to v. Then color v_{3} with a color in $\left\{\pi^{\prime}\left(x_{3}\right), \pi^{\prime}\left(y_{3}\right)\right\}$ but different from a.
(C3) Suppose that f_{1} and f_{3} are both $(5, *, 4)$-faces such that $d\left(v_{2}\right)=d\left(v_{4}\right)=4$ and v_{1} and v_{3} are \mathcal{S}-vertices. Let $G^{\prime}=G-\left\{v, v_{1}, \cdots, v_{4}\right\}$. Obviously, G^{\prime} has an $(L, 1)^{*}$-coloring π by the minimality of G. Let L_{π} be an induced list assignment of $G-G^{\prime}$. We assert that v_{i} satisfies that $\left|L_{\pi}\left(v_{i}\right)\right| \geq 1$ for each $i \in\{1, \cdots, 4\}$ and $\left|L_{\pi}(v)\right| \geq 2$. By Lemma 2, we can extend π to the whole graph G successfully.

Figure 4: The configuration in Lemma 7 .

Lemma 7 There is no 3-face incident to two bad 5-vertices.
Proof. Suppose to the contrary that there is a 3 -face $[u v w]$ incident to two bad 5 -vertices v and w, depicted in Figure 4 Let $G^{\prime}=G-\left\{v, w, v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\right\}$. By the minimality of G, G^{\prime} has an $(L, 1)^{*}$-coloring π. Let L_{π} be an induced list assignment of $G-G^{\prime}$. Since each w_{i} has at most two neighbors in G^{\prime}, we deduce that $\left|L_{\pi}\left(w_{i}\right)\right| \geq 1$ for each $i \in\{1,2,3\}$. So we first color each w_{i} with a color $\pi\left(w_{i}\right) \in L_{\pi}\left(w_{i}\right)$. If $\left|L_{\pi}(w)\right| \geq 1$, namely $L(w) \neq\left\{\pi(u), \pi\left(w_{1}\right), \pi\left(w_{2}\right), \pi\left(w_{3}\right)\right\}$, then by Lemmanwe may easy extend π to G, since $\left|L_{\pi}\left(v_{i}\right)\right| \geq 1$ for each $i \in\{1,2,3\}$. Otherwise, we deduce that there exists a color a in $L(w) \backslash\{\pi(u)\}$ that is the same as $\pi\left(w_{i^{*}}\right)$ for some fixed $i^{*} \in\{1,2,3\}$. Color w with a and v_{i} with a color $\pi\left(v_{i}\right) \in L_{\pi}\left(v_{i}\right)$ firstly, where $i \in\{1,2,3\}$. For our simplicity, denote $V^{*}=\left\{v_{1}, v_{2}, v_{3}, w\right\}$.

First, suppose that there is a color, say $b \in L(v) \backslash\{\pi(u)\}$, appearing at most once on the set V^{*}. We assign such a color b to v. If $b \neq a$, the obtained coloring is obvious an $(L, 1)^{*}$-coloring. Otherwise, assume that $b=a$. Now we erase the color a from w. One may check that the resulting coloring, say π^{\prime}, satisfies that each of v, w_{1}, w_{2}, w_{3} has at least one possible color in $G-G^{\prime}$. In other words, $\left|L_{\pi^{\prime}}(s)\right| \geq 1$ for each $s \in\left\{v, w_{1}, w_{2}, w_{3}\right\}$. Hence, by Lemma 2 , we can easily extend π^{\prime} to G.

