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Third case of the Cyclic Coloring Conjecture ∗

Michael Hebdige† Daniel Král’‡

Abstract

The Cyclic Coloring Conjecture asserts that the vertices of every plane
graph with maximum face size ∆∗ can be colored using at most ⌊3∆∗/2⌋
colors in such a way that no face is incident with two vertices of the same
color. The Cyclic Coloring Conjecture has been proven only for two values
of ∆∗: the case ∆∗ = 3 is equivalent to the Four Color Theorem and the
case ∆∗ = 4 is equivalent to Borodin’s Six Color Theorem, which says
that every graph that can be drawn in the plane with each edge crossed
by at most one other edge is 6-colorable. We prove the case ∆∗ = 6 of the
conjecture.

1 Introduction

One of the most well-known open problems on coloring planar graphs is the Cyclic
Coloring Conjecture, which was made by Borodin in 1984 [4] (the conjecture is
sometimes thought to have also been made by Ore and Plummer in the 1960’s).
The conjecture asserts that every plane graph with maximum face ∆∗ has a cyclic
coloring with at most ⌊3∆∗/2⌋ colors, i.e. its vertices can be colored with at most
⌊3∆∗/2⌋ colors in such a way that no two vertices incident with the same face
get the same color. The case ∆∗ = 3 of the conjecture is equivalent to the Four
Color Theorem, which asserts that every planar graph is 4-colorable and which
was proven in [2,3]; a simpler proof was given in [21]. The only other known case
of the conjecture is ∆∗ = 4, which is known as Borodin’s Six Color Theorem [4,6].
This case of the conjecture is equivalent to the following statement: every graph
embedded in the plane in such a way that each edge is crossed by at most one
other edge is 6-colorable.
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Value of ∆∗ 3 4 5 6 7 8 9 10
Upper bound 4 6 8 9 11 13 15 17
Source [2, 3, 21] [4, 6] [8] here [13] [23] [5] [22]
Conjecture 4 6 7 9 10 12 13 15

Table 1: The known upper bounds for the Cyclic Coloring Conjecture.

There has been a substantial amount of work on the conjecture both focused
on proving upper bounds for particular values of ∆∗, which are summarized in
Table 1, and on establishing general bounds. The work on general bounds [5,8,19]
culminated with currently the best known general bound ⌈5∆∗/3⌉ due to Sanders
and Zhao [22]. Amini, Esperet and van den Heuvel [1], extending the work
from [10, 11], proved that the conjecture holds asymptotically in the following
sense: for every ε > 0, there exists ∆0 such that every plane graph with maximum
face size ∆∗ ≥ ∆0 has a cyclic coloring with at most

(

3

2
+ ε

)

∆∗ colors.
There has been no new exact results on the conjecture for more than 30 years.

In this paper, we resolve another case of the conjecture, proving the following.

Theorem 1. Every plane graph with maximum face size at most six has a cyclic

coloring using at most nine colors.

The proof of Theorem 1 is based on a discharging argument involving 103 dis-
charging rules and 193 reducible configurations. Despite the high complexity of
the argument, we are able to present a proof of the reducibility of all configura-
tions and the analysis of the final amount of charge for all vertices and for all faces
except those of sizes five and six, where we had to resort to computer assisted tech-
niques to analyze the final amount of charge (Lemma 11). We have prepared three
different programs to verify the correctness of the proof of this lemma and we have
made one of the programs available at http://www.ucw.cz/~kral/cyclic-six/.
We have also uploaded its source code to arXiv as an ancillary file.

Before presenting the proof of our main result, we would like to mention two
closely related conjectures; additional related results can also be found in a recent
survey by Borodin [7]. One is the conjecture of Plummer and Toft [20], studied
e.g. in [9,14–16], asserting that every 3-connected plane graph with maximum face
size ∆∗ has a cyclic coloring using at most ∆∗+2 colors. The other conjecture is
the Facial Coloring Conjecture from [17], which was studied e.g. in [12,13,17,18].
This conjecture asserts for every positive integer ℓ that every plane graph has
an ℓ-facial coloring with at most 3ℓ + 1 colors, i.e. a vertex coloring such that
any vertices joined by a facial walk of length at most ℓ receive different colors. If
the Facial Coloring Conjecture holds for a particular value of ℓ, then the Cyclic
Coloring Conjecture holds for ∆∗ = 2ℓ+1. Unfortunately, the only proven case of
the Facial Coloring Conjecture is the case ℓ = 1, which is equivalent to the Four
Color Theorem. Still, partial results towards the proof of the Facial Coloring
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Conjecture give the best known upper bound for the case ∆∗ = 7 of the Cyclic
Coloring Conjecture [13].

