BIPARTITIONS OF HIGHLY CONNECTED TOURNAMENTS

JAEHOON KIM, DANIELA KÜHN, DERYK OSTHUS

Abstract

We show that if T is a strongly $10^{9} k^{6} \log (2 k)$-connected tournament, there exists a partition A, B of $V(T)$ such that each of $T[A], T[B]$ and $T[A, B]$ is strongly k-connected. This provides tournament analogues of two partition conjectures of Thomassen regarding highly connected graphs.

1. Introduction

1.1. Partitions of highly connected tournaments. The study of graph partitions where the resulting subgraphs inherit the properties of the original graph has a long history with some surprises and numerous open problems, see e.g. the survey [7]. For example, a classical result of Hajnal [1] and Thomassen [9] implies that for every k there exists an integer $f(k)$ such that every $f(k)$-connected graph has a vertex partition into sets A and B so that both A and B induce k-connected graphs. A related conjecture of Thomassen [12] states that for every k there is an $f(k)$ such that every $f(k)$-connected graph G has a bipartition A, B so that the spanning bipartite graph $G[A, B]$ is k-connected. It is not hard to show that one cannot achieve both the above properties simultaneously in a highly connected graph. On the other hand, our main result states that for tournaments, we can find a single partition which achieves both the above properties. Below we denote by $T[A, B]$ the bipartite subdigraph of T which consists of all edges between A and B but no others.

Theorem 1.1. Let T be a tournament and $k \in \mathbb{N}$. If T is strongly $10^{9} k^{6} \log (2 k)$-connected, there exists a partition V_{1}, V_{2} of $V(T)$ such that each of $T\left[V_{1}\right], T\left[V_{2}\right]$ and $T\left[V_{1}, V_{2}\right]$ is strongly k-connected.

We have made no attempt to optimize the bound on the connectivity in Theorem 1.1. (It would be straightforward to obtain minor improvements at the expense of more careful calculations.) On the other hand, it would be interesting to obtain the correct order of magnitude for the connectivity bound.

Kühn, Osthus and Townsend [4] earlier proved the weaker result that every strongly $10^{8} k^{6} \log (4 k)$ connected tournament T has a vertex partition V_{1}, V_{2} such that $T\left[V_{1}\right]$ and $T\left[V_{2}\right]$ are both strongly k-connected (with some control over the sizes of V_{1} and V_{2}). This proved a conjecture of Thomassen. 4 raised the question whether this can be extended to digraphs.

As described later, our proof of Theorem 1.1 develops ideas in 4. These in turn are based on the concept of robust linkage structures which were introduced in [2] to prove a conjecture of Thomassen on edge-disjoint Hamilton cycles in highly connected tournaments. Further (asymptotically optimal) results leading on from these approaches were obtained by Pokrovskiy [5, 6].

[^0]1.2. Subdivisions and linkages. The famous Lovász path removal conjecture states that for every $k \in \mathbb{N}$ there exists $g(k) \in \mathbb{N}$ such that for every pair x, y of vertices in a $g(k)$-connected graph G we can find an induced path P joining x and y in G for which $G \backslash V(P)$ is k-connected. In [11, Thomassen proved a tournament version of this conjecture. Here, we generalize his argument to observe that highly connected tournaments contain a non-separating subdivision of any given digraph H (with prescribed branch vertices). The case when $d=2$ and $m=1$ corresponds to the result in [11].

Theorem 1.2. Let $k, d, m \in \mathbb{N}$. Suppose that T is a strongly $(k+m(d+2))$-connected tournament, that D is a set of d vertices in T, that H is a digraph on d vertices and m edges and that ϕ is a bijection from $V(H)$ to D. Then T contains a subdivision H^{*} of H such that
(i) for each $h \in V(H)$ the branch vertex of H^{*} corresponding to h is $\phi(h)$,
(ii) $T \backslash V\left(H^{*}\right)$ is strongly k-connected,
(iii) for every edge e of H, the path P_{e} of H^{*} corresponding to e is backwards-transitive.

Here a directed path $P=x_{1} \ldots x_{t}$ in a tournament T is backwards-transitive if $x_{i} x_{j}$ is an edge of T whenever $i \geq j+2$. The graph version of Theorem 1.2 is still open and would follow from the following beautiful conjecture of Thomassen [10].

Conjecture 1.3. For every $k \in \mathbb{N}$ there exists $f(k) \in \mathbb{N}$ such that if G is a $f(k)$-connected graph and $M \subseteq V(G)$ consists of k vertices then there exists a partition V_{1}, V_{2} of $V(G)$ such that $M \subseteq V_{1}$, both $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are k-connected, and each vertex in V_{1} has at least k neighbours in V_{2}.

The case $|M|=2$ would already imply the path removal conjecture. The case $M=\emptyset$ was proved in [3]. It implies the existence of non-separating subdivisions (without prescribed branch vertices) in highly connected graphs. Clearly, Theorem 1.1 implies a tournament version of Conjecture 1.3 .

The next theorem guarantees a spanning linkage in a highly connected tournament. It was proved by Thomassen [11] with a super-exponential bound on the connectivity. He asked whether a linear bound suffices. Here we reduce the bound to a polynomial one. Pokrovskiy [5] showed that a linear bound suffices to guarantee a linkage if we do not require it to be spanning.

Theorem 1.4. Let $k \in \mathbb{N}$. Suppose that T is a strongly $\left(k^{2}+3 k\right)$-connected tournament and that $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}$ are vertices in T such that $x_{i} \neq y_{i}$ for all $i \in[k]$ and all the pairs $\left(x_{i}, y_{i}\right)$ are distinct. Then T contains pairwise internally disjoint paths P_{i} from x_{i} to y_{i} such that $\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\} \cap V\left(P_{i}\right)=\left\{x_{i}, y_{i}\right\}$ and $V(T)=\bigcup_{i=1}^{k} V\left(P_{i}\right)$.

Both Theorem 1.2 and 1.4 can be deduced from Theorem 1.1 (but with weaker bounds). Instead, in Section 4 we adapt the argument from [11 to obtain a short direct proof of both these results.

2. Notation and tools

Given $k \in \mathbb{N}$, we let $[k]:=\{1, \ldots, k\},[k, k+\ell]:=\{k, \ldots, k+\ell\}$ and $\log k:=\log _{2} k$. We write $V(G)$ and $E(G)$ for the set of vertices and the set of edges in a digraph G. We let $|G|:=|V(G)|$. If $u, v \in V(G)$ we write $u v$ for the directed edge from u to v. We write $d_{G}^{-}(v)$ and $d_{G}^{+}(v)$ for the in-degree and the out-degree of a vertex v in G. We write $\delta^{-}(G)$ and $\delta^{+}(G)$ for the minimum in-degree and the minimum out-degree of G and let $\delta^{0}(G):=\min \left\{\delta^{-}(G), \delta^{+}(G)\right\}$. A set $A \subseteq V(G)$ in-dominates a set $B \subseteq V(G)$ if for every vertex $b \in B$ there exists a vertex $a \in A$
such that $b a \in E(G)$. Similarly, we say that A out-dominates B if for every vertex $b \in B$ there exists a vertex $a \in A$ such that $a b \in E(G)$. We say that a tournament T is transitive if we may enumerate its vertices v_{1}, \ldots, v_{m} such that $v_{i} v_{j} \in E(T)$ if and only if $i<j$. In this case we call v_{1} the source of T and v_{m} the sink of T. When referring to subpaths of tournaments, we always mean that these paths are directed (i.e. consistently oriented). The length of a path is the number of its edges. We say that a path P is odd if its length is odd, and even if its length is even. We say that two paths are disjoint if they are vertex-disjoint. A tournament T is strongly k-connected if $|T|>k$ and for every set $F \subseteq V(T)$ with $|F|<k$ and every ordered pair x, y of vertices in $V(T) \backslash F$ there exists a path from x to y in $T-F$. A tournament T is called k-linked if $|T| \geq 2 k$ and whenever $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}$ are $2 k$ distinct vertices of T there exist disjoint paths P_{1}, \ldots, P_{k} such that P_{i} is a directed path from x_{i} to y_{i} for each $i \in[k]$.

We now collect the tools which we need in our proof of Theorem 1.1. The following proposition is a straightforward consequence of the definition of linkedness.

Proposition 2.1. Let $k \in \mathbb{N}$. Then a tournament T is k-linked if and only if $|T| \geq 2 k$ and whenever $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$ are ordered pairs of (not necessarily distinct) vertices of T, there exist distinct internally disjoint paths P_{1}, \ldots, P_{k} such that for all $i \in[k]$ we have that P_{i} is a directed path from x_{i} to y_{i} and that $\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\} \cap V\left(P_{i}\right)=\left\{x_{i}, y_{i}\right\}$.

We will also use the following bound from [5] on the connectivity which forces a tournament to be highly linked.

Theorem 2.2. For each $k \in \mathbb{N}$ every strongly $452 k$-connected tournament is k-linked.
The following two lemmas guarantee that every tournament contains almost out-dominating and almost in-dominating sets which are not too large. (A similar observation was also used in [2], see Lemmas 8.3 and 8.4.)

Lemma 2.3. Let T be a tournament, let $v \in V(T)$ and $c \in \mathbb{N}$ with $c \geq 2$. Suppose that $d_{T}^{-}(v) \geq 2^{c-1}$. Then there exist disjoint sets $A, E \subseteq V(T)$ and a vertex $a \in A$ such that the following properties hold:
(i) $2 \leq|A| \leq c$ and $T[A]$ is a transitive tournament with source a and sink v,
(ii) $A \backslash\{a\}$ out-dominates $V(T) \backslash(A \cup E)$,
(iii) $|E| \leq(1 / 2)^{c-2} d_{T}^{-}(v)$.