Now, w.l.o.g., suppose that $L(v)=\{1,2,3\}, \pi(u)=1, \pi(w)=2$ and each color in $\{2,3\}$ appears exactly twice on the set V^{*}. It implies that $\pi\left(v_{1}\right) \in\{2,3\}$. We apply versions of discussion (i) and (ii) in the proof of Lemma园, After doing that, one may check that now v is colored with $\pi\left(v_{2}\right)$ and v_{1} is recolored with a new color, say α. There are two cases left to discuss: if $\pi\left(v_{2}\right)=3$, namely the new color of v is 3 , then the obtained coloring is an $(L, 1)^{*}$-coloring and thus we are done; otherwise, we uncolor w. Again, it is easy to see that the resulting coloring, say $\pi^{\prime \prime}$, satisfies that $\left|L_{\pi^{\prime \prime}}(s)\right| \geq 1$ for each $s \in\left\{v, w_{1}, w_{2}, w_{3}\right\}$. Therefore, we can easily extend $\pi^{\prime \prime}$ to G successfully by Lemma 2 ,

3.2 Discharging progress

We now apply a discharging procedure to reach a contradiction. Suppose that u is adjacent to a 3vertex v such that $u v$ is not incident to any 3 -faces. We call v a free 3 -vertex if $t(v)=0$ and a pendant 3 -vertex if $t(v)=1$. For simplicity, we use $\nu_{3}(u)$ to denote the number of free 3 -vertices adjacent to u and $p_{3}(u)$ to denote the number of pendant 3 -vertices of u. Suppose that v is a soft 4 -vertex such that $f_{1}=\left[v v_{1} u v_{2}\right]$ is a 4 -face and $d\left(v_{3}\right)=d\left(v_{4}\right)=3$. If the opposite face to f_{1} via v, i.e., f_{3}, is of degree at least 5 , then we call v a weak 4 -vertex. We notice that every weak 4 -vertex is soft but not vice versa.

For $x \in V(G)$ and $y \in F(G)$, let $\tau(x \rightarrow y)$ denote the amount of weights transferred from x to y. Suppose that $f=\left[v_{1} v_{2} v_{3}\right]$ is a 3-face. We use $\left(d\left(v_{1}\right), d\left(v_{2}\right), d\left(v_{3}\right)\right) \rightarrow\left(c_{1}, c_{2}, c_{3}\right)$ to denote $\tau\left(v_{i} \rightarrow f\right)=c_{i}$ for $i=1,2,3$. Our discharging rules are defined as follows:
(R1) Let $f=\left[v_{1} v_{2} v_{3}\right]$ be a 3 -face. We set
$\left(\right.$ R1.1) $\left(3,4,5^{+}\right) \rightarrow(0,1,3)$;
(R1.2) $\left(3,5^{+}, 5^{+}\right) \rightarrow(0,2,2)$;
(R1.3)

$$
\left(4,4,5^{+}\right) \rightarrow \begin{cases}(0,1,3) & \text { if } v_{1} \text { is a light } 4 \text {-vertex; } \\ (1,1,2) & \text { if neither } v_{1} \text { nor } v_{2} \text { is a light 4-vertex. }\end{cases}
$$

$$
\left(4,5^{+}, 5^{+}\right) \rightarrow \begin{cases}(1,1,2) & \text { if } v_{2} \text { is a bad } 5 \text {-vertex; } \tag{R1.4}\\ (0,2,2) & \text { if neither } v_{2} \text { nor } v_{3} \text { is a bad } 5 \text {-vertex. }\end{cases}
$$

$$
\left(5^{+}, 5^{+}, 5^{+}\right) \rightarrow \begin{cases}\left(1, \frac{3}{2}, \frac{3}{2}\right) & \text { if } v_{1} \text { is a bad } 5 \text {-vertex; } \tag{R1.5}\\ \left(\frac{4}{3}, \frac{4}{3}, \frac{4}{3}\right) & \text { if none of } v_{1}, v_{2}, v_{3} \text { is a bad } 5 \text {-vertex. }\end{cases}
$$

