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Abstract

Given an n × n array M (n ≥ 7), where each cell is colored in one of
two colors, we give a necessary and sufficient condition for the existence
of a partition of M into n diagonals, each containing at least one cell of
each color. As a consequence, it follows that if each color appears in at
least 2n − 1 cells, then such a partition exists. The proof uses results on
completion of partial Latin squares.

1 Introduction

Let M be a t × n array with t ≤ n. A diagonal in M is a subset of t cells of
M such that no two cells are in the same row or in the same column. For a
natural number k, such that 0 < k ≤ n, a k-coloring of M is an assignment of
a color from a given set of k colors to each cell of M . Given a k-coloring of M ,
an l-transversal (l ≤ k) is a diagonal of M in which at least l distinct colors
are represented. We call a diagonal D in a k-colored array M balanced if all k
colors appear in D.

A known conjecture of Stein [12] asserts that for any n-coloring of an n× n
array M , where each color appears in n cells, there exists an (n−1)-transversal.
Stein’s conjecture generalizes an earlier conjecture of Ryser and Brualdi [4, 10]
which state that such a transversal exists for any n-coloring in which all colors
in each row and each column are distinct.

A problem related to the Ryser-Brualdi-Stein Conjectures is the search for
conditions allowing a decomposition of a k-colored t × n array into n disjoint
t-transversals. For some conjectures and asymptotic results on the subject see
[1, 2, 6, 7, 8].

In this paper we give a necessary and sufficient condition for a 2-colored
n× n arrays to be partitioned into n disjoint balanced diagonals.

Definition 1.1. We call a subset A of cells in an n× n array improper if there
exists i, j ∈ [n] such that each cell in A lies either in row i or in column j but
not in both. Otherwise, a set is called proper.

Figure 1 illustrates an improper set (marked with x’s).
Our main result is the following theorem:
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Figure 1

Theorem 1.2. Suppose n ≥ 7 and let M = (mij)
n
i,j=1 be an n× n array where

each cell is colored red or blue. Then M can be partitioned into n balanced

diagonals if and only if for each color there is a proper set of n cells colored with

it.

The proof of Theorem 1.2 relies upon results on completion of partial Latin
squares.

2 Completion of partial Latin squares

A Latin square of order n is an n × n array filled with the symbols 1, . . . , n
so that all symbols in each row and each column are distinct. A diagonal in a
Latin square consisting of equal symbols is called a symbol diagonal. A partial

Latin square of order n and size k is an n×n array in which exactly k cells are
filled and no symbol appears more than once in a row or a column.

As a starting point for our discussion we quote the following well-known
theorem, conjectured by Evans [5] and proved by Smetaniuk [11]. A different
proof was given by Andersen and Hilton [3].

Theorem 2.1. A partial Latin square of order n and of size at most n− 1 can

be completed to a Latin square of order n.

Observation 2.2. Let M be an n × n array in which at least n − 1 cells are

colored blue. Then, there exists a partition of the cells of M into n disjoint

diagonals, so that at least n− 1 of them contain a blue cell.

Proof. We assign the symbols 1, . . . , n − 1 to the n − 1 blue cells and obtain
a partial Latin square. By Theorem 2.1, we can complete it to a Latin square
in which the symbol diagonals form a partition of M into diagonals, so that at
least n− 1 of them contains a blue cell.

In order to explore the case where a square array contains n blue cells we
shall use the following theorem of Andersen and Hilton [3]:
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Theorem 2.3. A partial Latin square of order n and of size n can be completed

to a Latin square of order n, unless it can be brought by permuting rows and

columns and possibly taking the transpose into one of the two forms depicted in

Figure 2.

(a) (b)

Figure 2

Observation 2.4. Let M be a colored n× n array containing a proper subset

of n cells, which are all colored blue. Then, there is a partition of M into n
diagonals, each containing a blue cell.

Proof. Let B be a proper set of blue cells of size n. We assign the symbols
1, . . . , n to the cells of B to obtain a partial Latin square L. Since B is proper
and properness is preserved under permutation of rows and columns and taking
the transpose, it follows from Theorem 2.3 that L can be completed to a Latin
square. The symbol diagonals of this Latin square form a partition of M into
diagonals, each containing a blue cell.

Example 2.5. The array in Figure 3 shows that 2n − 2 blue cells may not
ensure the existence of a decomposition into diagonals, each containing a blue
cell. Note that any diagonal containing the cell marked with an ‘x’ cannot
contain a blue cell.

Since any set of 2n− 1 cells is proper, and thus contains a proper subset of
size n, we have the following observation:

Observation 2.6. Let M be a n × n array in which at least 2n − 1 cells are

colored blue. Then, there is a partition of M into n diagonals, each containing

a blue cell.

