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Abstract

The packing chromatic number χρ(G) of a graph G is the smallest integer k needed
to proper color the vertices of G in such a way that the distance in G between
any two vertices having color i be at least i + 1. Goddard et al. [8] found an
upper bound for the packing chromatic number of hypercubes Qn. Moreover, they
compute χρ(Qn) for n ≤ 5 leaving as an open problem the remaining cases. In this
paper, we obtain a better upper bound for χρ(Qn) and we compute the exact value
of χρ(Qn) for 6 ≤ n ≤ 8.
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2 ptorres@fceia.unr.edu.ar
3 valencia@lipn.univ-paris13.fr

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 44 (2013) 263–268

1571-0653/$ – see front matter © 2013 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

http://dx.doi.org/10.1016/j.endm.2013.10.041



Author's personal copy

1 Introduction

We consider finite undirected graphs without loops or multiple edges. The
concept of packing coloring comes from the area of frequency planning in
wireless networks. This model emphasizes the fact that some frequencies might
be used more sparely than the others. In graph terms, we ask for a partitioning
of the vertex set of a graph G into disjoint classes V1, . . . , Vk (representing
frequency usage) according to the following constraint. Each color class Vi is
an i-packing, i.e. a set of vertices with the property that any distinct pair
u, v ∈ Vi satisfies dist(u, v) ≥ i + 1. Here, dist(u, v) is the distance between u
and v, i.e. the length of the shortest path in G from u to v.

Such partitioning into k classes is called a packing k-coloring, even though
it is allowed that some sets Vi may be empty. The smallest integer k for which
exists a packing k-coloring of G is called the packing chromatic number of
G, and it is denoted by χρ(G). The notion of packing chromatic number was
established by Goddard et al. [8] under the name broadcast chromatic number.
The term packing chromatic number was introduced by Brešar et al. [4].

Much work has been devoted to the packing chromatic number of graphs
([2], [3], [4], [5], [6], [7], [8]). Fiala and Golovach [5] showed that determining
the packing chromatic number is an NP-hard problem for trees. Goddard et
al. [8] provided polynomial time algorithms for cographs and split graphs.
Recently, Argiroffo et al. [2], [3] gave polynomial time algorithms for special
subfamilies of trees, for partner limited graphs and for (q, q − 4) graphs.

In this paper, we are interested in bounding and, whenever possible, find-
ing the packing chromatic number of hypercubes. For any n ∈ Z+, the n-
dimensional hypercube, denoted Qn, is the graph in which the vertices are all
binary vectors of length n (i.e., the set {0, 1}n), and two vertices are adjacent
if and only if they differ in exactly one coordinate. Based on coding theory,
Goddard et al. [8] gave an asymptotic result for the packing chromatic num-
ber of hypercubes. They proved that χρ(Qn) ∼ (1

2
−O( 1

n
))2n. More precisely,

Goddard et al. [8] obtained that χρ(Qn) ≤ 2+ (1
2
− 1

4n
)2n. In the same paper,

they also computed χρ(Qn) for 1 ≤ n ≤ 5, leaving as an open problem the
remaining cases.

The diameter, diam(G), of a connected graph G is the maximum distance
between two vertices of G. The Cartesian product G�H of graphs G and H
is the graph with vertex set V (G) × V (H), vertices (g, h) and (g′, h′) being
adjacent whenever gg′ ∈ E(G) and h = h′, or hh′ ∈ E(H) and g = g′. Brešar
et al. [4] obtained that if G and H are connected graphs on at least two
vertices, χρ(G�H) ≥ (χρ(G)+1)|H|−diam(G�H)(|H|−1)−1. Moreover, if
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H = Kn, the complete graph on n ≥ 2 vertices, then χρ(G�Kn) ≥ nχρ(G) −
(n− 1)diam(G). It is well known that the binary hypercube Qn is isomorphic
to the graph Qn−1�K2. Then, we obtain directly the following lower bound
for the packing chromatic number of Qn.

Corollary 1.1 Let n ≥ 2. Then, χρ(Qn) ≥ 2χρ(Qn−1) − (n − 1).