2 Notation

We follow the notation standard in the area of planar graph coloring. All graphs
considered in the following are plane graphs that could have parallel edges but
do not have loops. A vertex of degree k is referred to as a k-vertex, a vertex of
degree at most k as a ≤ k-vertex and a vertex of degree at least k as a ≥ k-vertex.
The degree of a face is the number of vertices incident with it and we use a k-face,
a ≤ k-face and a ≥ k-face in the analogous meanings. Two vertices are facially

adjacent if they are incident with the same face and the facial degree of a vertex
is the number of vertices facially adjacent to it. In a 2-connected plane graph,
each face is bounded by a cycle and proper connected subgraphs of this cycle are
referred to as facial walks. Finally, a cycle C in a plane graph G is separating if
it does not bound a face neither inside nor outside.

When describing configurations in plane graphs, we will often describe 5-
faces and 6-faces in the following way: a k-face v1v2 · · · vk, k ∈ {5, 6}, will be
represented by a string of length 2k+2 characters starting with P: or H: if k = 5
or k = 6, respectively. The (2i + 1)-th position will represent the type of the
vertex vi and the (2i+ 2)-th position will represent the type of the face sharing
the edge vivi+1 (indices modulo k). The types of vertices and faces are encoded
using the notation given in Tables 2 and 3, respectively. In both cases, we can
use wildcards to represent several types of vertices and faces as given in Tables 4
and 5. Since a minimal counterexample to Theorem 1 cannot contain a 3-face
and a ≤ 5-face sharing an edge, we will consider configurations where every 3-face
shares edges with 6-faces only.

The (most generic) 6-face configuration described as H:3Q5*oO4Po*3* and the
5-face configuration described as P:v*w******* can be found in Figure 1. When
drawing faces, we will represent 3-vertices with circles, 4-vertices with squares
and 5-vertices with pentagons (as shown in Figure 1). Finally, if the description
of a face ends with one or more stars, we often omit these stars. In particular,
the configurations depicted in Figure 1 can also be described as H:3Q5*oO4Po*3
and P:v*w.

3 Overview of the proof

We consider a minimal graph with maximum face size at most 6 that has no cyclic
coloring with at most 9 colors; the minimality is measured as the minimality of the
sum of the numbers of vertices and edges. Such a minimal graph is further referred
to as aminimal counterexample. It is easy to show that a minimal counterexample
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Type Description
t a 3-vertex such that its neighbor not on the face is a ≥ 4-vertex
o a 3-vertex such that its neighbor not on the face is also a 3-vertex
v a 4-vertex v contained in a 3-face vv′v′′ such that neither v′ nor v′′

is on the described face and both v′ and v′′ are ≥ 4-vertices
u a 4-vertex v contained in a 3-face vv′v′′ such that neither v′ nor v′′

is on the described face and v′ and v′′ are a 3-vertex and ≥ 4-vertex
w a 4-vertex v contained in a 3-face vv′v′′ such that neither v′ nor v′′

is on the described face and both v′ and v′′ are 3-vertices
4 a 4-vertex
5 a 5-vertex
6 a ≥ 6-vertex

Table 2: The vertex type representation.

Type Description
t a 3-face vivi+1w such that w is a 3-vertex and its remaining neighbor

is a ≥ 4-vertex
O a 3-face vivi+1w such that w is a 3-vertex and its remaining neighbor

is a 3-vertex
x a 3-face vivi+1w such that w is a ≥ 4-vertex
Q a 4-face
P a 5-face
H a 6-face

Table 3: The face type representation assuming the faces share an edge vivi+1.

Wildcard Represented types Description
3 t and o a 3-vertex
x all but t and o a ≥ 4-vertex
+ 5 and 6 a ≥ 5-vertex
* all any type of a vertex

Table 4: The vertex type wildcards.
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Wildcard Represented types Description
3 t and O a 3-face with the tip being a 3-vertex
T t, O and x a 3-face
F Q, P and H a ≥ 4-face
* all any type of a face

Table 5: The face type wildcards.

Figure 1: The most generic face configurations described by H:3Q5*oO4Po*3*

and by P:v*w*******.

is 2-connected, it has no parallel edges and its minimum facial degree is at least
9. In particular, the minimum degree of a minimal counterexample is at least
3. In addition, a minimal counterexample cannot contain a separating cycle of
length at most 6. Also observe that a minimal counterexample does not contain
a 3-face that shares an edge with a ≤ 5-face.