Proof. Let $v_{1}:=v$. Roughly speaking, we will find A by choosing vertices v_{1}, \ldots, v_{i} such that the size of their common in-neighbourhood (i.e. the intersection of their individual inneighbourhoods) is minimised at each step. More precisely, suppose inductively that for some $1 \leq i<c$ we have already found a set $A_{i}=\left\{v_{1}, \ldots, v_{i}\right\}$ and a set W_{i} such that the following holds:
(a) $T\left[A_{i}\right]$ is a transitive tournament with $\operatorname{sink} v_{1}$;
(b) $W_{i}=\emptyset$ or $W_{i}=\{a\}$ for some vertex a. Moreover, if $W_{i}=\{a\}$ then $E_{i} \cup A_{i} \subseteq N^{+}(a)$, where $E_{i}:=\bigcap_{j=1}^{i} N^{-}\left(v_{j}\right) \backslash W_{i}$.
(c) $\left|E_{i}\right| \leq \frac{1}{2^{i-1}} d^{-}(v)$. Moreover, $\left|E_{i}\right|>0$ if $W_{i}=\emptyset$.

Note that (a)-(c) hold for $i=1$ if we let $A_{1}:=\left\{v_{1}\right\}$ and $W_{1}=\emptyset$.
We first consider the case that $\left|E_{i}\right| \leq \frac{1}{2^{c-2}} d^{-}(v)$. If $W_{i}=\emptyset$, choose any vertex $a \in E_{i}$. Else let a be the vertex in W_{i}. In both cases let $A:=A_{i} \cup\{a\}$ and $E:=E_{i} \backslash\{a\}$. Then A and E satisfy (i)-(iii).

So suppose next that $\left|E_{i}\right|>\frac{1}{2^{c-2}} d^{-}(v)$. (Note that in particular, this means that $\left|E_{i}\right| \geq 2$.) By averaging, it follows that E_{i} must contain a vertex x of in-degree at most $\left|E_{i}\right| / 2$ in $T\left[E_{i}\right]$. If the in-degree of x in $T\left[E_{i}\right]$ is nonzero or $W_{i} \neq \emptyset$, let $v_{i+1}:=x$. Else let v_{i+1} be a vertex of in-degree at most $\left|E_{i} \backslash\{x\}\right| / 2$ in $T\left[E_{i} \backslash\{x\}\right]$, and let $W_{i+1}:=\{x\}$ (note that we can find such a v_{i+1} as $\left.\left|E_{i}\right| \geq 2\right)$. Now let $A_{i+1}:=\left\{v_{1}, \ldots, v_{i+1}\right\}$ and let $E_{i+1}:=\left(E_{i} \cap N^{-}\left(v_{i+1}\right)\right) \backslash W_{i+1}$. Then $T\left[A_{i+1}\right]$ is a transitive tournament with $\operatorname{sink} v_{1}$ and

$$
\left|E_{i+1}\right| \leq \frac{1}{2}\left|E_{i}\right| \leq \frac{1}{2^{i}} d^{-}(v) .
$$

So we have shown that (a)-(c) hold with $i+1$ playing the role of i. By repeating this construction, will eventually find A and E satisfying (i)-(iii). (Indeed, note that we must be in the first case for some $i<c$, in particular this implies that $|A| \leq c$.)

The next lemma follows immediately from Lemma 2.3 by reversing the orientations of all edges.

Lemma 2.4. Let T be a tournament, let $v \in V(T)$ and $c \in \mathbb{N}$ with $c \geq 2$. Suppose that $d_{T}^{+}(v) \geq 2^{c-1}$. Then there exist disjoint sets $B, E \subseteq V(T)$ and a vertex $b \in B$ such that the following properties hold:
(i) $2 \leq|B| \leq c$ and $T[B]$ is a transitive tournament with sink b and source v,
(ii) $B \backslash\{b\}$ in-dominates $V(T) \backslash(B \cup E)$,
(iii) $|E| \leq(1 / 2)^{c-2} d_{T}^{+}(v)$.

We will also need the following observation, which guarantees a small set Z of vertices in a tournament such that every vertex outside Z has many out- and in-neighbours in Z.

Proposition 2.5. Let $k, n \in \mathbb{N}$ and let T be a tournament on $n \geq 4$ vertices. Then there is a set $Z \subseteq V(T)$ of size $|Z| \leq 3 k \log n$ such that each vertex in $V(T) \backslash Z$ has at least k out-neighbours and at least k in-neighbours in Z.
Proof. We may assume that $n \geq 3 k \log n$. We will use the fact that every tournament on n vertices contains an in-dominating set of size at most $c:=\lceil\log n\rceil \leq(3 \log n) / 2$. (This can be proved by choosing the vertices x_{1}, x_{2}, \ldots in the in-dominating set one by one, similarly as in the proof of Lemma 2.3: at the i th step we let x_{i} be a vertex with the smallest out-degree in $T\left[\bigcap_{j<i} N^{+}\left(x_{j}\right)\right]$.) Choose an in-dominating set V_{1} in T of size at most c. Now consider the tournament $T-V_{1}$. Choose an in-dominating set V_{2} in $T-V_{1}$ with size at most c. Continue in this way to obtain disjoint sets V_{1}, \ldots, V_{k}. Proceed similarly to obtain disjoint sets U_{1}, \ldots, U_{k}, each of size at most c, such that each U_{i} is an out-dominating set in $T-\left(U_{1} \cup \cdots \cup U_{i-1}\right)$. We can take $Z:=V_{1} \cup \cdots \cup V_{k} \cup U_{1} \cdots \cup U_{k}$.

3. Proof of Theorem 1.1

Let $X:=\left\{x_{1}, x_{2}, \ldots, x_{6 k}\right\} \subseteq V(T)$ consist of $6 k$ vertices whose in-degree in T is as small as possible, and let $Y:=\left\{y_{1}, y_{2}, \ldots, y_{6 k}\right\}$ be a set of $6 k$ vertices in $V(T) \backslash X$ whose out-degree in T is as small as possible. Define

$$
\hat{\delta}^{-}(T):=\min _{v \in V(T) \backslash X} d_{T}^{-}(v) \quad \text { and } \quad \hat{\delta}^{+}(T):=\min _{v \in V(T) \backslash Y} d_{T}^{+}(v) \text {. }
$$

Let $c:=\left\lceil\log \left(120 k^{2}\right)\right\rceil+2 \leq 9 k$. Apply Lemmas 2.3 and 2.4 with parameter c repeatedly (removing the dominating sets each time) to obtain disjoint sets of vertices $A_{1}, A_{2}, \ldots, A_{6 k}$,
$B_{1}, B_{2}, \ldots, B_{6 k}$ and sets of vertices $E_{A_{1}}, \ldots, E_{B_{6 k}}$ satisfying the following properties for all $i \in[6 k]$, where we write $D:=\bigcup_{i=1}^{6 k}\left(A_{i} \cup B_{i}\right)$,
(D1) $2 \leq\left|A_{i}\right| \leq c$ and $T\left[A_{i}\right]$ is a transitive tournament with $\operatorname{sink} x_{i}$ and source a_{i},
(D2) $2 \leq\left|B_{i}\right| \leq c$ and $T\left[B_{i}\right]$ is a transitive tournament with source y_{i} and sink b_{i},
(D3) $A_{i} \backslash\left\{a_{i}\right\}$ out-dominates $V(T) \backslash\left(D \cup E_{A_{i}}\right)$ in T,
(D4) $B_{i} \backslash\left\{b_{i}\right\}$ in-dominates $V(T) \backslash\left(D \cup E_{B_{i}}\right)$ in T,
(D5) $\left|E_{A_{i}}\right| \leq(1 / 2)^{c-2} \hat{\delta}^{-}(T)$,
(D6) $\left|E_{B_{i}}\right| \leq(1 / 2)^{c-2} \hat{\delta}^{+}(T)$.
Let

$$
E_{A}:=\bigcup_{i \in[6 k]} E_{A_{i}}, \quad E_{B}:=\bigcup_{i \in[6 k]} E_{B_{i}} \quad \text { and } \quad E:=E_{A} \cup E_{B} .
$$

Note that

$$
\begin{equation*}
\left|E_{A}\right| \leq 6 k\left(\frac{1}{2}\right)^{c-2} \hat{\delta}^{-}(T) \leq \frac{\hat{\delta}^{-}(T)}{20 k} \quad \text { and } \quad\left|E_{B}\right| \leq \frac{\hat{\delta}^{+}(T)}{20 k} \tag{3.1}
\end{equation*}
$$

by our choice of c. Moreover, we may assume that $\left|E_{A}\right| \leq\left|E_{B}\right|$. (The case $\left|E_{A}\right|>\left|E_{B}\right|$ follows by a symmetric argument.) In particular, this implies that

$$
\begin{equation*}
|E| \leq\left|E_{A}\right|+\left|E_{B}\right| \leq 2\left|E_{B}\right| \leq \frac{\hat{\delta}^{+}(T)}{10 k} \tag{3.2}
\end{equation*}
$$

We will iteratively colour the vertices of T with colours α and β, and at each step V_{α} will consist of all vertices of colour α and V_{β} is defined similarly. At the end of our argument, every vertex of T will be coloured either with α or with β, i.e. V_{α}, V_{β} will form a partition of $V(T)$. Our aim is to colour the vertices in such a way that we can take $V_{1}:=V_{\alpha}$ and $V_{2}:=V_{\beta}$.

We say a path P is alternating if the colour of the vertices on P alternates as we move along P. P is monochromatic if all vertices of P have the same colour.