(R2) Suppose that v is a 5^{+}-vertex incident to a 4 -face $f=\left[v v_{1} u v_{2}\right]$. Then
(R2.1) $\tau(v \rightarrow f)=1$ if $d\left(v_{1}\right) \geq 4$ and $d\left(v_{2}\right) \geq 4$;
(R2.2) $\tau(v \rightarrow f)=\frac{4}{3}$ otherwise.
(R3) Suppose that v is a non-weak 4 -vertex incident to a 4 -face $f=\left[v v_{1} u v_{2}\right]$.
(R3.1) Assume $d\left(v_{1}\right)=d\left(v_{2}\right)=3$. Then
(R3.1.1) $\tau(v \rightarrow f)=\frac{4}{3}$ if the opposite face to f via v is of degree 3 ;
(R3.1.2) $\tau(v \rightarrow f)=\frac{2}{3}$ otherwise.
(R3.2) Assume $d\left(v_{1}\right) \geq 4$ and $d\left(v_{2}\right) \geq 4$. Then
$(\mathrm{R} 3.2 .1) \tau(v \rightarrow f)=1$ if at least one of v_{1} and v_{2} is a soft 4 -vertex;
(R3.2.2) $\tau(v \rightarrow f)=\frac{2}{3}$ otherwise.
(R3.3) Assume $d\left(v_{1}\right)=3$ and $d\left(v_{2}\right) \geq 4$. Then $\tau(v \rightarrow f)=\frac{2}{3}$.
(R4) Every 4^{+}-vertex sends 1 to each pendant 3 -vertex and $\frac{1}{3}$ to each free 3 -vertex.
According to (R3), we notice that a weak 4 -vertex does not send any charge.
We first consider the faces. Let f be a k-face.
Case $k=3$. Initially $\omega(f)=-4$. Let $f=\left[v_{1} v_{2} v_{3}\right]$ with $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq d\left(v_{3}\right)$. By (A1), $d\left(v_{1}\right) \geq 3$. If $d\left(v_{1}\right)=3$, then $d\left(v_{2}\right) \geq 4$ by (A2). Together with (B2), we deduce that f is either a $\left(3,4,5^{+}\right)$-face, a $\left(3,5^{+}, 5^{+}\right)$-face, a $\left(4,4,5^{+}\right)$-face, a $\left(4,5^{+}, 5^{+}\right)$-face or a $\left(5^{+}, 5^{+}, 5^{+}\right)$-face. It follows from (B3) and Lemma 7 that every possibility is indeed covered by rule (R1). Obviously, f takes charge 4 in total from its incident vertices. Therefore, $\omega^{*}(f)=-4+4=0$.

Case $k=4$. Clearly, $w(f)=-2$. Assume that $f=[v x u y]$ is a 4 -face. By (A2), there are no adjacent 3 -vertices in G. It follows that f is incident to at most two 3 -vertices. By symmetry, we have to discuss three cases depending on the conditions of these 3 -vertices.

- $d(x)=d(y)=3$. By (F1), we deduce that at least one of u and v is of degree at least 5 . Moreover, if one of u and v is a 4 -vertex, say v, we claim that v cannot be weak by definition and (B1). Hence, $\omega^{*}(f) \geq-2+\frac{4}{3}+\frac{2}{3}=0$ by (R2) and (R3).
- $d(x)=3$ and $d(y) \geq 4$. Note that u and v are both 4^{+}-vertices. Similarly, neither u nor v can be a weak 4-vertex. It follows from (R3.3) and (R2) that each of u and v sends charge at least $\frac{2}{3}$ to f. So if one of them is a 5^{+}-vertex, say v, then by (R2) we have that $\tau(v \rightarrow f)=\frac{4}{3}$ and thus f gets $\frac{2}{3}+\frac{4}{3}=2$ in total from incident vertices of f. Otherwise, suppose $d(u)=d(v)=4$. Now by (F2), y cannot be a soft 4-vertex and thus not weak. Hence, $\omega^{*}(f) \geq-2+\frac{2}{3} \times 3=0$ by (R3.2).
- $d(x) \geq 4$ and $d(y) \geq 4$. Namely, f is a $\left(4^{+}, 4^{+}, 4^{+}, 4^{+}\right)$-face. If at most one of u, v, x, y is a weak 4-vertex, then $\omega^{*}(f) \geq-2+\frac{2}{3} \times 3=0$. Otherwise, by Lemma[5, assume that v and u are weak 4 -vertices and thus soft. We see that $\tau(x \rightarrow f)=\tau(y \rightarrow f)=1$ by (R3.2.1) and (R2.1) which implies that $\omega^{*}(f) \geq-2+1 \times 2=0$.

