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Abstract

Let S be a set of n points distributed uniformly and independently in the unit
square. Then the expected number of empty four-gons with vertices from S is
Θ(n2 logn). A four-gon is empty if it contains no points of S in its interior.
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Figure 1. An empty convex four-gon and an empty non-convex four-gon in S.

Throughout this paper let S be a set of n points distributed uniformly and
independently in the unit square. Since with probability 1 the n points will be
in general position (no three points are collinear), we may and will assume this
throughout the paper. All asymptotics in this paper are w.r.t. the number of
points n, that is, when n → ∞. As our results are asymptotic, we may ignore
also rounding issues throughout the paper, that is, if for some constant c > 0,
cn is not an integer, depending on the context, we may and will consider ⌊cn⌋
or ⌈cn⌉ without changing the results. A four-gon whose vertices are from S is
empty if it contains no other point from S in its interior. A four-gon can be
convex or non-convex, see Figure 1.

Denote by N4 the random variable that counts the number of empty non-
convex four-gons with vertices from S. Our main result is the following:

Theorem 0.1 E [N4] = Θ(n2 log n).

Denote by C4 the random variable that counts the number of empty convex
four-gons with vertices from S. Complementing Theorem 0.1, we obtain the
following result, which might be known, but we only found a proof for the
lower bound [6]. There, also another construction with O(n2) empty convex
four-gons is given.

Theorem 0.2 E [C4] = Θ(n2).
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We omit the proof of Theorem 0.2 in this abstract due to lack of space. 6

We also remark that Theorems 0.1 and 0.2 also hold for other convex, bounded
sets, not only the square. In related works, for point sets of n points distributed
uniformly and independently in a convex, bounded set, Valtr [13] proved that
the expected number of empty triangles is at most 2n2 − 2n and at least
2n2 − o(n2), and Bárány and Füredi [6] proved that, in Rd, the number of
empty simplices is at mostK

(
n
d

)
, for some constantK. Balogh et al. [5] showed

that the expected number of vertices of the largest empty convex polygon
in S (and in any convex, bounded set in the plane) is Θ( logn

log logn
). A lot of

research has been done to determine the minimum number fk(n) of empty
convex k-gons among all sets of n points in general position in the plane (not
only random point sets). For the case of empty triangles, Katchalski and
Meir [11] showed that f3(n) is of order Θ(n2). Later, this bound has been
refined [2,6,7,8,9,13]; the currently best bounds are n2 − 32n

7
+ 22

7
≤ f3(n) ≤

1.6196n2 + o(n2). Concering empty convex four-gons, Bárány and Füredi [6]
established that f4(n) is of order Θ(n2), and the currently best bounds on
f4(n) are n2

2
− 9

4
n − o(n) ≤ f4(n) ≤ 1.9397n2 + o(n2), see [2,7]. Research

mainly focussed on empty convex polygons. Only recently the number of
convex and non-covex polygons in point sets has been studied [1,3,4]. In [1] it
is shown that every set of n points in general position in the plane determines
at least 5n2

2
− Θ(n) empty four-gons and a point set with only O(n5/2 log n)

empty four-gons is given. Our result improves this bound to O(n2 log n).

1 Proof of Theorem 0.1

The proof of Theorem 0.1 is implied by the following lemmas, for which we
need some definitions. Fix three points pa, pb, pc and denote by ∆(pa, pb, pc)
the triangle spanned by them. Let P be a set of k ≥ 1 points distributed
uniformly and independently in ∆(pa, pb, pc). Denote by EP

papb,pbpc
the event

that P∪{pa, pb, pc} contains an empty non-convex four-gon with papb and pbpc
among its edges.

Lemma 1.1 P(EP
papb,pbpc

) = 2
k+1

.

Proof First observe that the points {pa, pb, pc} together with a fourth point
pd ∈ P form an empty non-convex four-gon with papb and pbpc among its
edges if and only if the triangle ∆(pa, pd, pc) contains P\{pd} in its interior.
We now determine the distribution of the height hd, which is the distance from

6 The full version of this work has been submitted for publication in journal, 2014.
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Figure 2. The triangles ∆(pa, pb, pc), ∆(pa, pd, pc) and ∆(ℓ, pb).

pd to the segment papc. Denote by h the height of ∆(pa, pb, pc) with respect
to the edge papc. Let ℓ be the segment parallel to the edge papc, at distance
hd from this edge, and with endpoints on the edges papb and pbpc respectively.
Assume w.l.o.g. that ℓ is a horizontal line with pa and pc below it. Define
then ∆(ℓ, pb) to be the triangle coming from the intersection of ∆(pa, pb, pc)
and all points lying on or above ℓ, as shown in Figure 2. Since only relative
heights between h and hd matter, we may assume w.l.o.g. that h = 1. By the
intercept theorem we have |papc|

h
= |ℓ|

h−hd
, where |papc| and |ℓ| are the lengths

of the segments papc and ℓ. It follows that

area(∆(ℓ, pb))

area(∆(pa, pb, pc))
=

|ℓ|(h−hd)
2

|papc|h
2

= (1− hd)
2.

