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Abstract

Let G be an n-vertex graph that contains linearly many cherries (i.e.,
paths on 3 vertices), and let c be a coloring of the edges of the complete
graph Kn such that at each vertex every color appears only constantly
many times. In 1979, Shearer conjectured that such a coloring c must
contain a properly colored copy of G. We establish this conjecture in a
strong form, showing that it holds even for graphs G with O(n4/3) cherries
and moreover this bound on the number of cherries is best possible up to
a constant factor. We also prove that one can find a rainbow copy of
such G in every edge-coloring of Kn in which all colors appear bounded
number of times.

Our proofs combine a framework of Lu and Székely for using the lop-
sided Lovász local lemma in the space of random bijections together with
some additional ideas.

1 Introduction

The canonical version of Ramsey’s theorem [9] for graphs implies that for every
graph G, there exists an integer n such that any coloring of the edges of the
complete graph Kn contains at least one of the following copies of G:

• a monochromatic copy, i.e., a copy where all the edges have the same color,

• a rainbow copy, which is a copy where no two edges have the same color, or

• a lexicographic copy, in which case the vertices of the copy can be ordered
in such a way that the color of any edge is purely determined by the
smaller endpoint.

Note that by restricting the number of colors that the coloring of E(Kn) can use
to k, the theorem guarantees a monochromatic copy of K` for any fixed ` > k,
which implies the classical Ramsey’s theorem.

In this paper we consider the following two different types of restrictions,
which are kind of dual to bounding the number of colors: we do not allow any
color to, either locally or globally, appear too many times. More precisely, we
say that a coloring c of E(Kn) is locally k-bounded if for every vertex v ∈ V (Kn),
no color appears more than k-times on the edges incident to v. Analogously, we
say that c is globally k-bounded if no color appears more than k-times on all the
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edges of Kn. We define that a coloring c of E(Kn) is G-proper, if there exists
a copy of G in Kn for which c induces a proper edge-coloring, i.e., a coloring
where no two incident edges have the same color. Similarly, we say that c is
G-rainbow if there exists a copy of G in Kn such that no two edges of this copy
have the same color in c. Given a graph G, we would like to obtain sufficient
conditions on an edge-coloring of Kn which yield either a properly colored or
a rainbow copy of this graph. This problem was studied extensively by various
researchers in the last forty years.

1.1 Locally bounded colorings and properly colored subgraphs

A conjecture of Bollobás and Erdős [5] from 1976 states that every locally (n/2)-
bounded coloring of E(Kn) is Cn-proper, i.e., it contains a properly colored
Hamilton cycle. In [5], they proved a weaker result – any locally αn-bounded
coloring is Cn-proper, where the constant α equals to 1/69. Around the same
time, Chen and Daykin [7] showed that already α = 1/17 is enough. Then in
1979, Shearer [23] improved the value of α to 1/7. After another improvement
due to Alon and Gutin [3], Lo [18] proved the conjecture of Bollobás and Erdős
asymptotically. He showed that locally αn-bounded colorings are Cn-proper for
any α < 1/2 and sufficiently large n.

Thirty five years ago, Shearer [23] proposed the following generalization of
the conjecture above to an arbitrary graph G that does not contain too many
cherries, i.e., paths on three vertices.

Conjecture 1. For every two integers s and k, there exists an integer n0 such
that the following is true. If n ≥ n0 and G is an n-vertex graph with at most
sn cherries, then any locally k-bounded coloring of E(Kn) is G-proper.

We establish this conjecture in a strong form, showing that it holds even for
graphs G with O(n4/3) cherries.

Theorem 2. If G is an n-vertex graph with at most r cherries, then any locally(
n

560r3/4

)
-bounded coloring c of E(Kn) is G-proper.

This result is tight up to a constant factor. In Section 4, we will construct
locally 3-bounded colorings cn of E(Kn) together with n-vertex trees Tn with
Θ(n4/3) cherries so that cn is not Tn-proper.

Another generalization of the conjecture of Bollobás and Erdős to a general
graph G takes into account the maximum degree. Alon, Jiang, Miller and
Pritikin [4] showed that if G is an n-vertex graph with maximum degree ∆ and

k = O
( √

n
∆27/2

)
, then any locally k-bounded coloring c of E(Kn) is G-proper.

Their result was greatly improved by Böttcher, Kohayakawa and Procacci [6]
who showed that k can be of order n/∆2.

Theorem 3. If G is an n-vertex graph with maximum degree ∆, then any locally(
n/22.4∆2

)
-bounded coloring c of E(Kn) is G-proper.

Can one further improve this bound? Our next contribution shows that up
to a constant factor, this result is tight for all values n and ∆. Moreover, one can
find graphs G with maximum degree ∆ and locally (3.9n/∆2)-bounded but not
G-proper colorings, of Kn, where the number of vertices of G does not depend
on n at all.
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Proposition 4. For every prime power q and integer n, there exist an `-vertex
graph G with maximum degree ∆, where ` = q2 + q + 1 and ∆ = q + 1, and a
locally (3.9n/∆2)-bounded coloring c of E(Kn) so that c is not G-proper.

1.2 Globally bounded colorings and rainbow subgraphs

There is a rich literature studying rainbow copies of a fixed graph in globally
bounded colorings of E(Kn), see for example [1,2,12–17]. In this work, we will
focus on finding rainbow spanning subgraphs.

Various authors have considered an analogue of the Bollobás-Erdős conjec-
ture, where the aim is to find a rainbow Hamilton cycle in a globally bounded
coloring of E(Kn). Specifically, in 1986 Hahn and Thomassen [14] conjectured
that there is a constant α > 0 such that any globally αn-bounded coloring of
Kn is Cn-rainbow. Their conjecture was proven by Albert, Frieze, and Reed [1]
with α = 1/64 (see also [22] for a correction of the originally claimed constant).

In 2008, Frieze and Krivelevich [12] showed that there is some absolute
constant α > 0 so that any globally αn-bounded coloring actually contains
copies of Ck for all k ∈ {3, . . . , n}. In the same paper, they conjectured that
there is also a constant α > 0 such that every globally αn-bounded coloring
contains any spanning tree with bounded maximum degree. Using the same
technique as for proving Theorem 3, Böttcher, Kohayakawa and Procacci [6]
proved the conjecture of Frieze and Krivelevich not only for trees, but actually
for all spanning subgraphs with bounded maximum degree.

Theorem 5 ( [6]). If G is an n-vertex graph with maximum degree ∆, then any
globally

(
n/51∆2

)
-bounded coloring c of E(Kn) is G-rainbow. Furthermore, if

n ≥ 100, then any globally
(
n/42∆2

)
-bounded coloring c of E(Kn) is G-rainbow.

With a slight modification of the construction from Proposition 4, we can
show that the dependency k = O(n/∆2) in Theorem 5 is again best possible.

Proposition 6. For every two integers ∆ and n such that ∆ is even and(
∆
2 + 1

)2
divides n, there exist an n-vertex graph G with maximum degree ∆ and

a globally (16n/∆2)-bounded coloring c of E(Kn) so that c is not G-rainbow.