Case $k \geq 5$. Then $\omega^{*}(f)=\omega(f)=2 d(f)-10 \geq 0$.
Now we consider the vertices. Let v be a k-vertex with $k \geq 3$ by (A1). For $v \in V(G)$, we use $m_{4}(v)$ to denote the number of 4 -faces incident to v. So by Observation 1 (a) and (b), we derive that $t(v) \leq\left\lfloor\frac{d(v)}{2}\right\rfloor$ and $m_{4}(v) \leq\left\lfloor\frac{d(v)}{2}\right\rfloor$. Furthermore, $t(v)+m_{4}(v) \leq\left\lfloor\frac{d(v)}{2}\right\rfloor$ by Observation 1 (c).

Observation 2 Suppose v is a 4^{+}-vertex which is incident to a 3 -face f. Then, by (R1), we have the following:
(a) $\tau(v \rightarrow f) \leq 1$ if $d(v)=4$;
(b) $\tau(v \rightarrow f) \in\left\{3,2, \frac{3}{2}, \frac{4}{3}, 1\right\}$ if $d(v) \geq 5$; moreover, if $\tau(v \rightarrow f)=3$ then f is a $\left(5^{+}, *, 4\right)$-face.

Case $k=3$. Then $\omega(v)=-1$. Clearly, $t(v) \leq 1$. If $t(v)=1$, then there exists a neighbor of v, say u, so that v is a pendant 3 -vertex of u. By (A2), $d(u) \geq 4$. Thus, $\omega^{*}(v)=-1+1=0$ by (R4). Otherwise, we obtain that $\omega^{*}(v)=-1+\frac{1}{3} \times 3=0$ by (R4).

Case $k=4$. Then $\omega(v)=2$. Note that $t(v) \leq 2$. If $t(v)=2$, then $m_{4}(v)=0$ and $p_{3}(v)=0$. So $\omega^{*}(v) \geq 2-1 \times 2=0$ by Observation 2(a). If $t(v)=0$, then $n_{3}(v) \leq 2$ by (B1) and $m_{4}(v) \leq 2$. We need to consider following cases.

- $m_{4}(v)=2$. W.l.o.g., assume that $f_{1}=\left[v v_{1} u v_{2}\right]$ and $f_{3}=\left[v v_{3} w v_{4}\right]$ are incident 4 -faces. Obviously, $p_{3}(v)=0$ by Observation $\mathbb{1}$ (b). However, $\nu_{3}(v) \leq 2$ by (B1). By (R3), v sends charge at most 1 to f_{i}, where $i=1,3$. If $n_{3}(v)=0$, then $\nu_{3}(v)=0$ and thus $\omega^{*}(v) \geq$ $2-1 \times 2=0$. If $n_{3}(v)=1$, say v_{1} is a 3 -vertex, then $\tau\left(v \rightarrow f_{1}\right) \leq \frac{2}{3}$ by (R3.3) and thus $\omega^{*}(v) \geq 2-\frac{2}{3}-1-\frac{1}{3}=0$ by (R4). Now suppose that $n_{3}(v)=2$. By symmetry, we have two cases depending on the conditions of these two 3 -vertices. If $d\left(v_{1}\right)=d\left(v_{2}\right)=3$, then $\tau\left(v \rightarrow f_{1}\right)=\frac{2}{3}$ by (R3.1.2). By (B1), v_{3} and v_{4} are both 4^{+}-vertices. Moreover, neither v_{3} nor v_{4} is a soft 4 -vertex according to Lemma [5, So by (R3.2.2), $\tau\left(v \rightarrow f_{3}\right) \leq \frac{2}{3}$. Hence $\omega^{*}(v) \geq 2-\frac{2}{3}-\frac{2}{3}-\frac{1}{3} \times 2=0$. Otherwise, suppose that $d\left(v_{i}\right)=d\left(v_{j}\right)=3$, where $i \in\{1,2\}$ and $j \in\{3,4\}$. We derive that $\omega^{*}(v) \geq 2-\frac{2}{3} \times 2-\frac{1}{3} \times 2=0$ by (R3.3).
- $m_{4}(v)=1$. W.l.o.g, assume that $d\left(f_{1}\right)=4$. This implies that $d\left(f_{3}\right) \geq 5$. Again, $\tau\left(v \rightarrow f_{1}\right) \leq 1$ by (R3). If $n_{3}(v) \leq 1$ then we have that $\omega^{*}(v) \geq 2-1-1=0$ by (R4). So in what follows, we
assume that $n_{3}(v)=2$. If $d\left(v_{3}\right)=d\left(v_{4}\right)=3$ then v is a weak 4 -vertex, implying that v sends nothing to f_{1}. So $\omega^{*}(v) \geq 2-1 \times 2=0$ by (R4). If $d\left(v_{1}\right)=d\left(v_{2}\right)=3$, then $p_{3}(v)=0$ by Observation 1 (b). We deduce that $\omega^{*}(v) \geq 2-\frac{2}{3}-\frac{1}{3} \times 2=\frac{2}{3}$ by (R3.1.2) and (R4). Otherwise, suppose $d\left(v_{i}\right)=d\left(v_{j}\right)=3$, where $i \in\{1,2\}$ and $j \in\{3,4\}$. It follows immediately from (R3.3) and (R4) that $\omega^{*}(v) \geq 2-\frac{2}{3}-1-\frac{1}{3}=0$.
- $m_{4}(v)=0$. Obviously, $\omega^{*}(v) \geq 2-1 \times 2=0$ by (R4).