At each step and for each $\gamma \in\{\alpha, \beta\}$, we call a vertex $v \in V_{\gamma}$ forwards-safe if for any set $F \nexists v$ of at most $k-1$ vertices, there is a directed monochromatic path (possibly of length 0) in $T\left[V_{\gamma} \backslash F\right]$ from v to $V(T) \backslash\left(D \cup E_{B} \cup F\right)$. Similarly, we say that $v \in V_{\gamma}$ is backwards-safe if for any set $F \nexists v$ of at most $k-1$ vertices, there is a directed monochromatic path (possibly of length 0$)$ in $T\left[V_{\gamma} \backslash F\right]$ from $V(T) \backslash\left(D \cup E_{A} \cup F\right)$ to v.

We call a vertex $v \in V_{\gamma}$ alternating-forwards-safe if for any set $F \nexists v$ of at most $k-1$ vertices, there is a directed alternating path (possibly of length 0) in $T-F$ from v to $V(T) \backslash\left(D \cup E_{B} \cup F\right)$. Similarly, we say that $v \in V_{\gamma}$ is alternating-backwards-safe if for any set $F \not \supset v$ of at most $k-1$ vertices, there is a directed alternating path (possibly of length 0) in $T-F$ from $V(T) \backslash(D \cup$ $\left.E_{A} \cup F\right)$ to v.

We say that a vertex v is safe if it is safe in all four respects.
Note that the following properties are satisfied at every step (for each $\{\gamma, \delta\}=\{\alpha, \beta\}$):
(S1) all coloured vertices in $V(T) \backslash(D \cup E)$ are safe,
(S2) all coloured vertices in $V(T) \backslash\left(D \cup E_{B}\right)$ are forwards-safe as well as alternating-forwardssafe and all coloured vertices in $V(T) \backslash\left(D \cup E_{A}\right)$ are backwards-safe as well as alternating-backwards-safe,
(S3) if $v \in V_{\gamma}$ has at least k forwards-safe out-neighbours of colour γ then v itself is forwardssafe, the analogue holds if v has at least k backwards-safe in-neighbours of colour γ,
(S4) if $v \in V_{\gamma}$ has at least k alternating-forwards-safe out-neighbours of colour δ with $\delta \neq \gamma$ then v itself is alternating-forwards-safe, the analogue holds if v has at least k alternating-backwards-safe in-neighbours of colour δ,
(S5) if $v \in V_{\gamma}$ is safe and in the next step we colour some more (previously uncoloured) vertices then v is still safe.
In what follows, by a (partial) colouring of the vertices of T we always mean a colouring with colours α and β in which all the vertices in

$$
\begin{aligned}
D_{1}: & =\bigcup_{i \in[k]}\left(A_{i} \cup B_{i}\right) \cup \bigcup_{i \in[3 k+1,5 k]}\left(A_{i} \backslash\left\{a_{i}\right\}\right) \cup \bigcup_{i \in[3 k+1,4 k] \cup[5 k+1,6 k]}\left(B_{i} \backslash\left\{b_{i}\right\}\right) \\
& \cup\left\{a_{i} \mid i \in[2 k+1,3 k] \cup[5 k+1,6 k]\right\} \cup\left\{b_{i} \mid i \in[2 k+1,3 k] \cup[4 k+1,5 k]\right\}
\end{aligned}
$$

are coloured α, and all the vertices in $D_{2}:=D \backslash D_{1}$ are coloured β.
Claim 0: Suppose that there are paths $P_{1}, \ldots, P_{6 k}$ of T satisfying the following properties:

- for each $i \in[6 k]$ the path P_{i} joins b_{i} to a_{i},
- the paths $P_{1}, \ldots, P_{6 k}$ are disjoint from each other and meet D only in their endvertices.

Suppose that we have coloured all vertices of T such that

- every vertex in $D_{1} \cup V\left(P_{1}\right) \cup \cdots \cup V\left(P_{k}\right)$ is coloured α,
- every vertex in $D_{2} \cup V\left(P_{k+1}\right) \cup \cdots \cup V\left(P_{2 k}\right)$ is coloured β,
- $P_{2 k+1}, \ldots, P_{6 k}$ are alternating,
- every vertex is safe.

Then the sets $V_{1}:=V_{\alpha}$ and $V_{2}:=V_{\beta}$ form a partition of $V(T)$ as required in Theorem 1.1.
Note that the conditions of Claim 0 imply that P_{i} must be an even path for $i \in[2 k+1,4 k]$ and an odd path for $i \in[4 k+1,6 k]$.

To prove Claim 0 , we first show that $T\left[V_{\alpha}\right]$ is strongly k-connected. So consider any set F of at most $k-1$ vertices and any two vertices $x, y \in V_{\alpha} \backslash F$. We need to check that $T\left[V_{\alpha} \backslash F\right]$ contains a path from x to y. Since x is forwards-safe there exists a path Q_{x} in $T\left[V_{\alpha} \backslash F\right]$ from x to some vertex $x^{\prime} \in V_{\alpha} \backslash\left(D \cup E_{B} \cup F\right)$. Similarly, since y is backwards-safe there exists a path Q_{y} in $T\left[V_{\alpha} \backslash F\right]$ from some vertex $y^{\prime} \in V_{\alpha} \backslash\left(D \cup E_{A} \cup F\right)$ to y. Let $i \in[k]$ be such that F avoids $A_{i} \cup V\left(P_{i}\right) \cup B_{i}$. Since $x^{\prime} \notin D \cup E_{B}$, (D4) implies that x^{\prime} sends an edge to B_{i}. Similarly, since $y^{\prime} \notin D \cup E_{A},(\mathrm{D} 3)$ implies that y^{\prime} receives an edge from A_{i}. Altogether this implies that $T\left[V\left(Q_{x}\right) \cup V\left(Q_{y}\right) \cup A_{i} \cup V\left(P_{i}\right) \cup B_{i}\right] \subseteq T\left[V_{\alpha} \backslash F\right]$ contains path from x to y, as desired.

A similar argument shows that V_{β} is strongly k-connected too. It remains to show that $T\left[V_{\alpha}, V_{\beta}\right]$ is stongly k-connected. Consider any set F of at most $k-1$ vertices and any two vertices $x, y \in V(T) \backslash F$. We will show that there is an alternating path between x and y avoiding F. Since x is alternating-forwards-safe there exists an alternating path Q_{x} in $T\left[V_{\alpha}, V_{\beta}\right]-F$ from x to some vertex $x^{\prime} \in V(T) \backslash\left(D \cup E_{B} \cup F\right)$. Similarly, since y is backwards-safe there exists a path Q_{y} in $T\left[V_{\alpha}, V_{\beta}\right]-F$ from some vertex $y^{\prime} \in V[T] \backslash\left(D \cup E_{A} \cup F\right)$ to y. We now choose an index i as follows:

- If $x^{\prime}, y^{\prime} \in V_{\alpha}$, let $i \in[2 k+1,3 k]$ be such that F avoids $A_{i} \cup V\left(P_{i}\right) \cup B_{i}$.
- If $x^{\prime}, y^{\prime} \in V_{\beta}$, let $i \in[3 k+1,4 k]$ be such that F avoids $A_{i} \cup V\left(P_{i}\right) \cup B_{i}$.
- If $x^{\prime} \in V_{\alpha}$ and $y^{\prime} \in V_{\beta}$, let $i \in[4 k+1,5 k]$ be such that F avoids $A_{i} \cup V\left(P_{i}\right) \cup B_{i}$.
- If $x^{\prime} \in V_{\beta}$ and $y^{\prime} \in V_{\alpha}$, let $i \in[5 k+1,6 k]$ be such that F avoids $A_{i} \cup V\left(P_{i}\right) \cup B_{i}$.

Since $x^{\prime} \notin D \cup E_{B}$, (D4) implies that x^{\prime} sends an edge to $B_{i} \backslash\left\{b_{i}\right\}$. Similarly, since $y^{\prime} \notin$ $D \cup E_{A}$, (D3) implies that y^{\prime} receives an edge from $A_{i} \backslash\left\{a_{i}\right\}$. Altogether this implies that
$T\left[V\left(Q_{x}\right) \cup V\left(Q_{y}\right) \cup A_{i} \cup V\left(P_{i}\right) \cup B_{i}\right] \subseteq T-F$ contains an alternating path from x to y, as desired. This completes the proof of Claim 0.
Claim 1: Consider a partial colouring of $V(T)$ and let C denote the set of previously coloured vertices. (So $D \subseteq C$.) Let $Z \subseteq V(T) \backslash(X \cup Y)$ and $N \subseteq V(T) \backslash Z$ and suppose that $9 k^{2}|Z|+$ $|C \cup N| \leq 5 \cdot 10^{8} k^{6} \log (2 k)$. Then for every colouring of the vertices in $Z \backslash C$ there is a set $Z^{\prime} \subseteq V(T) \backslash(Z \cup N \cup C)$ and a colouring of the vertices in Z^{\prime} such that every vertex in $Z \cup Z^{\prime}$ is safe and $\left|Z \cup Z^{\prime}\right| \leq 9 k^{2}|Z|$.