Finally, one can naturally ask what can be said about rainbow copies of
graphs with few cherries in globally bounded edge-colorings of Kn. We were
able to answer this question as well, proving the following analog of Conjecture 1
in this setting.

Theorem 7. If G is an n-vertex graph with at most r cherries, then any globally(
n

1512r3/4

)
-bounded coloring c of E(Kn) is G-rainbow.

Since the locally 3-bounded coloring c of E(Kn) which shows the tightness
of Theorem 2 is also globally 9-bounded, we conclude that again the number of
cherries cannot exceed Θ(n4/3).

2 Local lemma in the space of random bijections

The Lovász local lemma is a tool used for showing the existence of an object
that does not possess any property from a given list of unwanted properties.
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This is achieved by taking a random object and showing that with a positive
probability, the object has none of the unwanted properties. In order to be
able to apply the local lemma, we need to have some control over the mutual
correlations of these properties.

Let B = {B1, . . . , BN} be a set of events, where each event describes having
one of the unwanted properties. The events are usually called the bad events.
We say that a graph D with the vertex set [N ] is a dependency graph for B if for
every i ∈ [N ], the event Bi is mutually independent of all the events Bj such that
ij /∈ E(D). In other words, for every i ∈ [N ] and every set J ⊆ {j : ij /∈ E(D)},
it holds that P

[
Bi

∣∣ ∧
j∈J Bj

]
= P

[
Bi

]
. Analogously, we say that an N -vertex

graph D is a negative dependency graph for B if for every i ∈ [N ] and every
set J ⊆ {j : ij /∈ E(D)}, it holds that P

[
Bi

∣∣ ∧
j∈J Bj

]
≤ P

[
Bi

]
.

The original version of the local lemma, which is due to Erdős and Lovász [8],
used a dependency graph for the set of bad events in order to control the corre-
lations. It was first observed by Erdős and Spencer [10] that actually the same
proof also applies when we capture the correlations using a negative dependency
graph. They called this variant lopsided Lovász local lemma. The following is
a slightly more general version of the lemma than the one stated in [10], whose
proof can be found, e.g., in [20, Lemma 1.4].

Lemma 8 (Lopsided Lovász local lemma). Let B = {B1, . . . , BN} be a set of
bad events with a negative dependency graph D = ([N ], E). If there exist reals
b1, . . . , bN ∈ (0, 1) so that

P
[
Bi

]
≤ bi ·

∏
ij∈E

(1− bj) for every i ∈ [N ],

then P
[ ∧
i∈[N ]

Bi

]
> 0.

In our applications, we will be only using the following simpler version of
the local lemma, which is in fact an easy corollary of Lemma 8. Note that this
version is often called the asymmetric local lemma (see, e.g., [21, Chapter 19]):

Lemma 9. Let B = {B1, . . . , BN} be a set of bad events with a negative depen-
dency graph D = ([N ], E). If

P
[
Bi

]
≤ 1

4
and

∑
ij∈E

P
[
Bj

]
≤ 1

4
for every i ∈ [N ],

then P
[ ∧
i∈[N ]

Bi

]
> 0.

The lopsided variant of the asymmetric local lemma is mentioned in [21,
Chapter 19.4] only implicitly. However, its proof is identical to the proof where
D is only a dependency graph, which is proven in [21, Chapter 19.3].

The most important thing in many applications of the (lopsided) local lemma
is to find an appropriate (negative) dependency graph for a given set of bad
events. Lu and Székely [19] came up with a particularly useful construction of
a negative dependency graph in the case that the underlying probability space
is generated by taking a random bijection between two sets.

Let X and Y be two sets of size n and Sn the set of all bijections from
X to Y . Consider the probability space Ω generated by picking a uniformly
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random element of Sn. We say that an event B is canonical if there exist two
sets X ′ ⊆ X, Y ′ ⊆ Y and a bijection τ : X ′ → Y ′ such that B = {π ∈ Sn :
π(a) = τ(a) for all a ∈ X ′}. For two sets X ′ ⊆ X and Y ′ ⊆ Y of the same size
and a bijection τ : X ′ → Y ′, we denote the corresponding canonical event by
Ω(X ′, Y ′, τ).

We say that two events Ω(X ′1, Y
′
1 , τ1) and Ω(X ′2, Y

′
2 , τ2) S-intersect if the

sets X ′1 and X ′2 intersect, or the sets Y ′1 and Y ′2 intersect. A result of Lu and
Székely [19] states that for a set of bad canonical events, the graph with vertices
being the bad events and edges being between any two events that S-intersect
is a negative dependency graph.

Theorem 10 ( [19]). Let Ω be the probability space generated by picking a
random bijection between two sets X and Y of size n uniformly at random.
Next, let B = {B1, . . . , BN} be a set of canonical events in Ω and let D be a
graph with the vertex set [N ] and ij ∈ E(D) if and only if the events Bi and Bj

S-intersect. It holds that D is a negative dependency graph.

Let us note that Lu and Székely [19] proved the statement above with a
slightly better choice of the negative dependency graph. Namely, they showed
that a graph D′ with the set of vertices [N ], where a vertex representing
Ω(X ′1, Y

′
1 , τ1) is adjacent to a vertex representing Ω(X ′2, Y

′
2 , τ2) if and only if(

∃x ∈ X ′1 ∩X ′2 : τ1(x) 6= τ2(x)
)

or
(
∃y ∈ Y ′1 ∩ Y ′2 : τ−1

1 (y) 6= τ−1
2 (y)

)
,

is a negative dependency graph. In other words, Ω(X ′1, Y
′
1 , τ1) and Ω(X ′2, Y

′
2 , τ2)

are adjacent in D′ if and only if the two probability events in Ω are disjoint.
It immediately follows that D′ is a subgraph of D, and since D′ is a negative
dependency graph, the graph D must be a negative dependency graph as well.

3 Proofs of Theorems 2 and 7

Before we start with a rigorous proof, let us give a brief outline. As we have seen
in the introduction, the local lemma is the right tool if the maximum degree
∆(G) = O (

√
n). Unfortunately, our upper bound on the number of cherries

cannot provide such a strong control on ∆(G). However, a straightforward
counting argument yields that only a very small number of vertices in G can
have a degree of order Ω (

√
n). Furthermore, we show in Lemma 11 that since

c is locally (globally) bounded, there is a complete subgraph H of Kn of the
appropriate size that is properly colored (rainbow) in c, and also no two of its
vertices have too large monochromatic co-degree in V (Kn) \ V (H). Therefore,
we can map the large-degree vertices of G to the vertices of H, and map the
other vertices of G using the local lemma. In order to get strong bounds, we will
also need precise upper bounds on the number of edges of G of certain types,
and on the number of paths of length 2 starting at a given vertex. Those bounds
are established in Lemmas 12 and 13, respectively, using the Cauchy-Schwarz
inequality.