Now, in the following, we consider the case $t(v)=1$. Assume that f_{1} is a 3 -face. By (A1) and (B2), f_{1} is either a $\left(4,3,5^{+}\right)$-face, a $\left(4,4,5^{+}\right)$-face or a $\left(4,5^{+}, 5^{+}\right)$-face. Observe that $m_{4}(v) \leq 1$. First assume that $m_{4}(v)=0$. If f_{1} is a $\left(4,3,5^{+}\right)$-face, then $p_{3}(v) \leq 1$ by (B1) and hence $\omega^{*}(v) \geq$ $2-1-1=0$ by Observation 2 (a) and (R2). Next suppose that f_{1} is a $\left(4,4,5^{+}\right)$-face. If $n_{3}(v)=2$, then v is a light 4 -vertex. By (R1.3), we see that v sends nothing to f_{1} and therefore $\omega^{*}(v) \geq 2-1 \times 2=0$ by (R4). Otherwise, at most one of v_{3}, v_{4} is a 3 -vertex and hence $\omega^{*}(v) \geq 2-1-1=0$ by Observation 2 (a) and (R4). Finally, we suppose that f_{1} is a $\left(4,5^{+}, 5^{+}\right)$-face. If neither v_{1} nor v_{2} is a bad 5 -vertex, then v sends nothing to f_{1} by (R1.4) and thus $\omega^{*}(v) \geq 2-1 \times 2=0$ by (R4). Otherwise, one of v_{1} and v_{2} is a bad 5 -vertex. If follows directly from (C2) that $n_{3}(v) \leq 1$. Therefore, $\omega^{*}(v) \geq 2-1-1=0$ by (R2). Now suppose that $m_{4}(v)=1$. By Observation (c), we may assume that $f_{3}=\left[v v_{3} w v_{4}\right]$ is a 4 -face. In this case, $p_{3}(v)=0$. If $d\left(v_{3}\right)=d\left(v_{4}\right)=3$, then $\tau\left(v \rightarrow f_{3}\right)=\frac{4}{3}$ by (R3.1.1). It follows from (B 1) and (C 2) that f is neither a $\left(4,3,5^{+}\right)$-face nor a $\left(4,5,5^{+}\right)$-face such that v_{2} is a bad 5 -vertex. So we deduce that f_{1} gets nothing from v by (R1.3), which implies that $\omega^{*}(v) \geq 2-\frac{4}{3}-\frac{1}{3} \times 2=0$. If exactly one of v_{3}, v_{4} is a 3 -vertex, then $\tau\left(v \rightarrow f_{3}\right) \leq \frac{2}{3}$ by (R3,3). Thus, $\omega^{*}(v) \geq 2-1-\frac{2}{3}-\frac{1}{3}=0$ by Observation 2 (a) and (R4). Otherwise, we suppose that v_{3}, v_{4} are both of degree at least 4 . In this case, $\nu_{3}(v)=0$ and hence $\omega^{*}(v) \geq 2-1-1=0$ by (R3.2) and Observation 2(a).