To prove Claim 1, note that the strong $10^{9} k^{6} \log (2 k)$-connectivity of T implies that $\delta^{0}(T) \geq$ $10^{9} k^{6} \log (2 k)$. Hence

$$
\begin{equation*}
\hat{\delta}^{-}(T)-5 k\left|E_{A}\right| \stackrel{(3.1)}{\geq} \frac{\hat{\delta}^{-}(T)}{2} \geq \frac{\delta^{0}(T)}{2} \geq 5 \cdot 10^{8} k^{6} \log (2 k), \tag{3.3}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\hat{\delta}^{+}(T)-5 k|E| \stackrel{(3.2)}{\geq} \frac{\hat{\delta}^{+}(T)}{2} \geq 5 \cdot 10^{8} k^{6} \log (2 k) \tag{3.4}
\end{equation*}
$$

Consider any colouring of $Z \backslash C$. For each vertex $z \in Z$ in turn we greedily choose $2 k$ uncoloured in-neighbours outside $N \cup E_{A}$, and colour k of them α and the remaining k by β. (We do not modify C in this process.) To see that we can choose all these vertices to be distinct from each other, note that the total number of vertices we wish to choose is $2 k|Z|$ and

$$
|C \cup N \cup Z|+2 k|Z| \leq 5 \cdot 10^{8} k^{6} \log (2 k) \stackrel{3.3 \mid}{\leq} \hat{\delta}^{-}(T)-\left|E_{A}\right| .
$$

For each vertex in Z as well as for each of the $2 k|Z|$ vertices that we coloured in the previous step in turn, we greedily choose $2 k$ uncoloured out-neighbours outside $N \cup E$, and colour k of them by α and the remaining k by β. To see that we can choose all these vertices to be distinct from each other, note that the total number of vertices we wish to choose is $2 k(1+2 k)|Z|$ and

$$
|C \cup N \cup Z|+2 k|Z|+2 k(1+2 k)|Z| \leq|C \cup N|+9 k^{2}|Z| \leq 5 \cdot 10^{8} k^{6} \log (2 k) \stackrel{\mid 3.4}{\leq} \hat{\delta}^{-}(T)-|E| .
$$

Let Z^{\prime} be the set of vertices outside $C \cup Z$ that we coloured. Then $Z^{\prime} \cap N=\emptyset$. Moreover, using (S1)-(S4) it is easy to check that every vertex in $Z \cup Z^{\prime}$ is safe. This completes the proof of Claim 1.

Recall that we have already coloured all the vertices in D_{1} by α and all the vertices in D_{2} by β. Step by step, we will now colour further vertices of T. Our final aim is to arrive at a colouring of $V(T)$ which is as described in Claim 0 . The first step is to colour some more vertices in order to achieve that all the coloured vertices are safe. In what follows, when saying that we colour some additional vertices we always mean that these vertices are uncoloured so far.
Claim 2: We can colour some additional vertices of T in such a way that every coloured vertex is safe and the set C_{1} consisting of all vertices coloured so far satisfies $\left|C_{1}\right| \leq 1500 k^{4}$.

To prove Claim 2, for every $v \in\left\{x_{1}, \ldots, x_{6 k}, y_{1}, \ldots, y_{6 k}\right\}$ in turn, we greedily choose $2 k$ uncoloured in-neighbours and $2 k$ uncoloured out-neighbours, all distinct from each other, and colour k of the in-neighbours and k of the out-neighbours by α and the remaining $2 k$ in/outneighbours by β.

Let Z^{*} denote the set of $4 k \cdot 12 k=48 k^{2}$ new vertices we just coloured and let $Z:=Z^{*} \cup(D \backslash$ $(X \cup Y)$). Then $|Z| \leq\left|Z^{*}\right|+|D| \leq 48 k^{2}+c \cdot 12 k \leq 156 k^{2}$. Apply Claim 1 with $N:=\emptyset$ to find a set Z^{\prime} of uncoloured vertices and a colouring of these vertices such that all the vertices in $Z \cup Z^{\prime}$
are safe and $\left|Z \cup Z^{\prime}\right| \leq 9 k^{2} \cdot|Z| \leq 1500 k^{4}$. Our choice of Z^{*} and (S3), (S4) together now imply that the vertices in $X \cup Y$ are safe as well. This completes the proof of Claim 2.

Suppose that P is a path whose endvertices are already coloured, but whose internal vertices are still uncoloured. We say that we colour (the internal vertices of) P in an alternating manner consistent with its endvertices if the colouring results in an alternating path. (So for example, if the endvertices of P have the same colour, then P needs to be an even path.)
Claim 3: There are paths $P_{1}, P_{2}, \ldots, P_{6 k}$ of T satisfying the following properties:
(i) for each $i \in[6 k]$, the path P_{i} joins b_{i} to a_{i},
(ii) the paths $P_{1}, \ldots, P_{6 k}$ are disjoint from each other and meet C_{1} only in their endvertices,
(iii) we can colour the internal vertices of P_{1}, \ldots, P_{k} by α, the internal vertices of $P_{k+1}, \ldots, P_{2 k}$ by β and the internal vertices of $P_{2 k+1}, \ldots, P_{6 k}$ in an alternating manner consistent with their endvertices and can colour some additional vertices such that the set C_{4} of all coloured vertices satisfies the following properties:
(a) all vertices in C_{4} are safe,
(b) there is a set $C^{0} \subseteq C_{4}$ such that the number of coloured vertices outside C^{0} is at most $3 \cdot 10^{7} k^{6} \log (2 k)$,
(c) every vertex outside C_{4} which has an in-neighbour in C^{0} has at least k in-neighbours of each colour, and every vertex outside C_{4} which has an out-neighbour in C^{0} has at least k out-neighbours of each colour.
We will prove Claim 3 via a sequence of subclaims. For $i \in[6 k]$ we define an i-path to be a directed path from the sink b_{i} of B_{i} to the source a_{i} of A_{i} whose internal vertices lie outside C_{1}. Ideally, we would like to find disjoint i-paths P_{i} (one for each $i \in[6 k]$) such that the following properties hold:
(1) we can colour all the internal vertices of P_{1}, \ldots, P_{k} by α, the internal vertices of $P_{k+1}, \ldots, P_{2 k}$ by β and the internal vertices of $P_{2 k+1}, \ldots, P_{6 k}$ in an alternating manner consistent with their endvertices,
(2) by colouring some additional vertices we can achieve that all coloured vertices are safe. For each $i \in[6 k]$ we will first try to find a short i-path P_{i} such that all these i-paths are disjoint and such that for each $i \in[2 k+1,6 k]$ the length of the path P_{i} has the correct parity in order to ensure that the internal vertices of P_{i} can be coloured in an alternating manner consistent with the endvertices of P_{i} (so P_{i} needs to be even for $i \in[2 k+1,4 k]$ and odd for $i \in[4 k+1,6 k]$). We will then colour the vertices on these short i-paths as well as some additional vertices such that (1) and (2) are satisfied for the set $I_{\text {short }}$ of all indices i for which we have been able to choose a short i-path (see Claim 3.1). This provides some of the paths required in Claim 3. To find the remaining paths, for all $i \notin I_{\text {short }}$ we will choose $10^{5} k^{4} \log (2 k) i$-paths $Q_{i, 1}, \ldots, Q_{i, 10^{5} k^{4} \log (2 k)}$ such that all these paths are internally disjoint from each other. For each $i \notin I_{\text {short }}$ with $i \in[2 k]$ there will be three distinct indices $j_{i, 1}, j_{i, 2}, j_{i, 3} \in\left[10^{5} k^{4} \log (2 k)\right]$ such that the path P_{i} required in Claim 3 will consist of an initial segment of $Q_{i, j_{i, 1}}$, a middle segment of $Q_{i, j_{i, 2}}$, a final segment of $Q_{i, j_{i, 3}}$ as well as two edges joining these three segments. Similarly, for each $i \notin I_{\text {short }}$ with $i \in[2 k+1,6 k]$ the path P_{i} required in Claim 3 will either be one of the $Q_{i, j}$ or will consist of an initial segment of $Q_{i, j_{i, 1}}$ and a final segment of $Q_{i, j_{i, 2}}$ as well as an edge joining these two segments.

We will now choose the short i-paths. Let $\mathcal{P}_{\text {short }}^{\text {correct }}$ be a collection of i-paths satisfying the following properties:
(P1) for each $i \in[6 k], \mathcal{P}_{\text {short }}^{\text {correct }}$ contains at most one i-path,
(P2) all the paths in $\mathcal{P}_{\text {short }}^{\text {correct }}$ are disjoint from each other,
(P3) each path has length at most $10 k+10$,
(P4) for each $i \in[2 k+1,6 k]$ for which $\mathcal{P}_{\text {short }}^{\text {correct }}$ contains an i-path, this path P_{i} has the correct parity, meaning that P_{i} is even if $i \in[2 k+1,4 k]$ and odd if $i \in[4 k+1,6 k]$,
(P5) subject to the above conditions, $\left|\mathcal{P}_{\text {short }}^{\text {correct }}\right|$ is as large as possible.
Let $I_{\text {short }}^{\text {correct }}$ be the set of all those indices $i \in[6 k]$ for which $\mathcal{P}_{\text {short }}^{\text {correct }}$ contains an i-path, and let P_{i} denote this i-path. Let $V_{\text {short }}^{\text {correct }}$ be the set of all internal vertices of the P_{i} for all $i \in I_{\text {short }}^{\text {correct }}$. Moreover, set $I_{\text {long }}:=[6 k] \backslash I_{\text {short }}^{\text {correct }}$. Recall that the definition of an i-path implies that all the vertices in $V_{\text {short }}^{\text {correct }}$ are uncoloured so far (i.e. $V_{\text {short }}^{\text {corect }} \cap C_{1}=\emptyset$).
Claim 3.1: We may colour all vertices in $V_{\text {short }}^{\text {correct }}$ as well as some additional vertices of T such that the following properties hold:
(i) for each $i \in I_{\text {short }}^{\text {correct }}$, all the vertices on P_{i} are coloured α if $i \in[k]$ and β if $i \in[k+1,2 k]$,
(ii) for each $i \in I_{\text {short }}^{\text {correct }} \backslash[2 k], P_{i}$ is coloured in an alternating manner consistent with its endvertices,
(iii) the set C_{2} consisting of all vertices coloured so far has size $\left|C_{2}\right| \leq 4000 k^{4}$ and all vertices in C_{2} are safe,
(iv) for each $i \in I_{\text {long }}$, any i-path whose internal vertices lie in $V(T) \backslash C_{2}$ is either $b_{i} a_{i}$ or has length at least $10 k+10$.