We exclude the existence of a minimal counterexample (and thus prove The-
orem 1) using the discharging method. We fix a minimal counterexample and
assign each k-vertex k − 4 units of charge and each k-face k − 4 units of charge.
Euler’s formula implies that the sum of the amounts of the initial charges is −8.
We then apply the set of discharging rules described in Section 5. Based on these
rules, some of the vertices and faces send charge to incident elements in such a
way that the total sum of the charges is preserved. However, we show that a
minimal counterexample cannot contain any of the configurations described in
Section 4, so-called reducible configurations, and using this we show that the final
amount of charge of any vertex and any face is non-negative. Since the amount
of charge was preserved, this is impossible and hence excludes the existence of a
counterexample to the Cyclic Coloring Conjecture for ∆∗ = 6, which finishes the
proof.
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4 Reducible configurations

In this section, we identify configurations that cannot appear in a minimal coun-
terexample. To avoid an excessive use of wildcards, when we say that a certain
configuration with the description containing v is reducible, we actually mean
that the configurations with v replaced with u and w are also reducible. Likewise,
the configurations with description containing u are reducible with u replaced
with w. For example, when we have established that the configuration P:v*3P3

is reducible (the configuration is depicted in Figure 3), we have established that
the configurations P:u*3P3 and P:w*3P3 are also reducible.

4.1 Simple greedy reductions

The reducibility of most of the configurations will be established in the follow-
ing way: we consider a minimal counterexample G containing the configuration,
possibly add some edges and then contract one or more connected subgraphs to
obtain a graph G′ with maximum face size at most six. These subgraphs will be
identified by the capital letters A, B, etc. and the resulting vertices of G′ will be
denoted by wA, wB, etc. If one or more loops appear because of the contraction,
they get removed.

By the minimality of G, there exists a cyclic coloring of G′ using at most nine
colors. Most of the vertices of G will keep the colors they are assigned in G′.
Two or more vertices of each subgraph X = A,B, . . . will get the color assigned
to wX in G′ while the others remain uncolored. The obtained coloring is then
completed by coloring the non-colored vertices in a specific order. This order is
chosen in such a way that each vertex is facially adjacent to vertices with at most
eight different colors when it is supposed to be colored. Hence, the coloring can
be completed to obtain a cyclic coloring of G.

Clearly, the vertices of the component X that get the color of wX cannot be
facially adjacent. The next two lemmas will guarantee that certain pairs of the
vertices of a subgraph X are not facially adjacent.

Lemma 2. If two vertices u and u′ of a minimal counterexample G are joined by

a path of length k ∈ {2, 3} that is not a facial walk, then u and u′ are not facially

adjacent.

Proof. Let v0 · · · vk be the path between u = v0 and u′ = vk. Suppose that u
and u′ are facially adjacent. Since the maximum face size of G is at most six,
there is a facial walk w0 · · ·wℓ such that u′ = w0, u = wℓ and ℓ ∈ {0, 1, 2, 3}.
Since v0 · · · vk is not a facial walk, the closed walk v0 · · · vkw1 · · ·wℓ−1 (note that
vk = w0) contains a separating cycle of length at most k + ℓ ≤ 6. However, G
contains no separating cycle of length at most six.
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v1 v2 v3
v4

v5 v6

v′
5

v′
6

v7 = v0

u3 u2

u1

u′
3

u′
2 u′

1

1 4 5 2 3

Figure 2: Notation used in Lemma 3.

Lemma 3. If two vertices u and u′ of a minimal counterexample G are joined

by a path v0v1v2v3v4, u = v0 and u′ = v4, such that v1v2v3 is a facial walk and

v2v3v4 is a facial walk of another face, then u and u′ are not facially adjacent.

Proof. If u and u′ are facially adjacent, there is a facial walk v4 · · · vk for k ∈
{4, 5, 6, 7} such that vk = u (and so vk = v0). If k ≤ 6, then the closed walk
v0v1 · · · vk−1 would contain a separating cycle of length at most k ≤ 6, which is
impossible. Hence, we will assume that k = 7 in the rest of the proof, i.e. u and u′

are the opposite vertices of a 6-face. Let v4v
′

5v
′

6v7 be the other facial walk between
u′ and u on this 6-face, let v1v2v3u1 · · ·uℓ be the face containing the facial walk
v1v2v3 and let v2v3v4u

′

1 · · ·u
′

ℓ′ be the face containing the facial walk v2v3v4. By
symmetry, we can assume that one side of the separating cycle v0v1 · · · v6 contains
the face v1v2v3u1 · · ·uℓ on one side and the face v2v3v4u

′

1 · · ·u
′

ℓ′ and the vertices
v′5 and v′6 on the other side. See Figure 2 for the illustration.