Case $k=5$. Then $\omega(v)=5$. Also, $t(v) \leq 2$. we have three cases to discuss.
Assume $t(v)=0$. If $m_{4}(v)=0$, then $\omega^{*}(v) \geq 5-1 \times 5=0$ by (R4). If $m_{4}(v)=1$, then $p_{3}(v) \leq 3$. Thus $\omega^{*}(v) \geq 5-\frac{4}{3}-1 \times 3-2 \times \frac{1}{3}=0$ by (R2) and (R4). Now suppose that $m_{4}(v)=2$. By Observation 1 (c), we assert that $p_{3}(v) \leq 1$. So $\omega^{*}(v) \geq 5-\frac{4}{3} \times 2-\frac{1}{3} \times 4-1=0$.

Next assume $t(v)=1$, say f_{1}. Then $\tau\left(v \rightarrow f_{1}\right) \leq 3$ by Observation 2 (b). Moreover, equality holds iff f_{1} is a $(5, *, 4)$-face. So if $\tau\left(v \rightarrow f_{1}\right)=3$ then at most one of v_{3}, v_{4}, v_{5} is a 3 -vertex by (B4). Furthermore, $m_{4}(v) \leq 1$. When $m_{4}(v)=0$, we deduce that $\omega^{*}(v) \geq 5-3-1=1$ by (R4). When $m_{4}(v)=1$, by symmetry, say f_{3} is a 4 -face, we have two cases to discuss: if $p_{3}(v)=1$, namely, v_{5} is a 3 -vertex, then $\tau\left(v \rightarrow f_{3}\right) \leq 1$ by (R2) and neither v_{3} nor v_{4} takes charge from v. Thus $\omega^{*}(v) \geq 5-3-1-1=0$; otherwise, $p_{3}(v)=0$ and we have $\omega^{*}(v) \geq 5-3-\frac{4}{3}-\frac{1}{3}=\frac{1}{3}$. Now
suppose that $\tau\left(v \rightarrow f_{1}\right) \leq 2$. By (R2) and (R4), $\omega^{*}(v) \geq 5-2-1 \times 3=0$ if $m_{4}(v)=0$ and $\omega^{*}(v) \geq 5-2-\frac{4}{3}-1-2 \times \frac{1}{3}=0$ if $m_{4}(v)=1$.

Now assume $t(v)=2$. By symmetry, assume f_{1} and f_{3} are both 3-faces. Observe that $m_{4}(v)=0$. For simplicity, denote $\tau\left(v \rightarrow f_{1}\right)=\sigma_{1}$ and $\tau\left(v \rightarrow f_{3}\right)=\sigma_{2}$. Let $\sigma=\max \left\{\sigma_{1}, \sigma_{2}\right\}$. If $\sigma \leq 2$, then $\omega^{*}(v) \geq 5-2 \times 2-1=0$ by (R2). Now assume that $\sigma=3$, i.e., f_{1} gets charge 3 from v. It means that f_{1} is a $(5, *, 4)$-face by Observation 2, By (C3), f_{3} cannot be a $(5, *, 4)$-face. This implies that $\sigma_{2} \leq 2$. Moreover, if v_{5} is a 3 -vertex, then f_{3} is neither a $\left(5, *, 4^{+}\right)$-face by (C2) nor a $(5,4,4)$-face by (C1). It follows from (R1.4) and (R1.5) that $\sigma_{2} \leq 1$, since v is a bad 5 -vertex. Thus, $\omega^{*}(v) \geq 5-3-1-1=0$ by (R2). Otherwise, we easily obtain that $\omega^{*}(v) \geq 5-3-2=0$.