To prove Claim 3.1, consider any $i \in I_{\text {short }}^{\text {correct }}$ and colour all internal vertices of P_{i} by α if $i \in[k]$, by β if $i \in[k+1,2 k]$, and in an alternating manner consistent with the endvertices of P_{i} if $i \in[2 k+1,6 k]$ (this is possible by (P4)). Note that $\left|V_{\text {short }}^{\text {correct }}\right| \leq 6 k(10 k+9) \leq 120 k^{2}$. Together with Claim 1 (applied with $N:=\emptyset$ and $Z:=V_{\text {short }}^{\text {correct }}$) and Claim 2 this implies Claim 3.1(i)-(iii), with room to spare in (iii). Indeed, the set C_{2}^{\prime} of vertices coloured so far has size $\left|C_{2}^{\prime}\right| \leq 3000 k^{4}$.

We will now colour some additional vertices to ensure that (iv) holds too. Consider any $i \in I_{\text {long }}$. If there exists an i-path P whose internal vertices lie in $V(T) \backslash C_{2}^{\prime}$ and whose length is at most $10 k+9$, then P must have incorrect parity, i.e. P is odd if $i \in[2 k+1,4 k]$ and even if $i \in[4 k+1,6 k]$. Note that there cannot be two such i-paths of length at least two which are internally disjoint from each other. Indeed, if $P=v_{1} \ldots v_{a}$ and $P^{\prime}=v_{1}^{\prime} \ldots v_{a^{\prime}}^{\prime}$ are two such i paths which are internally disjoint, then we may assume that $v_{2} v_{2}^{\prime} \in E(T)$ and so $v_{1} v_{2} v_{2}^{\prime} v_{3}^{\prime} \ldots v_{a^{\prime}}^{\prime}$ is an i-path of length at most $10 k+10$ with the correct parity which is disjoint from all the other paths in $\mathcal{P}_{\text {short }}^{\text {correct }}$, a contradiction to (P5).

Let $\mathcal{P}_{\text {short }}^{\text {incorrect }}$ be a collection of i-paths whose internal vertices lie in $V(T) \backslash C_{2}^{\prime}$ and whose length is at least two and at most $10 k+9$, such that all these paths are disjoint from each other and, subject to these properties, such that $\left|\mathcal{P}_{\text {short }}^{\text {incorrect }}\right|$ is as large as possible. Let $V_{\text {short }}^{\text {incorrect }}$ be the set of all internal vertices on these paths. Thus $\left|V_{\text {short }}^{\text {incorrect }}\right| \leq 4 k \cdot(10 k+8) \leq 100 k^{2}$. Colour all vertices in $V_{\text {short }}^{\text {incorect }}$ with α and apply Claim 1 again (with $N:=\emptyset$ and $Z:=V_{\text {short }}^{\text {incorrect }}$). Then the set C_{2} of all vertices coloured so far satisfies $\left|C_{2}\right| \leq 3000 k^{2}+9 k^{2} \cdot 100 k^{2} \leq 4000 k^{4}$, so (iii) still holds. Moreover, now (iv) holds too. This completes the proof of Claim 3.1.

Claim 3.1(iii) implies that all uncoloured vertices together with the a_{i} and b_{i} for all $i \in I_{\text {long }}$ induce a strongly $\left(7 \cdot 452 \cdot 10^{5} k^{5} \log (2 k)\right.$)-connected subtournament T^{\prime} of T (with some room to spare). Theorem 2.2 implies that T^{\prime} is $7 \cdot 10^{5} k^{5} \log (2 k)$-linked. Together with Proposition 2.1 this implies that for each $i \in I_{\text {long }}$ we can find $10^{5} k^{4} \log (2 k) i$-paths in T^{\prime} such that all these $10^{5} k^{4} \log (2 k)\left|I_{\text {long }}\right|$ paths have length at least two and are internally disjoint from each other and such that the internal vertices on all these paths lie outside C_{2}. We choose this collection of $10^{5} k^{4} \log (2 k)\left|I_{\text {long }}\right|$ paths such that the set $V_{\text {long }}$ of all internal vertices on these paths is as
small as possible. For all $i \in I_{\text {long }}$ and all $j \in\left[10^{5} k^{4} \log (2 k)\right]$, let $Q_{i, j}$ denote the j th i-path we chose. Write $Q_{i, j}=q_{i, j}^{0} q_{i, j}^{1} \ldots q_{i, j}^{\left|Q_{i, j}\right|}$, so that $q_{i, j}^{0}$ is b_{i} and $q_{i, j}^{\left|Q_{i, j}\right|}$ is a_{i}. Claim 3.1(iv) implies that each $Q_{i, j}$ must have length at least $10 k+10$. Moreover, the minimality of $\left|V_{\text {long }}\right|$ implies the following:
(Q1) the interior of each $Q_{i, j}$ induces a backwards-transitive path,
(Q2) if $v \in V(T) \backslash\left(C_{2} \cup V_{\text {long }}\right)$ is an out-neighbour of $q_{i, j}^{s}$, then v is also an out-neighbour of $q_{i, j}^{s^{\prime}}$ for all $s^{\prime} \geq s+3$,
(Q3) if $v \in V(T) \backslash\left(C_{2} \cup V_{\text {long }}\right)$ is an in-neighbour of $q_{i, j}^{s}$, then v is also an in-neighbour of $q_{i, j}^{s^{\prime}}$ for all $s^{\prime} \leq s-3$.
Let $\operatorname{int}\left(Q_{i, j}\right):=q_{i, j}^{1} \ldots q_{i, j}^{\left|Q_{i, j}\right|-1}$ denote the interior of $Q_{i, j}$. Let $Q_{i, j}^{1}, \ldots, Q_{i, j}^{9}$ be disjoint segments of $\operatorname{int}\left(Q_{i, j}\right)$ such that $\operatorname{int}\left(Q_{i, j}\right)=Q_{i, j}^{1} \ldots Q_{i, j}^{9},\left|Q_{i, j}^{1}\right|=\left|Q_{i, j}^{2}\right|=\left|Q_{i, j}^{8}\right|=\left|Q_{i, j}^{9}\right|=k,\left|Q_{i, j}^{3}\right|=$ $\left|Q_{i, j}^{7}\right|=k+2$ and $\left|Q_{i, j}^{4}\right|=\left|Q_{i, j}^{6}\right|=2 k+2$. We let

$$
Q_{i, j}^{0}:=Q_{i, j}^{1} \cup Q_{i, j}^{2} \cup Q_{i, j}^{3} \cup Q_{i, j}^{7} \cup Q_{i, j}^{8} \cup Q_{i, j}^{9}
$$

and write

$$
V_{l o n g}^{0}:=\bigcup_{(i, j) \in I_{\text {long }} \times\left[10^{5} k^{4} \log (2 k)\right]} V\left(Q_{i, j}^{0}\right) \quad \text { and } \quad \bar{V}_{\text {long }}:=\bigcup_{(i, j) \in I_{\text {long }} \times\left[10^{5} k^{4} \log (2 k)\right]} V\left(Q_{i, j}^{0} \cup Q_{i, j}^{4} \cup Q_{i, j}^{6}\right)
$$

Thus $V_{\text {long }}^{0} \subseteq \bar{V}_{\text {long }} \subseteq V_{\text {long }}$ and

$$
\left|V_{\text {long }}^{0}\right| \leq\left|\bar{V}_{\text {long }}\right| \leq(10 k+8) \cdot 6 k \cdot 10^{5} k^{4} \log (2 k) \leq 2 \cdot 10^{7} k^{6} \log (2 k)
$$

Claim 3.2: There exist disjoint index sets $I_{R, \alpha}, I_{R, \beta} \subseteq I_{\text {long }} \times\left[10^{5} k^{4} \log (2 k)\right]$ such that, writing

$$
R_{\alpha}:=\bigcup_{(i, j) \in I_{R, \alpha}} V\left(Q_{i, j}^{0}\right) \quad \text { and } \quad R_{\beta}:=\bigcup_{(i, j) \in I_{R, \beta}} V\left(Q_{i, j}^{0}\right) \text {, }
$$

for each $(i, j) \in I_{\text {long }} \times\left[10^{5} k^{4} \log (2 k)\right]$ every vertex in $V\left(Q_{i, j}^{0}\right) \backslash\left(R_{\alpha} \cup R_{\beta}\right)$ has at least k inneighbours and at least k out-neighbours in each of R_{α} and R_{β}. Also $\left|I_{R, \alpha}\right|,\left|I_{R, \beta}\right| \leq 100 k \log (2 k)$ and $\left|R_{\alpha}\right|,\left|R_{\beta}\right| \leq 1000 k^{2} \log (2 k)$.

To prove Claim 3.2, apply Proposition [2.5 to $T\left[V_{\text {long }}^{0}\right]$ to find a set $Z_{\alpha} \subseteq V_{\text {long }}^{0}$ with $\left|Z_{\alpha}\right| \leq$ $3 k \log \left|V_{\text {long }}^{0}\right| \leq 100 k \log (2 k)$ and such that every vertex in $V_{\text {long }}^{0} \backslash Z_{\alpha}$ has at least k outneighbours and k in-neighbours in Z_{α}. Let $I_{R, \alpha}:=\left\{(i, j): V\left(Q_{i, j}^{0}\right) \cap Z_{\alpha} \neq \emptyset\right\}$ and $I^{\prime}:=$ $\left(I_{\text {long }} \times\left[10^{5} k^{4} \log (2 k)\right]\right) \backslash I_{R, \alpha}$. We now consider $W:=\bigcup_{(i, j) \in I^{\prime}} V\left(Q_{i, j}^{0}\right)$. By Proposition 2.5 applied to $T[W]$, there exists a set $Z_{\beta} \subseteq W$ with $\left|Z_{\beta}\right| \leq 3 k \log |W| \leq 100 k \log (2 k)$ and such that every vertex in $W \backslash Z_{\beta}$ has at least k out-neighbours and in-neighbours in Z_{β}. Let $I_{R, \beta}:=\left\{(i, j) \in I^{\prime}: V\left(Q_{i, j}^{0}\right) \cap Z_{\beta} \neq \emptyset\right\}$.