3 Proof of the main result

For the proof of Theorem 1.2 we shall need the following theorem of Ryser [9]:
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Figure 3

Theorem 3.1. Let 0 < r, s < n and let A be a partial Latin square of order

n in which cell (i, j) in A is filled if and only if i ≤ r and j ≤ s. Then A can

be completed to a Latin square if and only if N(i) ≥ r + s− n for i = 1, . . . , n,
where N(i) is the number of cells in A that are filled with i.

Proof of Theorem 1.2. Let Mb and Mr be the subsets of M consisting of blue
and red cells, respectively. Without loss of generality we may assume that
|Mb| ≤ |Mr|. If |Mb| < n, then clearly there is no decomposition of M into
balanced diagonals. Hence, we may assume that |Mb| ≥ n. If Mb does not
contain a proper subset of size n, then Mb is improper. Suppose Mb is contained
in row i and column j, then for any partition of M into diagonals, the diagonal
through mij will be contained in Mr. Thus, the condition is necessary.

We now show that the condition of the theorem is sufficient. For contradic-
tion, we make the following assumption:

Assumption 1. A decomposition of M into balanced diagonals does not exist.

The proof consists of a sequence of claims.

Claim 1. Mb contains two diagonals T1 and T2 such that |T1 ∩ T2| = 1.

Proof of Claim 1. By Observation 2.4, there exists a decomposition of M into
diagonals, each containing a blue cell. By Assumption 1, at least one of these
diagonals is contained in Mb. We denote this diagonal by T1. If we put all
the symbols {1, . . . , n} in T1, then clearly we have a partial Latin square that
can be completed to a Latin square L′. By Assumption 1, at least one of the
symbol diagonals of L′ is contained in Mb. Let T2 be one such diagonal. We
have T1 ∪ T2 ⊂ Mb and |T1 ∩ T2| = 1, since T1 contains the distinct symbols
1, . . . , n and T2 contains the same symbol in all its cells.

Claim 2. Let T1∩T2 = {mij}. Then, there exists a cell in Mb \ (T1∪T2) which
is not in row i and not in column j.
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Proof of Claim 2. Note that we can choose ⌈n/2⌉ columns C1, . . . C⌈n/2⌉ of M ,

such that D = (∪
⌈n/2⌉
i=1

Ci) ∩ (T1 ∪ T2) has size n (if n is even we take any set
of n/2 columns that does not include column j. If n is odd we take any set
of ⌈n/2⌉ columns that includes column j). If we put the symbols 1, . . . , n in
the cells of D, we can complete to a Latin square L′′, by Theorem 2.3. By
Assumption 1, L′′ must have a symbol diagonal T3 which is contained in Mb.
Note that |T3 ∩D| = 1 since D contains distinct symbols and T3 has the same

symbol in all its cells. We look at the set T3∩ (∪
⌈n/2⌉
i=1

Ci), which is of size ⌈n/2⌉.
It contains one cell of D, possibly one cell from row i and possibly one cell from

column j. Thus, the set of cells T3 ∩ (∪
⌈n/2⌉
i=1

Ci) contains at least ⌈n/2⌉− 3 cells
which are neither in T1 ∪ T2 nor in column i nor in column j. This number is
positive since we assumed n ≥ 7.

Claim 3. The array M contains an s× t sub-rectangle R1, such that s+ t = n,
s− 1 ≤ t ≤ s+ 1 and |R1 ∩Mb| ≥ n.

Proof of Claim 3. Let T1∩T2 = {mij} and letmkl ∈ Mb\(T1∪T2), as in Claim 2,
that is k 6= i and l 6= j. We regard T1 and T2 as two perfect matchings in Kn,n

and consider the subgraph G of Kn,n consisting of the edges in (T1∪T2)\{mij}.
Since T1 ∩ T2 = {mij}, it follows that G is the disjoint union of simple even
cycles, each of length at least 4. We make the following two observations:

Observation 3.2. For any k ≤ 2n − 2, every induced subgraph of G with k
edges, consisting of the union of cycles and possibly one path, has at most k+1
vertices.

Observation 3.3. For any two vertices u and v in G, there exists an induced

subgraph H of G containing u and v, consisting of the union of cycles and

possibly one path, such that |E(H)| = n− 1.

The proof of Observation 3.2 is left to the reader. We prove Observation 3.3.

Proof of Observation 3.3. First assume u and v are in the same simple cycle C
of G. If |C| ≤ n− 1 we take C and add cycles and possibly one path (contained
in a simple cycle) in G to obtain H as required. If |C| > n− 1 we can take H
to be a path in C containing u and v. Since |E(G)| = 2n − 2, such a path H
with n− 1 edges always exists.

Now, assume u and v lie in disjoint cycles Cu and Cv of G, respectively.
Since |E(G)| = 2n− 2, we may assume, without loss of generality, that Cu has
size at most n− 1. If the size of Cu ∪ Cv is greater than n− 1 we take Cu and
a path containing v from Cv to obtain H as required (in the case that Cu has
size exactly n− 1 we just add the path of length 0 consisting of v). In case the
size of Cu ∪Cv is less than n− 1 we take Cu ∪Cv and add possibly more cycles
and possibly one path from G to obtain H .