Hence, the distribution function Fhd
for the height hd satisfies Fhd

(x) =
P(hd ≤ x) = 1− (1− x)2 and the density of the height hd is fhd

(x) = 2− 2x
for x ∈ [0, 1].

Fix any p ∈ P\{pd}. Since the points are distributed uniformly at random
inside ∆(pa, pb, pc), we have

P(p ∈ ∆(pa, pd, pc)) =
area(∆(pa, pd, pc))

area(∆(pa, pb, pc))
= hd.

Therefore, integrating over all possible heights 0 ≤ hd ≤ 1,

P(P\{pd} ∈ ∆(pa, pd, pc)) =

∫ 1

0

xk−1(2− 2x) dx =
2

k(k + 1)
.



As there are k choices for the point pd, by a union bound, we have

P(EP
papb,pbpc

) ≤ 2

k + 1
.

On the other hand, there is at most one point pd ∈ P such that P\{pd} ∈
∆(pa, pd, pc): indeed, if this were true for another point pe ̸= pd, then pd /∈
∆(pa, pe, pc), contradicting the assumption. Hence,

P((P\{pd} ∈ ∆(pa, pd, pc)) ∧ (P\{pe} ∈ ∆(pa, pe, pc))) = 0,

and thus

P(EP
papb,pbpc

) =
∪
pd∈P

P(P\{pd} ∈ ∆(pa, pd, pc))

=
∑
pd∈P

P(P\{pd} ∈ ∆(pa, pd, pc)) =
2

k + 1
.

2

For the next lemma, we need one more definition. Let Tk denote the ran-
dom variable that counts the number of triangles with vertices in S containing
exactly k ≥ 0 points from S in its interior.

Lemma 1.2 For any k = k(n) ≥ 0, E [Tk] ≤ 2n2 − 2n.

Proof The density function farea(∆)(v) for the area v of a triangle ∆ formed
by three points chosen uniformly and independently in the unit square is
given in [10], and also in [12]. From the results there one can see that for
any area v ≥ 0, farea(∆)(v) ≤ 12. Fix now three points pa, pb, pc ∈ S, let as
before ∆(pa, pb, pc) be the triangle spanned by them, and let int(∆(pa, pb, pc))
denote the interior of this triangle. Denote also for x, y > 0 by β(x, y) =∫ 1

0
tx−1(1− t)y−1dt the beta function of x and y. Integrating over all possible

areas v of the triangle ∆(pa, pb, pc), we obtain



P(|int(∆(pa, pb, pc)) ∩ S| = k) =

∫ 1/2

0

(
n− 3

k

)
vk(1− v)n−3−kfarea(∆)(v) dv

≤ 12

∫ 1/2

0

(
n− 3

k

)
vk(1− v)n−3−k dv

≤ 12

∫ 1

0

(
n− 3

k

)
vk(1− v)n−3−k dv

=12

(
n− 3

k

)
β(k + 1, n− k − 2)

= 12

(
n− 3

k

)
k!(n− k − 3)!

(n− 2)!
=

12

n− 2
.

Hence, by linearity of expectation, for any k = k(n) ≥ 0,

E [Tk] ≤
(
n

3

)
12

n− 2
= 2n2 − 2n.

2

Remark. The special case k = 0 of Lemma 1.2 was also proved by Valtr
in [13].
We are now ready to prove the upper bound of Theorem 0.1, which is encap-
sulated in the following lemma.

Lemma 1.3 E [N4] = O(n2 log n).

Proof Note that each triangle ∆(pa, pb, pc) with vertices pa, pb, pc ∈ S deter-
mines at most three empty non-convex four-gons such that pa, pb, pc are the
vertices on the boundary of the convex hull of the quadrilateral: indeed, any
pair of edges from {papb, pbpc, papc} can be chosen and might possibly give rise
to an empty non-convex four-gon. Let P ⊆ S denote the set of points in the
interior of ∆(pa, pb, pc), and let EP

pa,pb,pc
be the event that any of the three pairs

of edges gives rise to an empty non-convex four-gon. By a union bound,

P(EP
pa,pb,pc

) ≤ P(EP
papb,pbpc

) + P(EP
papc,pbpc

) + P(EP
papb,papc

),

and thus, by Lemma 1.1, since the points of P are uniformly distributed in
∆(pa, pb, pc) (if a point is distributed uniformly at random in the unit square,
then conditional under knowing that it is inside a subarea of that square, it is
still uniform in this subarea),

P(EP
pa,pb,pc

| |P| = k) ≤ 6

k + 1
.



By Lemma 1.2, for each k ≥ 0 in expectation there are at most 2n2 triangles
with k interior points and since once again, conditioned on having k interior
points, their distribution is uniform inside the triangle, we obtain

E [N4]≤
n−3∑
k=0

E [Tk]P(EP
pa,pb,pc

| |P| = k)

≤ 2n2

n−3∑
k=0

6

k + 1
= O(n2 log n).