Through the whole section, we will omit floors and ceilings whenever it is
not critical. We start our exposition with the following three auxiliary lemmas.

Lemma 11. For all positive integers n, k and r such that k ≤
(

n
560r3/4

)
, the

following is true. Every locally (globally) k-bounded coloring c of Kn contains
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a properly colored (rainbow) complete subgraph H of size 2r1/4 such that for
every two vertices v1, v3 ∈ V (H), the set {v2 ∈ V (Kn) : c(v1v2) = c(v2v3)} has
size at most 5kr1/4.

Proof. First note that (both locally and globally) k-bounded colorings contain
at most 1

2n(n − 1)k monochromatic paths on three vertices. To see that, we
claim that for a fixed choice of the middle vertex v2 of such a path, there are at
most 1

2 (n−1)k choices for the two endpoints of the path. Indeed, after choosing
one of the endpoints, which can be done in (n − 1) ways, there are at most k
possible other endpoints so that the path monochromatic. Furthermore, we
counted every monochromatic path with v2 as the middle point exactly twice.
Summing over all choices of v2 yields the bound 1

2n(n− 1)k.
Now let A be the following auxiliary graph: the vertex set is V (Kn) = [n],

and the vertices v1 ∈ V (A) and v3 ∈ V (A) are adjacent if and only if there
exist at least 5kr1/4 vertices v2 ∈ so that c(v1v2) = c(v2v3). It follows that the

number of edges of A is at most n(n−1)
10r1/4

. We denote the number of edges of A
by e(A).

We construct the desired subgraph H using the first moment method. Let
p := 5r1/4 ·n−1, and let P ′ be a random subset of [n] where we put each element
with probability p independently on the others. The expected size of P ′ is 5r1/4,
and the expected number of edges of the subgraph of A induced by P ′ is at most
e(A) · p2 ≤ 2.5r1/4. We set U1 ⊆ P ′ to be the set containing the smaller of the
two vertices for each edge of the subgraph. It can be that U1 contains both
endpoints for some edge because its larger endpoint is the smaller endpoint of
some other edge. Note that E

[
|U1|

]
≤ 2.5r1/4, and that for any two vertices

v1 and v3 from P ′ \ U1, the set {v2 ∈ V (Kn) : c(v1v2) = c(v2v3)} has size at
most 5kr1/4.

Next, let U2 ⊆ P ′ be the set containing the smallest vertex from every
{v1, v2, v3} ⊆ P ′ with c(v1v2) = c(v2v3). It follows that

E
[
|U2|

]
≤ n2k · p3

2
≤ 125r3/4 · k

2n
≤ 125

1120
≤ 1

8
,

and the coloring induced by c on the subgraph P ′ \ U2 is proper.
Finally, if c is globally k-bounded, observe that there are at most n2k/4 sets

{v1, v2, v3, v4} ⊆ [n] such that c(v1v2) = c(v3v4). Let U3 be the set containing
the smallest vertex from every {v1, v2, v3, v4} ⊆ P ′ with c(v1v2) = c(v3v4). In
the case of c being locally k-bounded, we set U3 := ∅. It holds that

E
[
|U3|

]
≤ n2k · p4

4
≤ 625rk

4n2
≤ 625

2240
≤ 3

8
.

It follows that in the case c is globally k-bounded, the subgraph induced by
P ′ \ (U2 ∪ U3) is rainbow in c.

By linearity of expectation, the set P := P ′ \ (U1 ∪ U2 ∪ U3) has expected
size at least 5r1/4 − 2.5r1/4 − 0.5 ≥ 2r1/4. On the other hand, the subgraph
induced by P has all the desired properties.

Lemma 12. Every n-vertex graph G with at most r cherries contains at most
max {n,√rn} edges. Furthermore, for any subset T ⊆ V (G), the number of

edges with at least one endpoint in T is at most max
{

4|T |, 2
√
r|T |

}
.
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Proof. Let e(G) be the number of edges of G. We claim that 4e(G)2 ≤ (2r +
2e(G))n. Indeed, by the Cauchy-Schwarz inequality ∑

u∈V (G)

deg(u)

2

≤ n ·
∑

u∈V (G)

deg2(u).

However,
∑

u deg(u) = 2e(G) and
∑

u deg(u)(deg(u) − 1) = 2r. Therefore, if
e(G) ≥ n, then 4e(G)2 ≤ n(2r + 2e(G)) ≤ 2rn+ 2e(G)2.

Analogously for the set T , let e(T,G) be the number of edges of G with at
least one endpoint in T . Note that

1

2
·
∑
u∈T

deg(u) ≤ e(T,G) ≤
∑
u∈T

deg(u).

Again by Cauchy-Schwarz,

e(T,G)2 ≤ |T | ·
(∑

u∈T
deg(u)(deg(u)− 1) +

∑
u∈T

deg(u)

)
≤ 2r|T |+ 2|T |e(T,G).

Hence if e(T,G) ≥ 4|T |, then e(T,G)2 ≤ 4r|T |.

Lemma 13. Let G be an n-vertex graph with at most r cherries and u ∈ V (G)
one of its vertices. Then G contains at most

√
2r deg (u) cherries with u being

one of the two leaves.

Proof. Let N ⊆ V (G) be the set of the neighbors of u. The number of cherries,
where u is one of the leaves, is equal to

∑
u′∈N (deg(u′)− 1). As in the proof of

the previous lemma,(∑
u′∈N

(deg(u′)− 1)

)2

≤ |N | ·
∑
u′∈N

deg(u′)(deg(u′)− 1) ≤ 2r deg(u).

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let ∆G be the maximum degree of G, C := 560 and k :=
n

Cr3/4
. If n < 2C or r > (n/2C)4/3, then k ≤ 1 and hence the statement

of the theorem is trivial. For the rest of the proof, we assume n ≥ 2C and
r ≤ (n/2C)4/3. We may also assume that r ≥ 16. Indeed, if r ≤ 15 then the
maximum degree of G is at most 6. If ∆G = 6, then G must be a disjoint union
of one star with 6 leaves and a graph on (n− 7) vertices with maximum degree
one. Such a graph can be easily embdedded in a greedy fashion. On the other
hand, if ∆G ≤ 5 then the statement directly follows from Theorem 3.