Case $k \geq 6$. Notice that $t(v) \leq\left\lfloor\frac{d(v)}{2}\right\rfloor$. If v is incident to a 4 -face f_{i}, then by (R2) we inspect v sends a charge at most $\frac{4}{3}$ to f_{i}, while $\frac{1}{3}$ to each of v_{i} and v_{i+1}. So we may consider v as a vertex which sends charge at most $\frac{4}{3}+2 \times \frac{1}{3}=2$ to f_{i}. So by (R4) and Observation 2, we have

$$
\begin{aligned}
\omega^{*}(v) & \geq 3 d(v)-10-3 t(v)-2 m_{4}(v)-\left(d(v)-2 t(v)-2 m_{4}(v)\right) \\
& =2 d(v)-10-t(v) \equiv \tau(v)
\end{aligned}
$$

If $d(v) \geq 7$, then $\tau(v) \geq 2 d(v)-10-\frac{d(v)}{2}=\frac{3}{2} d(v)-10 \geq \frac{3}{2} \times 7-10=\frac{1}{2}>0$. Now suppose that $d(v)=6$. If $t(v) \leq 2$ then $\tau(v) \geq 2 \times 6-10-2=0$. So, in what follows, assume that $t(v)=3$ and $d\left(f_{i}\right)=3$ for $i=1,3,5$. Clearly, $m_{4}(v)=0$. Similarly, if there are at most two of 3 -faces get charge 3×2 in total from v, then $\omega^{*}(v) \geq 8-2 \times 3-2=0$. Otherwise, suppose $\tau\left(v \rightarrow f_{i}\right)=3$ for each $i \in\{1,3,5\}$. By Observation (b), we assert that f_{i} is a $(6, *, 4)$-face. Noting that a $(6, *, 4)$-face is also a $\left(6,4^{-}, 4^{-}\right.$-face, we may regard v as a 6 -vertex which is incident to two $\left(6,4^{-}, 4^{-}\right)$-faces and one ($6, *, 4$)-face. However, it is impossible by (B5).

Therefore, we complete the proof of Theorem 1 .

References

[1] L. Cowen, R. Cowen, D. Woodall, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory 10 (1986) 187-195.
[2] W. Cushing, H. A. Kierstead, Planar graphs are 1-relaxed, 4-choosable, European J. Combin. 31 (2010) 1385-1397.
[3] W. Dong, B. Xu, A note on list improper coloring of plane graphs, Discrete Appl. Math. 157 (2009) 433-436.
[4] N. Eaton, T. Hull, Defective list colorings of planar graphs, Bull. Inst. Combin. Appl. 25 (1999) 40.
[5] P. Erdős, A. L. Rubin, H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979) 125-157.
[6] K. Lih, Z. Song, W. Wang, K. Zhang, A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (2001) 269-273.
[7] R. Šrekovski, List improper colourings of planar graphs, Combin. Probab. Comput. 8 (1999) 293-299.
[8] R. Šrekovski, A Gröstzsch-type theorem for list colorings with impropriety one, Comb. Prob. Comp. 8 (1999) 493-507.
[9] R. Šrekovski, List improper colorings of planar graphs with prescribed girth, Discrete Math. 214 (2000) 221-233.
[10] V. G. Vizing, Vertex coloring with given colors (in Russian), Diskret. Analiz. 29 (1976) 3-10.
[11] B. Xu, H. Zhang, Every toroidal graph without adjacent triangles is $(4,1) *$-choosable, Discrete Appl. Math. 155 (2007) 74-78.
[12] L. Zhang, A $(3,1)^{*}$-choosable theorem on toroidal graphs, Discrete Appl. Math. 160 (2012) 332-338.

[^0]: *Research supported by NSFC (No.11101377). Email: chenmin @zjnu.cn
 ${ }^{\dagger}$ Research partially supported by ANR-NSC Project GRATEL - ANR-09-blan-0373-01 and NSC99-2923-M-110-001MY3. Email: andre.raspaud@labri.fr. Tel: +33540069 29. Fax: +33540006669.