Let H be the subgraph of G on the side of the cycle v1v2 · · · v7 with the face
v1v2v3u1 · · ·uℓ such that the path v1v2v3 is replaced with the edge v1v3, and let
H ′ be the subgraph of G on the side of the cycle v1v2v3v4v

′

5v
′

6v7 with the face
v2v3v4u

′

1 · · ·u
′

ℓ′ such that the path v2v3v4 is replaced with the edge v2v4. Note
that the maximum face size of both H and H ′ is six. The minimality of G implies
that both H and H ′ has facial colorings with at most nine colors. The colors used
by the two colorings are denoted by 1, 2, . . . , 9.

By symmetry, we can assume that the color of v1 is 1, that of v4 is 2 and
that of v7 is 3 in both the colorings. Moreover, we can assume that the color of
v2 in H ′ is 4 and that of v3 in H is 5. If the color of one of the vertices v5 and
v6, say vi, is different from the colors of u1, . . . , uℓ, we permute the colors of the
vertices of H in such a way that the color of vi is 4, the color of v11−i is 6 and the
colors of u1, . . . , uℓ are among 6, . . . , 9. If the color of both the vertices v5 and v6
appear among the colors of u1, . . . , uℓ, we permute the colors of the vertices of H ′

in such a way that the colors of v5 and v6 are 6 and 7 and the colors of u1, . . . , uℓ

are among 6, 7, 8. We now permute the colors of the vertices of H ′. If the color
of one of the vertices v′5 and v′6, say v′j , is different from the colors of u′

1, . . . , u
′

ℓ′,
we permute the colors of the vertices of H in such a way that the color of v′j is
5 and the color of v′11−j is 8 and the colors of u′

1, . . . , u
′

ℓ′ are among 6, . . . , 9. If
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1
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Figure 3: The 11 reducible configurations related to 5-faces; note that there are
two ways that the configuration with the description including u can look like.
All the depicted configurations are reducible in the simple greedy way. Also note
that in the last configuration the vertices wA, wB and wC in the reduced graph
are incident with the same face and thus they get distinct colors.

the color of both the vertices v′5 and v′6 appear among the colors of u′

1, . . . , u
′

ℓ′, we
permute the colors of the vertices of H ′ in such a way that the colors of v′5 and
v′6 are 8 and 9 and the colors of u′

1, . . . , u
′

ℓ′ are among 6, 8, 9. It is easy to verify
that the colorings of H and H ′ form a cyclic coloring of G.

Our proof uses 186 reducible configurations with their reducibility established
in the way that we have just described. The 11 such configurations related
to 5-faces can be found in Figure 3 and the 175 configurations related to 6-
faces in Figures 4–12. In each of the configurations, the edges of the minimal
counterexample that get contracted are depicted by bold and the edges that are
added and get contracted (if they exist) are bold and dotted. The vertices that
get the color of the vertex corresponding to the contracted component are marked
by capital letters. The numbered vertices are those that do not keep the colors
and their numbers give the order in that they are colored. It is straightforward
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to verify that all the involved vertices are at distance at most six (and therefore
they are distinct), the vertices with the same capital letter satisfy the conditions
of one of Lemmas 2 and 3, and each numbered vertex is facially adjacent to
vertices with at most eight different colors when it gets a color. To assist with
the verification of the letter, the facial degrees of the vertices to be colored are
displayed very near to them.

One more comment on the configurations depicted in Figures 3–12 is in place.
We always assume that the unconstrained faces around the considered face have
size six. Note that if their size is five or less and this results in the absence
of a vertex in one or more of the pairs A, B, etc., the counting argument for
the greedy coloring would still work. Instead of saving one color because of the
facially adjacent pair of vertices with the same color, we would save one color
because the face size of the incident face is smaller. Let us give an example. If
the face that is supposed to contain the vertices labelled with A, B, C, 3, 4 and 2
(like in the last configuration in Figure 3) is a 5-face, we might not insert the bold
dotted edge, which would result in the face containing only the vertices labelled
with A and C in addition to those labelled with 2, 3 and 4. However, the facial
degrees of the vertices labelled with 2, 3 and 4 are 11, 10 and 10, respectively,
and hence the greedy coloring argument would still work. So, the assumption
that all the unconstrained faces around the considered face have size six does not
affect the completeness of our arguments.

4.2 List coloring argument

The reducibility of four configurations in our proof was established using argu-
ments involving list coloring. In list coloring, each vertex of a graph is assigned a
list of available colors and a proper vertex coloring such that each vertex receives
a color from its list is sought (a proper vertex coloring is a coloring such that
no two adjacent vertices receive the same color). To demonstrate the concept,
we start with a (very simple) auxiliary lemma, which is used in most of our
reductions.