In this paper, we improve the upper bound found by Goddard et al. [8]. For
this, we use elementary algebraic techniques in order to construct a packing
coloring of Qn, for n ≥ 4. Furthermore, we obtain the exact values of χρ(Qn)
for n = 6, 7 and 8. Most of our results are given without proof for lack of
space.

2 Packing colorings of Qn : the upper bound

The principal result of this section is the following :

Theorem 2.1 χρ(Qn) ≤ 3 + 2n(1
2
− 1

2�log2 n� ) − 2�n−4
2
�, for n ≥ 4.

In order to prove Theorem 2.1, we derive a packing coloring of Qn with
such a number of colors. For this, we use an algebraic approach for the purpose
of construct 2− and 3−packings for Qn as follows.

Let Γ be a group and C a subset of Γ closed under inverses and identity
free. The Cayley graph Cay(Γ, C) is the graph with Γ as its vertex set, two
vertices u and v being joined by an edge if and only if u−1v ∈ C. The set
C is then called the connector set of Cay(Γ, C). It is well known that Qn is
the Cayley graph of the Abelian group Zn

2 (the elements of Zn
2 are the binary

n-vectors of the set {0, 1}n and the group operation is the sum modulo two
coordinatewise), where the connector set is the subset of n-vectors having
exactly one coordinate equal to 1. So, in order to construct some packings for
Qn we will analyze the structure of a special subgroup of Zn

2 .

Let v ∈ Zn
2 . We denote by vi the ith coordinate of v, for 1 ≤ i ≤ n, that

is, v = (v1, . . . , vi, . . . , vn), where vi is either 0 or 1.

Definition 2.2 Let n ≥ 4. For m ∈ {4, . . . , n} \ {2k + 1 : k ∈ Z+}, consider
the n-vectors of Zn

2 defined as follows :

(i) Type I: If m is even,

vi
m =

⎧⎨⎩ 1, if i ∈ {1, 2, m − 1, m}
0, o.w.
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(ii) Type II: If m is odd and m − 1 is not a power of 2,

vi
m =

⎧⎨⎩ 1, if i ∈ {1, m − 2�log2 m�, 1 + 2�log2 m�, m}
0, o.w.

We define the subset Wn ⊂ Zn
2 as the set containing the vectors vm defined

previously.

Notice that every vector in Wn has exactly four coordinates equal to 1.
Moreover, by construction, we have that :

Remark 2.3 Let n ≥ 4. Then, |Wn| + 1 = |Wn+1| if and only if n is not a
power of two, otherwise |Wn| = |Wn+1|. Moreover, if n is even (resp. odd),
the new vector in Wn+1 is of Type II (resp. I).

Remark 2.4 Let n ≥ 4. Notice that the distance between any pair of n-
vectors in Wn is even.

Besides, by induction on n, we can prove the following lemma.

Lemma 2.5 Let n ≥ 4. Then, |Wn| = n − 1 − 	log2 n
.
Now, by computing the join of all the 2-subgroups generated by each one

of the elements in Wn, we can deduce the following result.

Lemma 2.6 Let n ≥ 4, and let Gn be the subgroup of the Abelian group Zn
2

generated by Wn. Then, the order of Gn is equal to 2|Wn|.

The subgroup Gn plays an important role in the search of i-packings. In
particular, we prove that any pair of vertices in Gn are at distance greater
than 3 in Qn, i.e. the set Gn is a 3-packing of Qn. To obtain this, we use the
structure in the construction of the sets Wn and we proceed by induction on
n.

Lemma 2.7 Let n ≥ 4. For any u, v ∈ Qn, u �= v, such that u, v ∈ Gn,
we have that the distance between u and v in Qn verifies : dist(u, v) ≥ 4.
Moreover, each element of Gn has an even number of coordinates (0 included)
equal to 1.