Let e be the edge corresponding to mkl. Since k 6= i and l 6= j and G consists
of the edges in (T1∪T2)\ {mij}, the endpoints of e are in V (G). Let u and v be
the endpoints of e. By Observations 3.2 and 3.3, there is an induced subgraph
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H of G containing u and v, such that |E(H)| = n− 1 and n− 1 ≤ |V (H)| ≤ n.
Let s and t be the sizes of the two sides of H . We have n− 1 ≤ s+ t ≤ n and,
since H is the union of cycles and possibly one path, we must have that s and
t differ by at most 1. The graph H ∪ {e} corresponds to a sub-rectangle of M
of size s × t. If s+ t = n − 1 we augment this rectangle by a row or a column
to satisfy s+ t = n and s− 1 ≤ t ≤ s+ 1.

Claim 4. M contains a p× q sub-rectangle R, such that p+ q = n+1, p− 2 ≤
q ≤ p+ 2, |R ∩Mb| ≥ n and |R ∩Mr| ≥ n.

Proof of Claim 4. Let R1 be a sub-rectangle of M as in Claim 3. If R1 contains
also n red cells, then we are done. Otherwise, since |Mb| ≤ |Mr|, the square M
must contain another s × t sub-rectangle R2 with a majority of red cells and,
since n ≥ 7, |R2 ∩ Mr| ≥ n. If R2 contains n blue cells we are done, so we
assume it does not. We can travel from R1 to R2 using an s× t sliding window
(Figure 4), so that in each step we either drop a row and add a row or drop a
column and add a column. Clearly, at some stage, by exchanging a single row
or a single column we shall move from a rectangle R′ containing a majority of
blue cells to a rectangle R′′ containing a majority of red cells. Let R = R′∪R′′.
Clearly, R is a rectangle containing n blue cells and n red cells and its size is
p× q satisfying p+ q = s+ t+ 1 = n+ 1 and p and q differ at most by 2.

Figure 4

Claim 5. Let R be a sub-rectangle of M as in Claim 4. Then, we can fill n
blue cells and n red cells of R with the numbers 1, . . . , n so that each number

appears once in a blue cell and once in a red cell, to form a partial Latin square.

Proof of Claim 5. Let X be a set of n blue cells in R and let Y be a set of n
red cells in R. We form a bipartite graph G whose sides are the sets X and Y
and we draw an edge between two vertices if and only if the corresponding cells
are neither in the same row nor in the same column. We apply Hall’s theorem
to show that there is a perfect matching in G. Let S ⊂ X such that |S| = k.
Assume first that all the cells of S are in the same row or in the same column.
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Since the largest side of R is of size at most n+3

2
, then, |N(S)| ≥ n− (n+3

2
− k).

If we assume, for contradiction, that |N(S)| < k, then we get k > n− (n+3

2
− k)

which leads to n < 3. Thus, we may assume that the cells of S are not all in
the same row or in the same column. Note that in this case, |N(S)| = n unless
the cells of S form an improper set, in which case |N(S)| = n − 1. But, the
size of an improper set in R is at most (p− 1) + (q − 1) = n − 1. Thus, Hall’s
condition holds and the desired pairing exists.

We can now conclude the proof of Theorem 1.2. Let R be a sub-rectangle of
M as in Claim 4. We fill n blue cells with 1, . . . n and n red cells with 1, . . . n,
as in Claim 5. Since for each cell in R there are (p− 1) + (q − 1) = n− 1 other
cells in R which are in the same row or in the same column and there are n
symbols, all the cells in R can be filled to yield a partial Latin square L. We
have p+q−n = 1 and each symbol appears at least twice in R. By Theorem 3.1,
L can be completed to a Latin square L′. Since each of the symbols 1, . . . , n
appears in a blue cell and in a red cell of R, all the symbol diagonals of L′ are
balanced. This completes the proof of Theorem 1.2.

Since any set of 2n− 1 cells contains a proper subset of size n we have the
following corollary:

Corollary 3.4. Let M be a 2-colored n × n array with n ≥ 7. If each color

appears in at least 2n − 1 cells, then M can be partitioned into n balanced

diagonals.

The results in this paper originated from questions on edge colorings of the
complete bipartite graphKn,n. Thus, we formulate Corollary 3.4 in these terms.

Definition 3.5. Let f : E(Kn,n) → {1, 2} be a coloring. A matching in P ⊂
E(Kn,n) is called balanced if f−1(i) ∩ P 6= ∅ for i = 1, 2.

Theorem 3.6. Let n ≥ 7 and let f : E(Kn,n) → {1, 2} be a coloring. If

f−1(i) ≥ 2n − 1 for i = 1, 2, then there exists a partition of E(Kn,n) into n
disjoint balanced matchings.
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