Lemma 4. Let G be a graph with vertices α, β, γ and δ such that all the pairs

of vertices are adjacent except for the pair α and β. Suppose that each of the

vertices α and β is assigned a list of two colors and each of the vertices γ and

δ is assigned a list of three colors. The vertices of the graph G can be properly

colored such that each vertex receives a color from its list.

Proof. We distinguish two cases. If there is a color contained in the lists of both
vertices α and β, color both vertices α and β with this color and then color the
vertices γ and δ (in this order) with any colors from their lists not assigned to
any of their neighbors. On the other hand, if the lists of the vertices α and β are
disjoint, their union contains four colors and thus it contains a color not in the
list of the vertex δ. Let x be this color. By symmetry, we can assume that x is
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Figure 4: Configurations related to 6-faces that are reducible in the simple greedy
way—part 1.

10



13

9
9

13

9

9

H:w*w

12

3

4

5

6

A

A

B

B

12 9
9

10

10

H:3*o3*Qo

1

2

3

45

A

A

B
B

12 9
9

10

H:3*o3*T4T

1

2

34

A

A

B B

9

9

13

9

9

H:o34*o3

12

3

4

5A

A

139

9

9
9

H:w*o3

1

2

3

45

A

A

9

11

9

H:*Q3P3*3T

1

2

3A

A
9

11

9

H:3T4Q3P

12

3A

A
13

9

9

13

9

H:43o*4T3

1

2

3

4

5

A

A

B

B

12 10

11

9

H:3*3Q4T3

1

2

3

4

A

A

B

B

9 9

12

10

H:3T3*3*3Q

1

2

3 4

A

A

12 9

13

99

H:3*3T4*3T3

1

2

34

5

A

A

13

9

13

9

9

9

H:434*3T3**T3

1 2

3

4

5

6

A

A A 10

10

10

10

H:*Qo*3Q3

1

2

3

4A

A

B

B

9

11

11

11

H:*T3*3Po

1

2

3

4A

A

B
B

9
13

9

99

H:3T4*o3*T3

12

3 4

5A

A

10 10

13

9

H:3Q3*4T3

1

2

3

4

A

A

B

B

9

9

13

13

9

H:o34*4T3

1

2

3

4

5

A

A

B

B

9 9

13
9

9

H:3T3*w

1

2

3
45

A

A

9

13

10 10

H:*34*oQ

1

23

4

A

A

B

B

10

12

911

H:*Q3*3*3T4Q

1

2

3

4

A

AB

B

10

10

14

9

9

H:oQ4*o3

1

2

3

4

5A

A

B

B
9

12

99

H:*Q3P43o

1

23

4

A

A

Figure 5: Configurations related to 6-faces that are reducible in the simple greedy
way—part 2.
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Figure 6: Configurations related to 6-faces that are reducible in the simple greedy
way—part 3.
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Figure 7: Configurations related to 6-faces that are reducible in the simple greedy
way—part 4.
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Figure 8: Configurations related to 6-faces that are reducible in the simple greedy
way—part 5.
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Figure 9: Configurations related to 6-faces that are reducible in the simple greedy
way—part 6.
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Figure 10: Configurations related to 6-faces that are reducible in the simple
greedy way—part 7.
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Figure 11: Configurations related to 6-faces that are reducible in the simple
greedy way—part 8.
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Figure 12: Configurations related to 6-faces that are reducible in the simple
greedy way—part 9.
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Figure 13: The reducible configurations from Lemma 5.

contained in the list of α. We color the vertex α by x, the vertex β by any color
from its list, the vertex γ by any color from its list different from the colors of α
and β, and finally the vertex δ by any color from its list different from the colors
of β and γ. Since x is not contained in the list of δ, the color assigned to δ is
different from x and the coloring that we have obtained is proper.

Lemma 4 is used to establish the reducibility of the configurations in the next
lemma.

Lemma 5. The configurations H:3T**oQ3, H:*T3***oQ3 and H:3T****oQ3 are

reducible.

Proof. The configurations from the statement of the lemma are depicted in Fig-
ure 5. We follow the notation from Subsection 4.1. Suppose that a minimal
counterexample contains one of the configurations. As in Subsection 4.1, we
contract the subgraphs depicted in bold, obtain a coloring of the new graph and
assign the colors to the vertices labelled with A based on the coloring we obtained
(note that the pair of such vertices is not facially adjacent by Lemma 2). We next
uncolor the vertices labelled with α, β, γ and δ (if they are colored). The facial
degrees and the facial adjacencies to the pairs of vertices with the same color
yield that there are at least two colors not assigned to the facial neighbors of α,
at least two colors not assigned to the facial neighbors of β, at least three colors
not assigned to the facial neighbors of γ and at least three colors not assigned to
the facial neighbors of δ. Since the vertices α and β are not facially adjacent by
Lemma 2, we can complete the coloring to a cyclic coloring by Lemma 4.