Let R_{α} and R_{β} be as defined in the statement of Claim 3.2. Then by definition of $I_{R, \alpha}$ and $I_{R, \beta}$, for each $(i, j) \in I_{\text {long }} \times\left[10^{5} k^{4} \log (2 k)\right]$ every vertex in $V\left(Q_{i, j}^{0}\right) \backslash\left(R_{\alpha} \cup R_{\beta}\right)$ has at least k in-neighbours and at least k out-neighbours in each of R_{α} and R_{β}. Also $\left|R_{\alpha}\right|,\left|R_{\beta}\right| \leq$ $(6 k+4) \cdot 100 k \log (2 k) \leq 1000 k^{2} \log (2 k)$. This completes the proof of Claim 3.2.

Let $I_{R}:=I_{R, \alpha} \cup I_{R, \beta}, R:=R_{\alpha} \cup R_{\beta}$ and

$$
R^{4,6}:=\bigcup_{(i, j) \in I_{R}} V\left(Q_{i, j}^{4} \cup Q_{i, j}^{6}\right)
$$

Claim 3.3: We may colour all vertices in $R_{\alpha} \cup R_{\beta} \cup R^{4,6}$ as well as some additional vertices lying outside $\bar{V}_{\text {long }}$ such that
(i) all vertices in R_{α} are coloured α, all vertices in R_{β} are coloured β,
(ii) for each $(i, j) \in I_{R}$ and each $s \in\{4,6\}, Q_{i, j}^{s}$ is an alternating path,
(iii) all coloured vertices are safe,
(iv) the set C_{3} consisting of all vertices coloured so far has size $\left|C_{3}\right| \leq 4 \cdot 10^{4} k^{4} \log (2 k)$.

To prove Claim 3.3, colour the vertices in $R_{\alpha} \cup R_{\beta} \cup R^{4,6}$ such that (i) and (ii) hold. Apply Claim 1 with $C_{2}, R_{\alpha} \cup R_{\beta} \cup R^{4,6}, \bar{V}_{\text {long }} \backslash\left(R_{\alpha} \cup R_{\beta} \cup R^{4,6}\right)$ playing the roles of C, Z, N to obtain a set $Z^{\prime} \subseteq V(T) \backslash\left(\bar{V}_{\text {long }} \cup C_{2}\right)$ and a colouring of the vertices in Z^{\prime} such that every vertex in $R_{\alpha} \cup R_{\beta} \cup R^{4,6} \cup Z^{\prime}$ is safe and

$$
\begin{aligned}
\left|C_{3}\right| & \leq\left|C_{2}\right|+\left|R_{\alpha} \cup R_{\beta} \cup R^{4,6} \cup Z^{\prime}\right| \leq 4000 k^{4}+9 k^{2} \cdot\left(2 \cdot 1000 k^{2} \log (2 k)+(4 k+4) \cdot 200 k \log (2 k)\right) \\
& \leq 4 \cdot 10^{4} k^{4} \log (2 k) .
\end{aligned}
$$

This completes the proof of Claim 3.3.
Claim 3.4: For each $i \in I_{\text {long }}$ there is an i-path P_{i} such that the following properties hold:
(i) P_{i} has no internal vertices in C_{3}, and P_{i} and $P_{i^{\prime}}$ are disjoint whenever $i \neq i^{\prime}$,
(ii) if $i \in I_{\text {long }} \cap[2 k]$, then there exists three distinct indices $j_{i, 1}, j_{i, 2}, j_{i, 3} \in\left[10^{5} k^{4} \log (2 k)\right]$ such that $P_{i}=b_{i} Q_{i, j_{i, 1}}^{1} Q_{i, j_{i, 1}}^{2} q_{i, j_{i, 1}}^{2 k+1} Q_{i, j_{i, 2}}^{3} \ldots Q_{i, j_{i, 2}}^{7} q_{i, j_{i, 3}}^{\left|Q_{i, j_{i, 3}}\right|-2 k-1} Q_{i, j_{i, 3}}^{8} Q_{i, j_{i, 3}}^{9} a_{i}$,
(iii) if $i \in I_{\text {long }} \cap[2 k+1,6 k]$, then either $P_{i}=Q_{i, j_{i}}$ for some $j_{i} \in\left[10^{5} k^{4} \log (2 k)\right]$ or there exist distinct $j_{i, 1}, j_{i, 2} \in\left[10^{5} k^{4} \log (2 k)\right]$ such that $P_{i}=b_{i} Q_{i, j_{i, 1}}^{1} \ldots Q_{i, j_{i, 1}}^{4}{ }_{i, j_{i, 1}}^{5 k+5} Q_{i, j_{i, 2}}^{5} \ldots Q_{i, j_{i, 2}}^{9} a_{i}$,
(iv) P_{i} is even if $i \in I_{\text {long }} \cap[2 k+1,4 k]$ and odd if $i \in I_{\text {long }} \cap[4 k+1,6 k]$.
(Recall that $q_{i, j_{i, 1}}^{2 k+1}$ is the first vertex of $Q_{i, j_{i, 1}}^{3}, q_{i, j_{i, 3}}^{\left|Q_{i, j_{i, 3}}\right|-2 k-1}$ is the last vertex of $Q_{i, j_{i, 3}}^{7}$ and $q_{i, j_{i, 1}}^{5 k+5}$ is the first vertex of $Q_{i, j_{i, 1}}^{5}$.) To prove Claim 3.4, note that since $\left|C_{3}\right| \leq 4 \cdot 10^{4} k^{4} \log (2 k)<$ $10^{5} k^{4} \log (2 k)-5$, for each $i \in I_{\text {long }}$ there are at least five paths $Q_{i, s_{i, 1},}, Q_{i, s_{i, 2}}, Q_{i, s_{i, 3}}, Q_{i, s_{i, 4}}, Q_{i, s_{i, 5}}$ whose internal vertices avoid C_{3}.

Suppose first that $i \in I_{l o n g} \cap[2 k]$. Consider the subtournament T_{i} of T spanned by $q_{i, s_{i, t}}^{\left|Q_{i, s_{i, t}}\right|-2 k-1}$ for $t=1,2,3,4,5 . T_{i}$ contains at least two vertices of out-degree at least two, assume they are $q_{i, s_{i, 1}}^{\left|Q_{i, s_{i, 1}}\right|-2 k-1}, q_{i, s_{i, 2}}^{\left|Q_{i, s_{i, 2}}\right|-2 k-1}$. We may also assume that $q_{i, s_{i, 1}}^{2 k+1}$ sends an edge to $q_{i, s_{i, 2}}^{2 k+1}$. Finally, since $q_{i, s_{i, 2}}^{\left|Q_{i, s_{i, 2}}\right|-2 k-1}$ has at least two outneighbours in T_{i}, we may assume $q_{i, s_{i, 2}}^{\left|Q_{i, s_{i, 2}}\right|-2 k-1}$ sends an edge to $q_{i, s_{i, 3}}^{\left|Q_{i, s_{i, 3}}\right|-2 k-1}$. We set $j_{i, t}:=s_{i, t}$ and let P_{i} be as described in Claim 3.4(ii).

So suppose next that $i \in I_{\text {long }} \cap[2 k+1,4 k]$. If $Q_{i, s_{i, t}}$ is an even path for $t=1$ or $t=2$ we take it to be P_{i}. So suppose that these two paths are odd. We may assume that $q_{i, s_{i, 1}}^{5 k+5}$ sends an edge to $q_{i, s_{i, 2}}^{5 k+5}$. We set $j_{i, 1}:=s_{i, 1}$ and $j_{i, 2}:=s_{i, 2}$ and let P_{i} be as described in Claim 3.4(iii). If $i \in I_{\text {long }} \cap[4 k+1,6 k]$, we define P_{i} similarly. This completes the proof of Claim 3.4.

We are now ready to prove Claim 3. For each $i \in I_{\text {long }}$, let P_{i} be as given by Claim 3.4. We will colour all those vertices on the paths $Q_{i, j}$ with $(i, j) \in I_{l o n g} \times\left[10^{5} k^{4} \log (2 k)\right]$ which are uncoloured so far as follows.

For each $i \in I_{\text {long }} \cap[2 k]$, we colour all internal vertices of P_{i} by α if $i \leq k$ and by β if $i>k$. For each $i \in I_{\text {long }} \cap[k]$, we also colour all vertices in $\left(Q_{i, j}^{1} \cup Q_{i, j}^{9}\right) \backslash\left(V\left(P_{i}\right) \cup R\right)$ by α and all vertices in $\left(Q_{i, j}^{2} \cup Q_{i, j}^{3} \cup Q_{i, j}^{7} \cup Q_{i, j}^{8}\right) \backslash\left(V\left(P_{i}\right) \cup R\right)$ by β (for all $j \in\left[10^{5} k^{4} \log (2 k)\right]$). Similarly,
for each $i \in I_{\text {long }} \cap[k+1,2 k]$, we colour all vertices in $\left(Q_{i, j}^{1} \cup Q_{i, j}^{9}\right) \backslash\left(V\left(P_{i}\right) \cup R\right)$ by β and all vertices in $\left(Q_{i, j}^{2} \cup Q_{i, j}^{3} \cup Q_{i, j}^{7} \cup Q_{i, j}^{8}\right) \backslash\left(V\left(P_{i}\right) \cup R\right)$ by α. For each $i \in I_{\text {long }} \cap[2 k]$, we colour all vertices in $\left(Q_{i, j}^{4} \cup Q_{i, j}^{6}\right) \backslash\left(V\left(P_{i}\right) \cup R^{4,6}\right)$ by α.