Now observe that ∆G(∆G − 1) ≤ 2r as otherwise the vertex of G with the
maximum degree is contained in more than r cherries. Since r ≥ 16, we conclude
that

∆G ≤
√

2r + 1 ≤ 2
√
r. (1)

Without loss of generality, V (G) = V (Kn) = [n], and the vertices of V (G) are
in the descending order according to their degrees (breaking ties arbitrarily). In
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other words, if u, v ∈ V (G) and u < v, then degG(u) ≥ degG(v). Let P ⊆ V (Kn)
be the properly colored complete subgraph of Kn of size ` := 2r1/4 given by
Lemma 11 for c, r and k. Set Q := V (Kn)\P . It follows that for every v1, v3 ∈ P
there are at most 5kr1/4 choices of v2 ∈ Q so that c(v1v2) = c(v2v3). On the
other hand, let L be the set of the first ` vertices of G, i.e., the set of ` vertices
with the largest degrees. Let S := V (G) \ L and let ∆S := maxu∈S degG(u).
Note that

∆S(∆S − 1) ≤ 2r/` = r3/4, (2)

as otherwise G contains more than r cherries.
Now we describe how we find a properly edge-colored copy of G in c. First,

fix an arbitrary bijective map f1 : L → P . Let us emphasize that any such
f1 will be possible to extend into a properly colored copy of G. The remaining
vertices of G, i.e., the vertices from S, are mapped by a uniformly chosen random
bijection f2 : S → Q. Finally, let f := f1 ∪ f2 be the bijection between V (G)
and V (Kn) and let f(G) denote the (random) copy of G in Kn given by f . We
use Theorem 10 and Lemma 9 to show that, with a positive probability, the
copy f(G) is properly colored by c restricted to the edges of f(G).

Before we proceed further, let us introduce some additional notation. We
denote a cherry in G with the middle vertex u2 and the endpoints u1, u3 such
that u1 < u3 by u1-u2-u3. Through the whole paper, we will write u1-u2-u3

only in the case when u1 < u3. On the other hand, for v1, v2, v3 ∈ V (Kn),
we say that the triple [v1v2v3] is c-monochromatic if c(v1v2) = c(v2v3). Let us
emphasize that in this definition we assume neither v1 < v3, nor v1 > v3.

Let R(G) be the set of all cherries in G, and let C(c) be the set of all c-
monochromatic triples [v1v2v3]. Note that [v1v2v3] ∈ C(c) ⇐⇒ [v3v2v1] ∈ C(c).
Also note that |C(c)| ≤ n(n−1)k, since there are n(n−1) choices of the vertices
v1 and v2, and then at most k choices of v3 so that c(v1v2) = c(v2v3). Our aim
is to show that the bijection f is such that for every cherry u1-u2-u3 ∈ R(G) it
holds that [f(u1)f(u2)f(u3)] /∈ C(c). Since the image of f1 is P , which induces
a properly colored clique in c, it follows that [f(u1)f(u2)f(u3)] /∈ C(c) for every
cherry u1-u2-u3 with {u1, u2, u3} ⊆ L.

For a cherry u1-u2-u3 ∈ R(G) with {u1, u2, u3}∩S 6= ∅ and a triple [v1v2v3] ∈
C(c), let B

[v1v2v3]
u1-u2-u3

denote the event
∧

i∈{1,2,3}
[f(ui) = vi], and let B be the set of

all events B
[v1v2v3]
u1-u2-u3

that satisfy

• u1-u2-u3 ∈ R(G) and [v1v2v3] ∈ C(c),

• {u1, u2, u3} ∩ S 6= ∅,

• ∀i ∈ {1, 2, 3} : ui ∈ S ⇐⇒ vi ∈ Q, and

• ∀i ∈ {1, 2, 3} : ui ∈ L =⇒ f1(ui) = vi.

Note that since for every B ∈ B at least one of the vertices ui, where i ∈
{1, 2, 3}, is mapped to vi by the randomly chosen bijection f2, it holds that
P
[
B
]
≤ 1/(n− `) ≤ 1/4.

It follows that two events B
[v1v2v3]
u1-u2-u3

and B
[v4v5v6]
u4-u5-u6

S-intersect if and only
if the sets {u1, u2, u3} and {u4, u5, u6} intersect or the sets {v1, v2, v3} and
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{v4, v5, v6} intersect. Lemma 9 states that in order to conclude that the proba-
bility P

[ ∧
B∈B

B
]
> 0, it is enough to show that

∑
B′∈B:

B and B′

S-intersect

P
[
B′
]
≤ 1

4
for every B ∈ B. (3)

To do so, we split the events B
[v1v2v3]
u1-u2-u3

∈ B into five classes B1, . . . ,B5 based on
how their sets {u1, u2, u3} intersect the set S:

• If {u1, u2, u3} ⊆ S, then B
[v1v2v3]
u1-u2-u3

∈ B1.

• If {u2, u3} ⊆ S and u1 ∈ L, then B
[v1v2v3]
u1-u2-u3

∈ B2.

• If {u1, u3} ⊆ S and u2 ∈ L, then B
[v1v2v3]
u1-u2-u3

∈ B3.

• If u3 ∈ S and {u1, u2} ⊆ L, then B
[v1v2v3]
u1-u2-u3

∈ B4.

• If u2 ∈ S and {u1, u3} ⊆ L, then B
[v1v2v3]
u1-u2-u3

∈ B5;

see Figure 1 for an example for each of the classes. Note that since u1 < u3 it
follows that if u3 ∈ L then also u1 ∈ L. Thus indeed the classes B1, . . . ,B5 split
the set B. It holds that

P
[
B
]

=
1

(n− `)(n− `− 1)(n− `− 2)
for any B ∈ B1,

P
[
B
]

=
1

(n− `)(n− `− 1)
for any B ∈ B2 ∪ B3, and

P
[
B
]

=
1

(n− `) for any B ∈ B4 ∪ B5.

L S

B1

L S

B2

L S

B3

L S

B4

L S

B5

Figure 1: The intersection types defining the classes B1, . . . ,B5.

For every vertex u ∈ S and two integers i ∈ [5] and j ∈ [3], let t
uj

i (u) be the

number of events B
[v1v2v3]
u1-u2-u3

∈ Bi such that u = uj . Note that for every u ∈ S,
the values of tu1

2 (u), tu2
3 (u), tu1

4 (u), tu2
4 (u), tu1

5 (u) and tu3
5 (u) are equal to 0.

Analogously, for every vertex v ∈ Q and integers i ∈ [5] and j ∈ [3], let t
vj
i (v)

be the number of events B
[v1v2v3]
u1-u2-u3

∈ Bi such that v = vj . In this case, tv12 (v),

9



tv23 (v), tv14 (v), tv24 (v), tv15 (v) and tv35 (v) are all zero for every v ∈ Q. Finally, for
every i ∈ [5], we define

tui := max
w∈S

(
tu1
i (w) + tu2

i (w) + tu3
i (w)

)
,

and
tvi := max

w∈Q

(
tv1i (w) + tv2i (w) + tv3i (w)

)
.

For every B = B
[v1v2v3]
u1-u2-u3

∈ B, the set {u1, u2, u3} consists of at most 3
vertices of S. Analogously, {v1, v2, v3} consists of at most 3 vertices of Q.
Therefore, ∑

B′∈B:
B and B′

S-intersect

P
[
B′
]
≤

5∑
i=1

P
[
B′i
]
· 3(tui + tvi ) ,

where B′i ∈ Bi for i ∈ {1, . . . , 5}.
In the following series of claims, we present a careful but most of the time

easily followable calculations, which will lead to bounds on the values of tui and
tvi for i ∈ {1, . . . , 5}. The bounds from the claims are summarized in seven
corollaries, which we will then put together and conclude that the sum above is
at most 1/4.