We finish this subsection with a more involved list coloring argument. Since
this argument applies only to the configuration considered in the next lemma, we
present the argument in the specific setting of the considered configuration only.

Lemma 6. The configuration H:3Q4Po*3P is reducible.
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Figure 14: The configuration from Lemma 6.

Proof. Suppose that a minimal counterexample G contains the configuration
H:3Q4Po*3P. Add the dotted edge depicted in Figure 14 and contract the two
subgraphs formed by bold edges. By the minimality of G, the obtained graph
has a cyclic coloring with at most nine colors. All the vertices keep their colors
and the vertices labelled with A and B get the colors of the vertices correspond-
ing to the contracted subgraphs. Note that the vertices to be colored with the
same color are not facially adjacent by Lemmas 2 and 3. We are now left to color
the vertices α, β, γ, δ and ε. Observe that all the pairs of these five vertices are
facially adjacent except for the pair α and β, which is not facially adjacent by
Lemma 2.

From the facial degrees and the facial adjacencies to the vertices with same
color, we derive that there are at least two colors available for each of the vertices
α and γ, at least three colors available for each of the vertices β and δ and at
least four colors available for the vertex ε. Let Z be a set formed by four colors
available for ε.

If there is a color that can be assigned to both α and β, then we color both α
and β with this color and the remaining vertices in the order γ, δ and ε. Assume
now that there is no color available to both α and β. Since there are at least five
colors in total available to α or β, one of these colors, say x, is not contained in
the set Z.

If x is available for the vertex α, we color α with this color and color the
remaining vertices in the order γ, δ, β and ε. So, we can assume that the color
x is available for the vertex β. We start with coloring the vertices α, γ and δ (in
this order) with arbitrary available colors. If neither γ nor δ is colored with the
color x, we color β with x. Otherwise, we color β with an arbitrary color that
is available for β and that has not been assigned to γ or δ. In both cases, the
vertex ε has a facial neighbor colored with x and we can complete the coloring
to a cyclic coloring of G.
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Figure 15: The configurations from Lemma 8.

4.3 Special arguments

In this subsection, we establish reducibility of three additional configurations
using ad hoc arguments.

Lemma 7. The configuration H:o3o is reducible.

Proof. Let G be a minimal counterexample and let uvw be a 3-face of G such
that all the three vertices u, v and w are 3-vertices. Note that the facial degree
of all the three vertices u, v and w in G is 9. Contract the triangle uvw to a
single vertex, color the obtained graph G′ by the minimality of G, and assign the
vertices of G except for u, v and w the colors they are assigned in G′.

If one of the vertices u, v and w, say w, is facially adjacent to two vertices of
the same color, we can color the three vertices in the order u, v and w greedily.
So, we assume that none of the vertices u, v and w are facially adjacent to two
vertices of the same color. Let Xuv be the colors of the two vertices incident with
the 6-face containing the edge uv that are not the neighbors of u or v. We use
Xuw and Xvw in the analogous way with respect to the other two 6-faces sharing
the edges with the 3-face. The assumption that none of the vertices u, v and w
are facially adjacent to two vertices of the same color implies that the sets Xuv,
Xuw and Xvw are disjoint and they do not contain a color of any neighbor of the
vertices u, v and w. We can now complete the coloring by assigning the vertex
u an arbitrary color from Xvw, the vertex v an arbitrary color from Xuw and the
vertex w an arbitrary color from Xuv.

Lemma 8. The configurations H:3*3T4Po*3 and H:3Po*4T3*3 are reducible.

Proof. We proceed in a way similar to the simple greedy reductions from Sub-
section 4.1. We consider a minimal counterexample G that contains one of the
configurations H:3*3T4Po*3 and H:3Po*4T3*3, which are depicted in Figure 15.
We start with inserting the dotted edge and contracting the three subgraphs
formed by bold edges. By the minimality of G, we obtain a cyclic coloring of
the new graph, which gives the coloring to all the vertices of G except the ones
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T:3H3x3Hx 10/60 T:3H3x4P* 10/60 T:*P4O4P* 32/60
T:3Hot4P* 1/60 T:xH3x4P* 13/60 T:*P4t4H* 26/60
T:xHot4P* 20/60 T:3H3x4H* 8/60 T:*P4O4H* 31/60
T:3HoO4P* 20/60 T:xH3x4H* 10/60 T:*H4t4H* 26/60
T:xHoO4P* 29/60 T:3H3x+** 14/60 T:*H4O4H* 30/60
T:3Hot4H* 10/60 T:xH3x+** 12/60 T:*Q4t+** 22/60
T:xHot4H* 20/60 T:*Q4t4Q* 8/60 T:*Q4O+** 24/60
T:*HoO4H* 20/60 T:*Q4O4Q* 16/60 T:*P4t+** 31/60
T:3Hot+** 20/60 T:*Q4t4P* 17/60 T:*P4O+** 32/60
T:xHot+** 30/60 T:*Q4O4P* 24/60 T:*H43+** 31/60
T:*HoO+** 30/60 T:*Q4t4H* 17/60 T:**+t+** 36/60
T:3H3x4Q* 22/60 T:*Q4O4H* 23/60 T:**+O+** 32/60
T:xH3x4Q* 26/60 T:*P4t4P* 26/60 T:**xxx** 20/60