2

We now proceed to prove the corresponding lower bound of Theorem 0.1.
We first prove the following lower bound on Tk.

Lemma 1.4 For every ϵ > 0 there exists some α = α(ϵ) > 0 such that
E [Tk] ≥ (2− ϵ)n2 for any k = 0, 1, . . . , αn.

Proof By [10,12], the density function farea(∆)(v) for the area of the tri-
angle ∆ = ∆(pa, pb, pc), formed by three points pa, pb, pc from S, satisfies
farea(∆)(0) = 12 and is then strictly monotonically decreasing. In particular,
for every small ϵ > 0 there exists v0 > 0 such that farea(∆)(v0) = 12 − ϵ. We
define α = 0.6v0.

P(|int(∆) ∩ S| = k) =

∫ 1/2

0

(
n− 3

k

)
vk(1− v)n−3−kfarea(∆)(v) dv

≥ (12− ϵ)

∫ v0

0

(
n− 3

k

)
vk(1− v)n−3−k dv.

As in the proof of Lemma 1.2 we have∫ 1

0

(
n− 3

k

)
vk(1− v)n−3−k dv =

1

n− 2
.

We will show that P(|int(∆) ∩ S| = k) ≥ 12−ϵ
n−2

−o( 1
n
), for k ≤ αn. To this end,

it is sufficient to show that∫ 1

v0

(
n− 3

k

)
vk(1− v)n−3−k dv = o(

1

n
). (1)

Computing the derivative of the function g(v) := vk(1− v)n−3−k in [v0, 1], we
see that g′(v) ≤ 0, implying that in [v0, 1], g(v) is maximized at v = v0. Thus,∫ 1

v0

(
n− 3

k

)
vk(1− v)n−3−k dv ≤

(
n− 3

k

)
v0

k(1− v0)
n−3−k(1− v0).



It is easily verified that(
n− 3

k

)
v0

k(1− v0)
n−3−k <

(
n− 3

k + 1

)
v0

k+1(1− v0)
n−3−k−1

holds for k < v0(n− 2)− 1. If we can show that(
n− 3

k

)
v0

k(1− v0)
n−3−k(1− v0) = o(

1

n
)

holds for k = αn, then it holds for all smaller values of k as well, and then

also (1) holds for all k = 0, 1, . . . , αn. Using
(
n
k

)
≤

(
ne
k

)k
, we get for some

constant C > 0(
n− 3

αn

)
v0

αn(1− v0)
n−3−αn(1− v0)≤C

(
e

0.6v0

)0.6v0n

v0.6v0n0 (1− v0)
(1−0.6v0)n

=C
(
(e/0.6)0.6v0(1− v0)

1−0.6v0
)n

= o(
1

n
),

where the last line follows from the fact that

f(v0) := (
e

0.6
)0.6v0(1− v0)

1−0.6v0

is monotone decreasing for v0 ∈ [0, 1], v0 > 0, and that f(0) = 1. Thus,

P(|int(∆) ∩ S| = k)≥ (12− ϵ)

∫ v0

0

(
n− 3

k

)
vk(1− v)n−3−k dv

≥ 12− ϵ

n− 2
− o(

1

n
).

As before, by linearity of expectation,

E [Tk] ≥
(
n

3

)(
12− ϵ

n− 2
− o(

1

n
)

)
≥ (2− ϵ)n2

for any k = 0, 1, . . . , αn, thus concluding the proof. 2

The lower bound of Theorem 0.1 now also follows easily.

Lemma 1.5 E [N4] = Ω(n2 log n).

Proof As before, define for three points pa, pb, pc ∈ S by ∆(pa, pb, pc) the
triangle with vertices pa, pb, pc. Let P ⊆ S denote the set of points in the



interior of ∆(pa, pb, pc). Using the notation of Lemma 1.3, it is clear that

P(EP
pa,pb,pc

) ≥ P(EP
papb,pbpc

).

Hence, by Lemma 1.1,

P(EP
pa,pb,pc

) ≥ 2

k + 1
.

By Lemma 1.4, for k = 0, 1, . . . αn, in expectation there are at least (2− ϵ)n2

triangles with k interior points and since once again, conditioned on having k
interior points, their distribution is uniform inside the triangle, we obtain

E [N4]≥
αn∑
k=0

E [Tk]P(EP
pa,pb,pc

| |P| = k)

≥ (2− ϵ)n2

αn∑
k=0

2

k + 1
= Ω(n2 log n).

2
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C. Huemer, J. Urrutia, and B. Vogtenhuber, 4-holes in point sets, Comput.
Geom. 47(6) (2014) 644-650.

[2] O. Aichholzer, R. Fabila Monroy, T. Hackl, C. Huemer, A. Pilz, and B.
Vogtenhuber, Lower bounds for the number of small convex k-holes, Comput.
Geom. 47(5) (2014) 605–613.

[3] O. Aichholzer, R. Fabila-Monroy, H- González-Aguilar, T. Hackl, M.A. Heredia,
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