Claim 1. For every u ∈ S, tu1
1 (u) + tu3

1 (u) ≤ ∆S(∆S − 1)(n− `)(n− `− 1)k.

Proof. Our aim is to upper bound the number of ways how to choose u2, u
′, v1, v2

and v3 so that B
[v1v2v3]
u1-u2-u3

∈ B1, where u1 := min(u, u′) and u3 := max(u, u′).
Note that this quantity is exactly equal to tu1

1 (u) + tu3
1 (u).

Firstly, there are at most ∆S ways how to choose u2 ∈ S. Once the vertex
u2 is fixed, there are at most ∆S − 1 ways how to choose the remaining vertex
u′ ∈ S. Next, there are exactly (n−`)(n−`−1) ways how to choose the vertices
v1 ∈ Q and v2 ∈ Q. Finally, since the color of the edge v2v3 should be the same
as the color of v1v2, the vertex v3 can be chosen in at most k ways.

Claim 2. For every u ∈ S, tu2
1 (u) ≤ 1

2∆S(∆S − 1)(n− `)(n− `− 1)k.

Proof. There are at most
(

∆S

2

)
options for choosing the pair u1 and u3 so that

u1u2 ∈ E(G), u2u3 ∈ E(G) and u1 < u3. Next, there are at most (n − `)(n −
`− 1)k ways how to choose the vertices v1, v2 and v3.

Since ∆S(∆S − 1) ≤ r3/4 and k ≤ n
Cr3/4

, we conclude the following.

Corollary 14. For every B1 ∈ B1,

tu1 ≤
3n

2C(n− `− 2)
· 1

P
[
B1

] ≤ 3

2C − 4
· 1

P
[
B1

] .
Note the last inequality follows from the estimates ` ≤ 2(n/2C)1/3 ≤ n/C and
2 ≤ n/C.

Claim 3. For every vertex v ∈ Q, tv11 (v) + tv21 (v) + tv31 (v) ≤ 3(n− `− 1)kr.

10



Proof. We show that each tv11 (v), tv21 (v) and tv31 (v) is at most (n − ` − 1)kr. If
v = v2, then there are (n − ` − 1) ways how to choose v1 and at most k ways
how to choose v3. On the other hand, if v ∈ {v1, v3}, then there are (n− `− 1)
ways how to choose v2 and then at most k ways how to choose the remaining
vertex in Q. Finally, in all the cases there are at most r choices for a cherry
u1-u2-u3.

Since ` ≤ n/C and 3r1/4 ≤ (n− `− 2), we have an analogue of Corollary 14
for bounding the value of tv1.

Corollary 15. For every B1 ∈ B1,

tv1 ≤ 3(n− `− 1)kr ≤ 3n(n− `− 1)r1/4

C
≤ 1

C − 1
· 1

P
[
B1

] .
Claim 4. For every u ∈ S, tu2

2 (u) + tu3
2 (u) ≤ 2`∆S(n− `)k.

Proof. This time, we show that both the value of tu2
2 (u) and the value of tu3

2 (u)
are at most `∆S(n− `)k.

If u = u2, then there are at most ` choices for the vertex u1 ∈ L and at most
(∆S − 1) choices for the vertex u3 ∈ S. If u = u3, then the vertex u1 ∈ L can
be chosen in at most ` ways and the vertex u2 in at most ∆S ways. Next, there
are (n− `) choices for the vertex v2. Since the vertex v1 ∈ P is determined by
the choice of the map f1, there are at most k choices for the vertex v3 ∈ Q.

The inequality (2) implies that ∆S ≤ r3/8 + 1, which is at most 2r3/8. Since
` = 2r1/4, we yield our next corollary.

Corollary 16. For every B2 ∈ B2,

tu2 ≤ 8r5/8(n− `)k ≤ 8n(n− `)
Cr1/8

≤ 8n

C(n− `− 1)
· 1

P
[
B2

] ≤ 8

C − 2
· 1

P
[
B2

] .
Claim 5. For every v ∈ Q, tv22 (v) ≤ `k√2∆Gr.

Proof. There at most ` choices for the vertex v1 ∈ P and then at most k choices
for the vertex v3 ∈ Q. Since the vertex u1 ∈ L is determined by f1, Lemma 13
implies that the set of two vertices {u2, u3} ⊆ S can be chosen in at most√

2∆Gr ways.

Claim 6. For every v ∈ Q, tv3
2 (v) ≤ (n− `− 1)k

√
2∆Gr.

Proof. The vertex v2 ∈ Q can be chosen in (n − ` − 1) ways and the vertex
v1 ∈ P in at most k ways. Then as in the previous claim, there are at most√

2∆Gr choices for {u2, u3} ⊆ S.

The choice of the parameters yields that ` ≤ (n−`−1) and
√

2∆Gr ≤ 2r3/4.

Corollary 17. for every B2 ∈ B2,

tv2 ≤ 4(n− `− 1)kr3/4 ≤ 4n

C(n− `) ·
1

P
[
B2

] ≤ 4

C − 1
· 1

P
[
B2

] .
Claim 7. For every u ∈ S, tu1

3 (u) + tu3
3 (u) ≤ `(∆G − 1)(n− `)k.

11



Proof. First choose the vertex u2 ∈ L; there are at most ` choices for that. The
remaining vertex in G, i.e., the vertex from {u1, u3} \ {u}, can be chosen in at
most (∆G − 1) ways. Next, the vertex v2 ∈ P is given by f1(u2). There are
(n− `) choices for v1 ∈ Q, and finally, at most k choices for v3 ∈ Q.

Claim 8. For every v ∈ Q, tv1
3 (v) + tv33 (v) ≤ 4

√
r` · (∆G − 1)k.

Proof. We show that both tv13 (v) and tv33 (v) are at most 2
√
r` · (∆G − 1)k.

Suppose v = v1 (the case v = v3 is symmetric). First observe since r ≥ 16, it
holds that 8r1/4 = 4` ≤ 2

√
r` =

√
8 · r5/8. Therefore, Lemma 12 applies with

T := L and yields that a pair of vertices u1 ∈ S and u2 ∈ L which is connected
by an edge can be chosen in at most 2

√
r` ways. After the vertices u1 and u2

are chosen, there are at most (∆G − 1) choices for the vertex u3 ∈ S. Since
v2 = f1(u2), the vertex v3 ∈ Q can be chosen in at most k ways.

Since (∆G − 1)2 ≤ 2r, we conclude the following corollary.

Corollary 18. For every B3 ∈ B3,

tu3 ≤ 2
√

2 · r3/4(n− `)k ≤ 3n(n− `)
C

≤ 3

C − 2
· 1

P
[
B3

]
and

tv3 ≤ 8r9/8 · k =
8nr3/8

C
≤ 1

C − 1
· 1

P
[
B3

] .
Note the last inequality holds since 8r3/8 ≤ (n− `− 1).