Table 6: The T -rules.

contained in the contracted subgraphs. The vertices labelled with A, B and C
get the colors of the vertices corresponding to the contracted subgraphs (each of
the three pairs of these vertices is not facially adjacent by Lemma 2). However,
the vertices x and y may have the same color.

If the vertices x and y have different colors, we color the remaining vertices
greedily in the order given by the numbering in Figure 15. If the vertices x and
y have the same color, we uncolor the vertex x. Note that the vertices labelled
by 3 and 4 are still facially adjacent to two pairs of vertices with the same color
(one of the pairs contains the vertex y). We now color the six uncolored vertices
greedily in the order given by the numbering in Figure 15 with the vertex x being
colored between the vertices labelled by 2 and 3.

5 Discharging rules

The discharging rules are listed in Tables 6, 7 and 8 using the encoding we now
describe. There are three basic types of discharging rules: T -rules, P -rules and
H-rules. The T -rules are described by strings of nine characters starting with T:.
If a 6-face v1v2 · · · v6 matches the description given by the rule, i.e., the vertices
vi, i ∈ {1, 2, 3, 4}, correspond to the (2i+ 1)-th characters and the faces sharing
the edges vivi+1, i ∈ {1, 2, 3}, correspond to the (2i + 2)-th characters, then the
6-face v1v2 · · · v6 sends the prescribed amount of charge to the face sharing the
edge v2v3. The face sharing the edge v2v3 with the 6-face will always be a 3-face.
Moreover, at most one of the T -rules will apply to any pair of a 6-face and a
3-face sharing an edge.

The P -rules and H-rules are described by strings of seven characters starting
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P:3Q3H* 40/60 P:xPoPx 40/60 P:xPtHx 20/60 P:3H3H+ 14/60
P:xQ3H* 20/60 P:3PtH3 12/60 P:4PoHx 18/60 P:4H3H4 20/60
P:3PtP3 12/60 P:3PtH4 18/60 P:+PtH3 12/60 P:4H3H+ 26/60
P:3PtPx 10/60 P:3PtH+ 20/60 P:+PoHx 24/60 P:+H3H+ 32/60
P:xPtPx 20/60 P:*PoH3 18/60 P:3HtH3 12/60 P:**+** -12/60
P:3PoP3 20/60 P:3PoHx 20/60 P:3HoH3 20/60 P:**u** 4/60
P:3PoPx 24/60 P:4PtH3 18/60 P:3H3H4 16/60 P:**w** 20/60

Table 7: The P -rules.

H:3TtH3 20/60 H:3QtH* 24/60 H:+P3P+ 20/60 H:*H3H* 20/60
H:3TtH4 30/60 H:3QoH* 30/60 H:3P3H3 20/60 H:*T5T* -24/60
H:3TtH+ 36/60 H:xQtH* 30/60 H:3PtHx 22/60 H:*T6T* -40/60
H:xTtH* 30/60 H:xQoH* 36/60 H:3PoHx 24/60 H:*T+Q* -24/60
H:xToH3 40/60 H:3P3P3 24/60 H:4PtH* 20/60 H:*T+P* -18/60
H:xToH4 30/60 H:3PtPx 24/60 H:4PoH3 24/60 H:*T+H* -18/60
H:xToH+ 24/60 H:3PoPx 28/60 H:4PoHx 22/60 H:*F+F* -12/60
H:*QtP* 40/60 H:4PtPx 20/60 H:+PoH* 26/60 H:**u** 7/60
H:*QoP* 20/60 H:4PoPx 24/60 H:+PtH* 14/60 H:**w** 20/60

Table 8: The H-rules.

with P: and H:. If a face f matches the description given by the rule, then
the face f sends the prescribed amount of charge to the second vertex (the one
corresponding to the fifth character). In particular, the P -rules apply to 5-faces
and the H-rules to 6-faces. If the prescribed amount of charge is negative (this
happens in one of the P -rules and in four of the H-rules), the face f receives
the corresponding amount of charge. Finally, if the charge sent by f goes to a
4-vertex, the 4-vertex resends all of the received charge to the 3-face incident
with it (this is the case for the last two P -rules and the last two H-rules). As in
the case of T -rules, at most one of the P -rules and H-rules applies to any pair of
a face and an incident vertex.