Definition 2.8 Let n ≥ 4. For each j, with 1 ≤ j ≤ �n−4
2
�, let Aj and Bj

be 2-subsets of Zn
2 constructed as follows : Aj is formed by two n-vectors aj1

and aj2 where aj1 has only one 1 in coordinate j + 2 and 0 otherwise, and aj2

has 1 in coordinates t ∈ [2j + 4] \ {j + 2}, and 0 otherwise. The 2-set Bj is
formed by two n-vectors bj1 and bj2 , where bj1 (resp.bj2) is equal to aj1 (resp.
aj2) but with the two first coordinates complemented.
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The following result can be easily deduced.

Lemma 2.9 Let n ≥ 6. Let g2 ∈ Zn
2 (resp. g3 ∈ Zn

2) be the element having
only the first coordinate (resp. the second coordinate) equal to 1 and the re-
maining coordinates equal to 0. For each j, with 1 ≤ j ≤ �n−4

2
�, the 2-sets Aj

and Bj in Definition 2.8 verify the following properties :

(i) Aj ∩ (g2 + Gn) = Aj ∩ (g3 + Gn) = Bj ∩ (g2 + Gn) = Bj ∩ (g3 + Gn) = ∅.
(ii) Aj (resp. Bj) is a (2j + 2)-packing (resp. (2j + 3)-packing) of Qn.

From the previous lemmas, we are able to prove Theorem 2.1.

Proof of Theorem 2.1

Let n ≥ 4. Let Gn be the subgroup of the Abelian group Zn
2 generated by

the set Wn (see Definition 2.2). Clearly, the elements of Zn
2 correspond to

the vertices of the binary n-dimensional hypercube Qn. Let In
1 , In

2 and In
3 be

subsets of vertices of Qn constructed as follows : In
1 is the set of all vertices

in Qn having an even number (0 included) of coordinates equal to 1. The
sets In

2 and In
3 are the cosets g2 + Gn and g2 + Gn, resp., where g2 and g3 are

defined as in Lemma 2.9. By Lemma 2.7, it is clear that both In
2 and In

3 are
disjoint of In

1 , because all the elements in In
2 and in In

3 have an odd number
of coordinates equal to 1. Moreover, In

2 and In
3 are disjoint by the Lagrange’s

Theorem. Therefore, In
i is an i-packing of Qn, for i = 1, 2, 3. Now, observe

that the family of sets in Definition 2.8 are pairwise disjoint. Furthermore, by
Lemma 2.9, for 1 ≤ j ≤ �n−4

2
�, the sets Aj and Bj are (2j + 2)-packing and

(2j + 3)-packing of Qn respectively. By given a different color greater than
2�n−4

2
� + 3 to the remaining vertices in Qn, we obtain the desired packing

coloring of Qn with 3 + 2n(1
2
− 1

2�log2 n� ) − 2�n−4
2
� colors. �

3 Lower bounds for χρ(Qn) : the cases n = 6, 7 and 8

As mentioned in the introduction, Goddard et al. [8] computed the packing
chromatic numbers of the first five hypercubes : χρ(Q1) = 2, χρ(Q2) = 3,
χρ(Q3) = 5, χρ(Q4) = 7 and χρ(Q5) = 15. Moreover, by Corollary 1.1 and
Theorem 2.1, we know that 25 ≤ χρ(Q6) ≤ 25, 44 ≤ χρ(Q7) ≤ 49 and
89 ≤ χρ(Q8) ≤ 95. Thus, we have the following direct result.

Corollary 3.1 χρ(Q6) = 25

The main result in this section is the computation of a tight lower bound
for the packing chromatic number of hypercubes of dimension 7 and 8. In order
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to obtain these lower bounds, we combine the results obtained by Agrell et al.
[1] concerning the size of the maximum number of vertices that can be covered
by subsets of i-packings in Q7 (resp. Q8), for 1 ≤ i < 7 (resp. 1 ≤ i < 8),
with the ones concerning the maximum size of balanced independent (and
dominating) sets on hypercubes obtained by Ramras [9]. Thus, we obtain
that,

Theorem 3.2 χρ(Q7) ≥ 49 and χρ(Q8) ≥ 95.

Therefore, by Theorems 2.1 and 3.2, we conclude that χρ(Q7) = 49 and
χρ(Q8) = 95.
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