Claim 9. For every u ∈ S, tu3
4 (u) ≤ `(`− 1)k.

Proof. There are at most ` choices for the vertex u2 ∈ L and at most (` − 1)
choices for the vertex u1 ∈ L. Since the vertices {v1, v2} ⊆ P are determined
by f1, there are at most k choices for the vertex v3 ∈ Q.

Claim 10. For every v ∈ Q, tv34 (v) ≤ 2
√
r` · k.

Proof. By Lemma 12 applied with T := L, there are at most 2
√
r` choices for

the edge u2u3 so that u2 ∈ L and u3 ∈ S. By definition, v2 = f1(u2), hence
the vertex v1 ∈ P can be chosen in at most k ways. Since f1 is a bijection, the
choice of v1 uniquely determines the vertex u1.

This time, we conclude the following.

Corollary 19. For every B4 ∈ B4,

tu4 ≤ 4
√
r · k ≤ 4n

Cr1/4(n− `) ·
1

P
[
B4

] ≤ 4

C − 1
· 1

P
[
B4

]
and

tv4 ≤ 2
√

2 · r5/8 · k ≤ 3n

Cr1/8
≤ 3n

C(n− `) ·
1

P
[
B4

] ≤ 3

C − 1
· 1

P
[
B4

] .
Claim 11. For every u ∈ S, tu2

5 (u) ≤ 2.5`(`− 1) · kr1/4.
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Proof. There are at most
(
`
2

)
ways how to choose the set {u1, u3} ⊆ L. This

also determines the vertices v1 = f1(u1) and v3 = f1(u3). By the choice of the
set P , there are at most 5kr1/4 possibilities for the vertex v2 ∈ Q.

Claim 12. For every v ∈ Q, tv25 (v) ≤ 2
√
r` · k.

Proof. First, Lemma 12 yields that there are at most 2
√
r` choices for the edge

u1u2 with u1 ∈ L and u2 ∈ S. This also determines the vertex v1 = f1(u1).
Finally, the vertex v3 ∈ P can be then chosen in at most k ways, which uniquely
determines the vertex u3 ∈ L.

Our final corollary is the following.

Corollary 20. For every B5 ∈ B5,

tu5 ≤ 10r3/4k ≤ 10n

C(n− `) ·
1

P
[
B5

] ≤ 10

C − 1
· 1

P
[
B5

]
and

tv5 ≤ 2
√

2 · r5/8 · k ≤ 3n

Cr1/8
≤ 3

C − 1
· 1

P
[
B5

] .
Corollaries 14-20 imply that∑

B′∈B:
B and B′

S-intersect

P
[
B′
]
≤ 3 · 25

2C − 4
+ 3 · 26

C − 1
for every B ∈ B.

If C = 560, then the sum above is equal to 3307
15996 < 1/4. Therefore, all the

conditions in (3) are satisfied and the proof is now finished.

We continue our exposition with a proof of Theorem 7, which seeks rainbow
copies of graphs G with few cherries in globally bounded colorings c of Kn.
This time, our task is to find such a copy of G in c that does contain neither
a monochromatic cherry, nor a monochromatic pair of disjoint edges. Since a
globally k-bounded coloring is also locally k-bounded, it is enough to modify
the proof of Theorem 2 by adding to the set of bad events those that take care
of all the monochromatic pairs of disjoint edges. As it turned out, this changes
the upper bound on k only by a constant factor.

Proof of Theorem 7. Most of the proof goes along the same lines as the proof of
Theorem 2. Let C := 1512 and k := n

Cr3/4
. Again, if n < 2C or r > (n/2C)4/3,

the statement of the theorem is trivial. We may assume r ≥ 16 since for r ≤ 15
the statement follows from Theorem 5 (note that n ≥ 100, C = 42 · 62, and
if r ≤ 15, then the maximum degree of G is at most 6). Furthermore, let
V (G) = V (Kn) = [n], and assume the vertices of V (G) are in descending order
according to their degrees. Lemma 12 and the fact that r ≤ n4/3 imply that
e(G) ≤ nr1/8.

As in the proof of Theorem 2, let ∆G be the maximum degree of G. It follows
that ∆G ≤ 2

√
r. Let P ⊆ V (Kn) be the rainbow complete subgraph of Kn of

size ` := 2r1/4 given by Lemma 11 for c, r and k. We define Q := V (Kn) \ P .
On the other hand, let L be the set of the first ` vertices of G, S := V (G) \ L
and ∆S := maxu∈S degG(u). It holds that ∆S ≤ 2r3/8.
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The way how we find a rainbow copy of G in a globally k-bounded coloring is
analogous to the way we have found a properly colored copy of G in a locally k-
bounded coloring. First, let f1 : L→ P be an arbitrary bijection and f2 : S → Q
be a bijection chosen uniformly at random. Next, let f := f1 ∪ f2 and let f(G)
denote the copy of G in Kn given by f . Our aim is to show that Theorem 10
and Lemma 9 yield that with a non-zero probability f(G) is rainbow.

Recall from the proof of Theorem 2 that u1-u2-u3 denotes a cherry in G
with middle vertex u2 and endpoints u1, u3 such that u1 < u3, and R(G) is
the set of all such cherries in G. Also recall that for v1, v2, v3 ∈ V (Kn), the
triple [v1v2v3] is c-monochromatic if c(v1v2) = c(v2v3) and C(c) is the set of all
c-monochromatic triples.

In order to show that f(G) is not only properly colored but rainbow, apart
from controlling the cherries we also need to guarantee there are no two disjoint
edges of the same color. This motivates the following definitions. We write
(u1u2)(u3u4) to denote two disjoint edges u1u2 ∈ E(G) and u3u4 ∈ E(G) such
that u1 < u2, u3 < u4 and u1 < u3. Let R′(G) be the set of all such pairs of
disjoint edges (u1u2)(u3u4) in G. Analogously, for every v1, v2, v3, v4 ∈ V (Kn),
the quadruple [v1v2v3v4] is c-monochromatic if c(v1v2) = c(v3v4), and we denote
the set of all c-monochromatic quadruples by C′(G).

This time, our aim is to show that with positive probability the bijection f
is such that for every cherry u1-u2-u3 ∈ R(G) it holds that [f(u1)f(u2)f(u3)] /∈
C(c), and for every (u1u2)(u3u4) ∈ R′(G) it holds that [f(u1)f(u2)f(u3)f(u4)] /∈
C′(c). The choice of f1 implies that we need to check only the cherries u1-u2-u3

and the disjoint pairs of edges (u1u2)(u3u4) that satisfy {u1, u2, u3}∩S 6= ∅ and
{u1, u2, u3, u4} ∩ S 6= ∅, respectively.