In the next two lemmas, we analyze the final amount of charge of vertices and
3-faces.

Lemma 9. Let G be a 2-connected plane graph with maximum face size six and v
a vertex of G. If the minimum facial degree of G is at least nine and G does not

contain a 3-face incident with three 3-vertices, then the final amount of charge of

v is non-negative.

Proof. Since the minimum facial degree of G is at least nine, the minimum degree
of G is at least three. If v is a 3-vertex, then one of the cases depicted in Figure 16
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Figure 16: Charge received by 3-vertices. The degrees of vertices are encoded
using the notation for configurations.
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holds and the vertex v receives at least one unit of charge in total from the incident
≥ 5-faces. Since 4-vertices do not send out or receive any charge except for that
they immediately resend to 3-faces, we assume from now on that v is a ≥ 5-vertex.

Let t be the number of 3-faces incident with v, q the number of 4-faces and
p be the number of ≥ 5-faces. Suppose that v is a 5-vertex. The vertex v sends
12/60 to each incident ≥ 5-face f by the rules P:**+** and H:*F+F* unless
one of the two other faces incident with v that shares an edge with f is a 3-
face. The amount of charge sent is increased by 12/60 for each 6-face sharing
an edge with a 3-face and a ≤ 4-face incident with v (see the rules H:*T5T* and
H:*T+Q*), and is increased by 6/60 for each 6-face sharing an edge with a 3-face
and ≥ 5-face incident with v (see the rules H:*T+P* and H:*T+H*). So, each
3-face incident with v increases the amount of charge sent from v to a 6-face that
shares an edge with it by 6/60 units and each 4-face incident with v can increase
the amount of charge sent from v to a 6-face that shares an edge with it by 6/60
units (this happens only if the other face incident with v that shares an edge
with the 6-face is a 3-face). Since each 3-face and 4-face shares an edge with
at most two faces incident with v, we conclude that the 5-vertex v sends out at
most (12t + 12q + 12p)/60 ≤ 1 unit of charge and its final amount of charge is
non-negative.

Suppose that v is a d-vertex, d ≥ 6. The calculation is the same except
that each 6-face sharing edges with two 3-faces incident with v gets 40/60 units
of charge from v instead of 24/60 units (the rule H:*T6T* applies instead of
H:*T5T*). Hence, the additional amount of charge sent out can be up to 28/60
units per incident 3-face instead of 12/60 units as in the previous case. This
yields that v sends out at most (28t + 12q + 12p)/60 units of charge. Since a
3-face can share an edge only with a 6-face, we get that t ≤ p. Consequently, the
d-vertex v sends out at most

28t+ 12q + 12p

60
≤

20t+ 12q + 20p

60
≤

t+ q + p

3
=

d

3
≤ d− 4

units of charge and its final amount of charge is non-negative.

Lemma 10. Let G be a 2-connected plane graph with maximum face size six and

let v1v2v3 be a 3-face of G that does not share an edge with a ≤ 5-face. If the

minimum facial degree of G at least nine and G does not contain H:o3o, H:3T4T

or H : o34Q, then the face v1v2v3 receives at least one unit of charge using the

T -rules, P -rules and H-rules.

Proof. All possible configurations around 3-faces in a graph satisfying the as-
sumption of the lemma are depicted in Figure 17. The picture also contains the
amounts of charge received by such 3-faces and it can be verified that the final
amount of charge of the 3-face is always non-negative.
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Figure 17: Charge received by 3-faces. The degrees of vertices are encoded using
the notation for configurations.
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The analysis of the final amount of charge of 5-faces and 6-faces turned out
to be too complex. So, we had to verify that the final amount of charge of
such faces is non-negative with the assistance of a computer. We have pre-
pared three computer programs and we have made one of them available at
http://www.ucw.cz/~kral/cyclic-six/; the program is also available on arXiv
as an ancillary file.

Lemma 11. Let G be a 2-connected plane graph with maximum face size six

and let f be a d-face of G, d ∈ {5, 6}. If G contains none of the reducible

configurations, its minimum facial degree is at least nine and there is no ≤ 5-face
sharing an edge with a 3-face, then the difference between the amount of charge

sent out by f and received by it is at most d− 4 units.

Lemmas 9, 10 and 11 together with the absence of any of the reducible config-
urations in a minimal counterexample exclude the existence of a minimal coun-
terexample for Theorem 1; this finishes the proof of Theorem 1.
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