For each $i \in I_{\text {long }} \cap[2 k+1,6 k]$, we colour all internal vertices of P_{i} in an alternating manner consistent with the endvertices of P_{i}. (Claim 3.4(iv) ensures that this is possible.) For all $j \in\left[10^{5} k^{4} \log (2 k)\right]$ we also colour all vertices in $Q_{i, j}^{0} \cup Q_{i, j}^{4} \cup Q_{i, j}^{6} \backslash\left(V\left(P_{i}\right) \cup R \cup R^{4,6}\right)$ in an alternating manner. (That is, if $b_{i}=q_{i, j}^{0}$ is coloured α, we colour $q_{i, j}^{s}$ by α for all even numbers $s \leq 5 k+4$, and colour $q_{i, j}^{s}$ by β for all odd numbers $s \leq 5 k+4$. We colour of each vertex x in $\left(Q_{i, j}^{6} \cup \cdots \cup Q_{i, j}^{9}\right) \backslash\left(V\left(P_{i}\right) \cup R \cup R^{4,6}\right)$ in a similar way, depending on the colour of a_{i} and the distance of x to a_{i} in $Q_{i, j}$.)

Now all uncoloured vertices of $V_{\text {long }}$ belong to $Q_{i, j}^{5}$ for some i, j. We let C^{0} be the union of $V\left(Q_{i, j}^{5}\right)$ over all $(i, j) \in I_{\text {long }} \times\left[10^{5} k^{4} \log (2 k)\right]$. We colour all uncoloured vertices in C^{0} by α, and let C_{4} denote the set consisting of all the vertices coloured so far. Note that $\left|C_{4} \backslash C^{0}\right| \leq$ $\left|C_{3}\right|+\left|\bar{V}_{\text {long }}\right| \leq 4 \cdot 10^{4} k^{4} \log (2 k)+2 \cdot 10^{7} k^{6} \log (2 k) \leq 3 \cdot 10^{7} k^{6} \log (2 k)$. Together with Claim 3.1 this implies that parts (i), (ii) and (iii)(b) of Claim 3 hold.

We now show that all the vertices on the paths $Q_{i, j}$ are safe. Together with Claim 3.3(iii) this will imply that all vertices in C_{4} are safe, i.e. Claim 3(iii)(a) will hold. Consider first any vertex $v \in V_{\text {long }}^{0}$. If $v \in R$, then v is safe by Claim 3.3(iii). If $v \notin R$, then by Claim $3.2 v$ has at least k out-neighbors and at least k in-neighbours in each of R_{α} and R_{β}, so it has k safe out-neighbours and k safe in-neighbours of each colour. Thus v is safe by (S3) and (S4). So all the the vertices in $V_{\text {long }}^{0}$ are safe.

Note that if $(i, j) \notin I_{R}$, then $V\left(Q_{i, j}^{1} \cup Q_{i, j}^{2} \cup Q_{i, j}^{3}\right) \backslash\left\{q_{i, j}^{3 k+2}\right\}$ contains at least k vertices of each colour and so does $V\left(Q_{i, j}^{7} \cup Q_{i, j}^{8} \cup Q_{i, j}^{9}\right) \backslash\left\{q_{i, j}^{\left|Q_{i, j}\right|-3 k-2}\right\}$. (Recall that $q_{i, j}^{3 k+2}$ is the final vertex of $Q_{i, j}^{3}$ and that $q_{i, j}^{\left|Q_{i, j}\right|-3 k-2}$ is the initial vertex of $Q_{i, j}^{7}$.)

Now consider a vertex $v \in \bar{V}_{\text {long }} \backslash V_{\text {long }}^{0}$, and let i, j be such that $v \in V\left(Q_{i, j}^{4} \cup Q_{i, j}^{6}\right)$. If $v \in R^{4,6}$, then v is safe by Claim 3.3(iii). If $v \notin R^{4,6}$, then $(i, j) \notin I_{R}$. But by (Q1) all vertices in $Q_{i, j}^{1} \cup Q_{i, j}^{2} \cup Q_{i, j}^{3}$ (apart from possibly the final vertex of $Q_{i, j}^{3}$) are out-neighbours of v, so v has k safe out-neighbours coloured α and k safe out-neighbours coloured β. Similarly, all vertices in $Q_{i, j}^{7} \cup Q_{i, j}^{8} \cup Q_{i, j}^{9}$ (apart from possibly the initial vertex of $Q_{i, j}^{7}$) are in-neighbours of v, so v has k safe in-neighbours coloured α and k safe in-neighbours coloured β. Hence v is safe.

Now consider any vertex $v \in V\left(Q_{i, j}^{5}\right)$. If $(i, j) \notin I_{R}$, a similar argument as above shows that v is safe. If $(i, j) \in I_{R}$, then by (Q1) all vertices in $Q_{i, j}^{4}$ (apart from possibly its final vertex) are out-neighbours of v, and all vertices in $Q_{i, j}^{6}$ (apart from possibly its initial vertex) are inneighbours of v. Together with Claim 3.3(ii),(iii) this shows that v has k safe out-neighbours and k safe in-neighbours of each colour. So v is safe. This completes the proof of Claim 3(iii)(a).

To check Claim 3(iii)(c), note that if a vertex v outside C_{4} has an out-neighbour in C^{0}, then by (Q3) all vertices in $Q_{i, j}^{1} \cup Q_{i, j}^{2} \cup Q_{i, j}^{3} \cup Q_{i, j}^{4}$ (apart from possibly the last two vertices of $Q_{i, j}^{4}$) are out-neighbours of v. Thus v has at least k out-neighbours of each colour. In a similar way one can use (Q2) to show that v also has k in-neighbours of each colour. This completes the proof of Claim 3.

Claim 4: We can colour all uncoloured vertices in such a way that every vertex is safe.
To prove Claim 4, we colour all the vertices outside C_{4} one by one. We first deal with all vertices in $E_{A} \backslash C_{4}$ (see STEP 1), then we move to the vertices in $E_{B} \backslash C_{4}$ (see STEP 2). Finally,
we colour all the remaining vertices (see STEP 3). We let $Z_{A}:=\emptyset$. While dealing with each vertex in $E_{A} \backslash C_{4}$ in turn (i.e. during STEP 1), we will update Z_{A}. At each substep, Z_{A} will satisfy the following properties:
(a) Z_{A} consists of coloured vertices and $Z_{A} \cap\left(C_{4} \cup E_{A}\right)=\emptyset$,
(b) every coloured vertex lies in $C_{4} \cup E_{A} \cup Z_{A}$,
(c) $\left|Z_{A}\right| \leq 2 k\left|E_{A}\right|$.

STEP 1. We can colour all vertices in $E_{A} \backslash C_{4}$ as well as some set Z_{A} of additional vertices in such a way that all the vertices in $E_{A} \backslash C_{4}$ are backwards-safe and alternating-backwards-safe and Z_{A} satisfies (a)-(c).

Consider each vertex $v \in E_{A} \backslash C_{4}$ in turn. Suppose first that v has $2 k$ uncoloured in-neighbours $v_{1}, v_{2}, \ldots, v_{2 k}$ outside E_{A}. We colour k of them by α and k of them by β and replace Z_{A} by $Z_{A} \cup\left\{v_{1}, v_{2}, \ldots, v_{2 k}\right\}$. We also colour v with α. Note that (S2) implies that $v_{1}, v_{2}, \ldots, v_{2 k}$ are backwards-safe and alternating-backwards-safe. Together with (S 3) and $(\mathrm{S} 4)$ this shows that v is backwards-safe and alternating-backwards-safe.

So suppose that v has less than $2 k$ uncoloured in-neighbours outside E_{A}. Recall from Claim $3(\mathrm{iii})(\mathrm{b})$ that at most $3 \cdot 10^{7} k^{6} \log (2 k)$ vertices in C_{4} lie outside the set C^{0}. Together with (3.3) and (c) this shows that

$$
\hat{\delta}^{-}(T)-\left|E_{A} \cup Z_{A}\right| \geq \hat{\delta}^{-}(T)-3 k\left|E_{A}\right| \geq 5 \cdot 10^{8} k^{6} \log (2 k) \geq 2 k+\left|C_{4} \backslash C^{0}\right|
$$

Since all coloured vertices lie in $C_{4} \cup E_{A} \cup Z_{A}$, this implies that v has an in-neighbour in C^{0}. But now Claim 3(iii)(c) implies that v has k in-neighbours of colour α and k in-neighbours of colour β in C_{4}. Since all the vertices in C_{4} are safe, this implies that v becomes backwards-safe and alternating-backwards-safe by colouring v with α.

Note that we add at most $2 k$ vertices to Z_{A} for each vertex $v \in E_{A} \backslash C_{4}$. So at the end of STEP 1, we will still have that $\left|Z_{A}\right| \leq 2 k\left|E_{A}\right|$. Since by (S2) every vertex outside E_{B} is forwards-safe and alternating-forwards-safe, after STEP 1, all vertices in $E_{A} \backslash E_{B}$ will be safe, while the vertices in $E_{A} \cap E_{B}$ might only be backwards-safe and alternating-backwards-safe.

Let $Z_{B}:=\emptyset$. While dealing with each vertex in $E_{B} \backslash C_{4}$ in turn during STEP 2, we will update Z_{B}. At each substep, Z_{B} will satisfy the following properties (where $Z:=Z_{A} \cup Z_{B}$):
$\left(\mathrm{a}^{\prime}\right) Z_{B}$ consist of coloured vertices and $Z_{B} \cap\left(C_{4} \cup E \cup Z_{A}\right)=\emptyset$,
$\left(\mathrm{b}^{\prime}\right)$ every coloured vertex lies in $C_{4} \cup E \cup Z$,
$\left(\mathrm{c}^{\prime}\right)\left|Z_{B}\right| \leq 2 k\left|E_{B}\right|$ and so $|Z| \leq 4 k|E|$.
STEP 2. We can colour all uncoloured vertices in $E_{B} \backslash C_{4}$ as well as some set Z_{B} of additional vertices in such a way that all the vertices in $E_{B} \backslash C_{4}$ are safe and Z_{B} satisfies ($\left.a^{\prime}\right)-\left(c^{\prime}\right)$.