As in the proof of Theorem 2, for u1-u2-u3 ∈ R(G) and [v1v2v3] ∈ C(c), we

denote the event
∧

i∈[3]

[f(ui) = vi] by B
[v1v2v3]
u1-u2-u3

. We define B to be the set of all

events B
[v1v2v3]
u1-u2-u3

such that

• u1-u2-u3 ∈ R(G) and [v1v2v3] ∈ C(c),

• {u1, u2, u3} ∩ S 6= ∅,

• ∀i ∈ {1, 2, 3} : ui ∈ S ⇐⇒ vi ∈ Q, and

• ∀i ∈ {1, 2, 3} : ui ∈ L =⇒ f1(ui) = vi.

Similarly, for (u1u2)(u3u4) ∈ R′(G) and [v1v2v3v4] ∈ C′(c), let B
[v1v2v3v4]
(u1u2)(u3u4) be

the event
∧

i∈[4]

[f(ui) = vi]. Finally, let B′ be the set of all events B
[v1v2v3v4]
(u1u2)(u3u4)

such that

• (u1u2)(u3u4) ∈ R′(G) and [v1v2v3v4] ∈ C′(c),

• {u1, u2, u3, u4} ∩ S 6= ∅,

• ∀i ∈ {1, 2, 3, 4} : ui ∈ S ⇐⇒ vi ∈ Q, and

• ∀i ∈ {1, 2, 3, 4} : ui ∈ L =⇒ f1(ui) = vi.

Since the globally k-bounded coloring c is indeed also locally k-bounded,
Claims 1-12 from the proof of Theorem 2 apply again. In order to upper

14



bound the number of events B′ ∈ B that intersect a given event B
[v1v2v3]
u1-u2-u3

∈ B
or B

[v4v5v6v7]
(u4u5)(u6u7) ∈ B′, it is enough to apply these claims for vertices u ∈

{u1, u2, u3} ∩ S and v ∈ {v1, v2, v3} ∩ Q, or u ∈ {u4, u5, u6, u7} ∩ S and v ∈
{v4, v5, v6, v7} ∩ Q, respectively. In all the possible cases, there are at most
4 choices for such a vertex. Therefore, Corollaries 14-20 yield that

∑
B′∈B:

B and B′

S-intersect

P
[
B′
]
≤ 4 · 25

2C − 4
+ 4 · 26

C − 1
for every B ∈ B ∪ B′. (4)

It remains to analyze how many events from B′ a fixed event B ∈ B∪B′ can

S-intersect. We start with splitting the events B
[v1v2v3v4]
u1-u2,u3-u4

∈ B′ into five classes
B6, . . . ,B10 based on how their sets {u1, u2, u3, u4} intersect the set S:

• If {u1, u2, u3, u4} ⊆ S, then B
[v1v2v3v4]
u1-u2,u3-u4

∈ B6.

• If {u2, u3, u4} ⊆ S and u1 ∈ L, then B
[v1v2v3v4]
u1-u2,u3-u4

∈ B7.

• If {u3, u4} ⊆ S and {u1, u2} ⊆ L, then B
[v1v2v3v4]
u1-u2,u3-u4

∈ B8.

• If {u2, u4} ⊆ S and {u1, u3} ⊆ L, then B
[v1v2v3v4]
u1-u2,u3-u4

∈ B9.

• If |{u2, u4} ∩ S| = 1 and {u1, u3} ⊆ L, then B
[v1v2v3v4]
u1-u2,u3-u4

∈ B10;

see also Figure 2. The fact that the classes B6, . . . ,B10 split the whole set B′
follows because if ui ∈ L for some i ∈ [4], then u1 ∈ L, and also if u4 ∈ L, then
u3 ∈ L. It holds that

P
[
B
]

=
1

(n− `)(n− `− 1)(n− `− 2)(n− `− 3)
for any B ∈ B6,

P
[
B
]

=
1

(n− `)(n− `− 1)(n− `− 2)
for any B ∈ B7,

P
[
B
]

=
1

(n− `)(n− `− 1)
for any B ∈ B8 ∪ B9, and

P
[
B
]

=
1

(n− `) for any B ∈ B10.

For every vertex u ∈ S and two integers i ∈ {6, . . . , 10} and j ∈ [4], let t
uj

i (u)

be the number of events B
[v1v2v3v4]
(u1u2)(u3u4) ∈ Bi such that u = uj . It immediately

follows that all tu1
7 (u), tu1

8 (u), tu2
8 (u), tu1

9 (u), tu3
9 (u), tu1

10(u) and tu3
10(u) are zero

for every vertex u ∈ S. Similarly, for every vertex v ∈ Q and integers i ∈
{6, . . . , 10} and j ∈ [4], let t

vj
i (v) be the number of events B

[v1v2v3v4]
(u1u2)(u3u4) ∈ Bi

such that v = vj . Analogously to the previous case, the values of tv17 (v), tv18 (v),
tv28 (v), tv19 (v), tv39 (v), tv110(u) and tv310(v) are equal to 0 for all v ∈ Q. Therefore,
for every B ∈ B ∪ B′ it holds that

∑
B′∈B′:

B and B′

S-intersect

P
[
B′
]
≤

10∑
i=6

P
[
B′i
]
· 4 (tui + tvi ) ,
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L S
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L S
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Figure 2: The event classes B6, . . . ,B10.

where B′i ∈ Bi for i ∈ {6, . . . , 10}.
In order to finish the proof, we perform similar calculations as we did in

the proof of Theorem 2 in order to give upper bounds on t
uj

i and t
vj
i , where

i ∈ {6, . . . , 10} and j ∈ [4].

Claim 13. For every u ∈ S,
∑
j∈[4]

t
uj

6 (u) ≤ 2e(G) ·∆S(n− `)(n− `− 1) · k.

Proof. A neighbor u′ ∈ S of u can be chosen in at most ∆S ways, and then there
are at most e(G) choices for the edge u′′u′′′ disjoint from uu′. Note that the
relative order between u, u′, u′′ and u′′′ uniquely determines how these vertices
correspond to u1, u2, u3 and u4. Next, the vertices v1 and v2 can be chosen in
(n−`)(n−`−1) ways. Finally, there are at most k edges v′v′′ with color c(v1v2)
and then we only need to decide whether v3 = v′ and v4 = v′′, or the other way
around.

Claim 14. For every v ∈ Q,
∑
j∈[4]

t
vj
6 (v) ≤ 4e(G)2(n− `− 1)k.

Proof. This time we show that t
vj
6 (v) is at most e(G)2(n − ` − 1)k for every

j ∈ [4]. Without loss of generality, v = v1. There are (n− `− 1) choices for v2

and then, as in the previous claim, at most 2k choices for v3 and v4. On the
other hand, the total number of choices for the vertices u1, u2, u3 and u4 is at
most

(
e(G)

2

)
.

The estimates e(G) ≤ nr1/8 and ∆S ≤ 2r3/8 yields the following.