Consider each vertex $v \in E_{B} \backslash C_{4}$ in turn. If $v \notin E_{A}$, then v is backwards-safe and alternating-backwards-safe by (S2). If $v \in E_{A}$, then by STEP $1 v$ is also backwards-safe and alternating-backwards-safe.

Suppose first that v has $2 k$ uncoloured out-neighbours $v_{1}, v_{2}, \ldots, v_{2 k}$ outside E. We colour k of them by α and k of them by β. We replace Z_{B} by $Z_{B} \cup\left\{v_{1}, v_{2}, \ldots, v_{2 k}\right\}$. If v is uncoloured, we colour v with α. Then (S2)-(S4) together imply that v becomes safe.

So suppose that v has less than $2 k$ uncoloured out-neighbours outside E. Note that

$$
\hat{\delta}^{+}(T)-|E \cup Z| \geq \hat{\delta}^{+}(T)-5 k|E| \geq 5 \cdot 10^{8} k^{6} \log (2 k) \geq 2 k+\left|C_{4} \backslash C^{0}\right|
$$

by (3.4), (c') and Claim 3(iii)(b). Since all coloured vertices lie in $C_{4} \cup E \cup Z$, this implies that v has an out-neighbour in C^{0}. But now Claim 3(iii)(c) implies that v has k out-neighbours of
colour α and k out-neighbours of colour β in C_{4}. Since all the vertices in C_{4} are safe, this implies that v becomes safe by colouring v with α (in case v is still uncoloured).

Note that we add at most $2 k$ vertices to Z_{B} for each vertex in $E_{B} \backslash C_{4}$. Thus we always have that $\left|Z_{B}\right| \leq 2 k\left|E_{B}\right|$ and so $|Z| \leq 4 k|E|$. After STEP 2 , all vertices in $C_{4} \cup E$ are safe.

STEP 3. By colouring all the remaining uncoloured vertices with α, every vertex becomes safe.
This follows immediately from (S2).
This completes the proof of Claim 4 and thus of Theorem 1.1.

4. Spanning linkedness and non-Separating Subdivisions

The following lemma generalizes a result of Thomassen [11. Theorems 1.2 and 1.4 then both follow easily by an inductive application of Lemma 4.1.

Lemma 4.1. Let k, d be nonnegative integers. Let $x, y, z_{1}, \ldots, z_{d}$ be any distinct vertices in a strongly $(k+d+4)$-connected tournament T and let P be a shortest $x y$-path in $T-\left\{z_{1}, \ldots, z_{d}\right\}$. Then $T-(V(P) \backslash X)$ is strongly k-connected for any (possibly empty) subset $X \subseteq\{x, y\}$.

Proof. Write $P:=x_{0} x_{1} \ldots x_{m}$ with $x=x_{0}$ and $y=x_{m}$. Note that P must be a backwardstransitive path. If P has length at most two, the result trivially holds. So suppose that P has length more than two. Note that in this case it suffices to show that $T-V(P)$ is strongly k connected (otherwise we consider $x^{\prime} \in\left\{x, x_{1}\right\}, y^{\prime} \in\left\{y, x_{m-1}\right\}$ and proceed through the argument with x^{\prime}, y^{\prime} playing the role of $\left.x, y\right)$. So suppose $T-V(P)$ is not strongly k-connected. Then there exist a partition of $V(T) \backslash V(P)$ into nonempty sets S, S_{1}, S_{2} such that $|S| \leq k-1$ and no vertex in S_{2} sends an edge to S_{1}. Since $T-\left(S \cup\left\{z_{1}, \ldots, z_{d}\right\}\right)$ is strongly 5 -connected, there are five paths P_{1}, \ldots, P_{5} from S_{2} to S_{1} which are internally disjoint and do not intersect $S \cup\left\{z_{1}, \ldots, z_{d}\right\}$. We may assume that the P_{i} are backwards-transitive. Moreover, the interior of each P_{i} is nonempty and is contained in $V(P)$. Altogether, this means that the intersection of P_{i} and $T[V(P)]$ is either a segment of P or a path of the form $x_{j} x_{\ell}$ with $j \geq \ell+2$ or of the form $x_{j} x_{j+1} x_{j-1}$ or $x_{j} x_{j-2} x_{j-1}$. We let p be the largest number such that some P_{i} contains an edge $u x_{p}$ from S_{2} to x_{p} and we let q be the smallest number such that some P_{i} contains an edge $x_{q} v$ from x_{i} to S_{1}. Note that $p \geq q+4$. Then the path obtained from P by deleting $x_{q+1} x_{q+2} \ldots x_{p-1}$ and adding $x_{q} v u x_{p}$ is shorter than P, a contradiction.

Proof of Theorem 1.2, Write $D=\left\{w_{1}, \ldots, w_{d}\right\}$. We proceed by induction on m. For $m=1$, the assertion holds by Lemma 4.1 applied with $d-2$ playing the role of d. Suppose that $m \geq 2$ and that the assertion holds for $m-1$. Consider any edge $u v \in E(H)$. Without loss of generality, we may assume that $\phi(u)=w_{1}$ and $\phi(v)=w_{2}$. Then we apply Lemma 4.1 (with $d-2$ playing the role of d) to find a $w_{1} w_{2}$-path P whose interior does not intersect D and so that $T^{\prime}:=T-V(\operatorname{int}(P))$ is strongly $(k+(m-1)(d+2))$-connected. Now by the induction hypothesis, we can find a subdivision H_{*} of $H \backslash\{u v\}$ in T^{\prime} which satisfies (i)-(iii) (with T^{\prime} playing the role of T). Finally, let $H^{*}:=H_{*} \cup \operatorname{int}(P)$. Then H^{*} satisfies all requirements.

Proof of Theorem 1.4. We proceed by induction on k. For $k=1$, the assertion was proven by Thomassen [8]. Assume that $k \geq 2$ and that the assertion holds for $k-1$. Let $Z:=$ $\left\{x_{1}, \ldots, x_{k-1}, y_{1}, \ldots, y_{k-1}\right\}$ and let $X:=\left\{x_{k}, y_{k}\right\} \cap Z$. We can now apply Lemma 4.1 with $d=|Z \backslash X|$ to a find a $x_{k} y_{k}$-path P avoiding $Z \backslash X$ so that $T[W]$ is strongly $\left((k-1)^{2}+3(k-1)\right)$ connected, where $W:=V(T) \backslash(V(P) \backslash X)$. Now by the induction hypothesis, we can find P_{1}, \ldots, P_{k-1} in $T[W]$ so that P_{i} is a path from x_{i} to y_{i} and $W=\bigcup_{i=1}^{k-1} V\left(P_{i}\right)$. Let $P_{k}:=P$. Then P_{1}, \ldots, P_{k} are as desired.

5. Acknowledgements

We are grateful to Jørgen Bang-Jensen for helpful comments on an earlier version of this paper.

References

[1] P. Hajnal, Partition of graphs with condition on the connectivity and minimum degree, Combinatorica 3 (1983), 95-99.
[2] D. Kühn, J. Lapinskas, D. Osthus and V. Patel, Proof of a conjecture of Thomassen on Hamilton cycles in highly connected tournaments, Proc. London Math. Soc. 109 (2014), 733-762.
[3] D. Kühn and D. Osthus, Partitions of graphs with high minimum degree or connectivity, J. Combinatorial Theory B 88 (2003), 29-43.
[4] D. Kühn, D. Osthus and T. Townsend, Proof of a tournament partition conjecture and an application to 1-factors with prescribed cycle lengths, Combinatorica, to appear.
[5] A. Pokrovskiy, Highly linked tournaments, preprint, arXiv:1406.7552
[6] A. Pokrovskiy, Edge disjoint Hamiltonian cycles in highly connected tournaments, preprint, arXiv:1406.7556
[7] A. Scott, Judicious partitions and related problems, Surveys in Combinatorics 2005, London Math. Soc. Lecture Note Ser. 327, Cambridge Univ. Press, Cambridge, (2005) 95-117.
[8] C. Thomassen, Hamiltonian-connected tournaments, J. Combinatorial Theory B 28 (1980), 142-163.
[9] C. Thomassen, Graph decomposition with constraints on the connectivity and minimum degree, J. Graph Theory 7 (1983), 165-167.
[10] C. Thomassen, Graph decomposition with applications to subdivisions and path systems modulo k, J. Graph Theory 7 (1983), 261-271.
[11] C. Thomassen, Connectivity in tournaments in, Graph Theory and Combinatorics, A volume in honour of Paul Erdős (B. Bollobás, ed.), Academic Press, London (1984), 305-313.
[12] C. Thomassen Configurations in graphs of large minimum degree, connectivity, or chromatic number, Combinatorial Mathematics: Proceedings of the Third International Conference (New York, 1985), vol. 555 of Ann. New York Acad. Sci., New York, 1989, 402-412.

Jaehoon Kim, Daniela Kühn, Deryk Osthus
School of Mathematics
University of Birmingham
Edgbaston
Birmingham
B15 2TT
UK
E-mail addresses: \{kimJS, d.kuhn, d.osthus\}@bham.ac.uk

[^0]: Date: August 2, 2021.
 The research leading to these results was partially supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreements no. and 306349 (J. Kim and D. Osthus) as well as 258345 (D. Kühn).