Corollary 21. For every B6 ∈ B6,

tu6 ≤ 4nr1/2 · (n− `)(n− `− 1)k ≤ 4n2(n− `)(n− `− 1)

Cr1/4
≤ 4

C − 5
· 1

P
[
B6

]
and

tv6 ≤ 4n2r1/4 · (n− `− 1)k ≤ 4n3(n− `− 1)

Cr1/2
≤ 4

C − 6
· 1

P
[
B6

] .
Claim 15. For every u ∈ S, tu2

7 (u) ≤ 2e(G) · `(n− `)k.
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Proof. The vertex u1 ∈ L can be chosen in at most ` ways, the vertices u3 and
u4 in at most e(G) ways, and the vertex v2 ∈ Q in (n−`) ways. Since the vertex
v1 = f(u1), there are at most 2k choices for the vertices v3 and v4.

Claim 16. For every u ∈ S, tu3
7 (u) + tu4

7 (u) ≤ 4∆S

√
r` · (n− `)k.

Proof. There are at most ∆S choices for the vertex u′ ∈ {u3, u4} \ {u} and, by
Lemma 12, at most 2

√
r` choices for u1 ∈ L and u2 ∈ S. The total number of

choices for v1, v2, v3 and v4 is at most 2k(n− `).

Since 8
√

2 · r ≤ nr3/8, we conclude the following.

Corollary 22. For every B7 ∈ B7,

tu7 ≤ (n− `)k · (4nr3/8 + 8
√

2 · r) ≤ 5n2(n− `)
Cr3/8

≤ 5

C − 4
· 1

P
[
B7

] .
Claim 17. For every v ∈ Q, tv27 (v) ≤ 4

√
r` · e(G)k.

Proof. There are at most 2
√
r` choices for the vertices u1 ∈ L and u2 ∈ S. This

determines the vertex v1 ∈ P and hence the vertices v3 and v4 can be chosen in
at most 2k ways. Finally, the remaining vertices u3 and u4 are determined by
choosing an edge of G that has both endpoints in S.

Claim 18. For every v ∈ Q, tv37 (v) + tv47 (v) ≤ 2e(G)∆G(n− `− 1)k.

Proof. By symmetry, it is enough to show that tv37 (v) ≤ e(G)∆G(n − ` − 1)k.
There are (n− `− 1) choices for the vertex v4 ∈ Q, then at most k choices for
v1 ∈ P and v2 ∈ Q, and since u1 = f−1

1 (v1), at most ∆G choices for u2. As
in the previous claims, the vertices u3 and u4 can be chosen in at most e(G)
ways.

Recall that ∆G ≤ 2
√
r. The counterpart of Corollary 22 is the following.

Corollary 23. For every B7 ∈ B7,

tv7 ≤ 4
√

2 · nr3/4k + 4nr5/8(n− `− 1)k ≤ 5n2(n− `− 1)

C
≤ 5

C − 3
· 1

P
[
B7

] .
Claim 19. For every u ∈ S, tu3

8 (u) + tu4
8 (u) ≤ ∆S`

2 · k.

Proof. We first choose the vertices u1 ∈ L and u2 ∈ L such that u1 < u2. This
can be done in at most

(
`
2

)
ways, and it determines the vertices v1 ∈ P and

v2 ∈ P . After that, there are at most 2k choices for the vertices v3 ∈ Q and
v4 ∈ Q. The only remaining vertex we need to choose is a neighbor of u, and
there are at most ∆S ways to do that.

Claim 20. For every v ∈ Q, tv38 (v) + tv48 (v) ≤ e(G)`2 · k.

Proof. Analogously to the proofs of Claims 14 and 18, it is enough to show that
tv38 (v) ≤ e(G)

(
`
2

)
k. We can choose the vertices u1 ∈ L and u2 ∈ L such that

u1 < u2 in at most
(
`
2

)
ways, then there at most k choices for the vertex v4 ∈ Q,

and finally at most e(G) choices for the vertices u3 and u4.

Claims 19 and 20 yields our next corollary.
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Corollary 24. For every B8 ∈ B8,

tu8 ≤ 8r7/8 · k ≤ 8nr1/8

C
≤ 1

C − 1
· 1

P
[
B8

]
and

tv8 ≤ 4nr5/8 · k ≤ 4n2

C
≤ 4

C − 3
· 1

P
[
B8

] .
Claim 21. For every u ∈ S, tu2

9 (u) + tu4
9 (u) ≤ 2

√
r` · (n− `)k.

Proof. We start by choosing an adjacent pair of vertices u′′ ∈ S and u′′′ ∈ L.
Lemma 12 implies this can be done in at most 2

√
r` ways. Then, in (n − `)

ways, we choose the vertex v′′ ∈ Q which will be the image of u′′. The vertices
v ∈ Q and v′ ∈ P can be then chosen in at most k ways, which also uniquely
determines the vertex u′ ∈ L. The relative order of u′ and u′′′ determines
the correspondence between u, u′, u′′, u′′′ and u1, u2, u3, u4, which gives also the
correspondence between v, v′, v′′, v′′′ and v1, v2, v3, v4.

Claim 22. For every v ∈ Q, tv29 (v) + tv49 (v) ≤ 2 (∆G)
2
`k.

Proof. As usual, it is enough to show that tv29 (v) ≤ (∆G)
2
`k. There are at most

` choices for the vertex v1 ∈ P and after that at most k choices for v3 ∈ P and
v4 ∈ Q. Since the vertices u2 ∈ S and u4 ∈ S are neighbors of u1 = f−1

1 (v1) and
u3 = f−1

1 (v3), respectively, each of them can be chosen in at most ∆G ways.

We use the estimate 16
√
r ≤ n− `− 1 to obtain the following corollary.

Corollary 25. For every B9 ∈ B9,

tu9 ≤ 2
√

2 · r5/8(n− `)k ≤ 3n(n− `)
C

≤ 3

C − 2
· 1

P
[
B9

]
and

tv9 ≤ 16 · r5/4k ≤ 16
√
r · n
C

≤ 1

C − 1
· 1

P
[
B9

] .
Claim 23. For every u ∈ S, tu2

10(u) + tu4
10(u) ≤ `2k.

Proof. By symmetry, it is enough to show that tu2
10(u) ≤ 1

2`
2k. Indeed, we

choose the vertices u3 ∈ L and u4 ∈ L in
(
`
2

)
ways, and after that there are at

most k choices for the vertices v1 ∈ P and v2 ∈ Q.

Claim 24. For every v ∈ Q, tv210(v) + tv410(v) ≤ 2`∆Gk.

Proof. Analogously to the previous claim, we only show that tv210(v) is at most
`∆Gk. A symmetric reasoning then yields the same upper bound also holds
for tv410(v).

There are at most ` choices for the vertex v1 ∈ P , then at most k choices
for the vertices v3 and v4 (note that the ordering of u3 < u4 defines an ordering
of v3 and v4). Finally, at most ∆G choices for the neighbor of u1 ∈ L, i.e., the
vertex u2 ∈ S.

Here comes the last corollary.
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Corollary 26. For every B10 ∈ B10,

tu10 ≤ 4
√
r · k ≤ 4n

C
≤ 4

C − 1
· 1

P
[
B10

]
and

tv10 ≤ 8r3/4k ≤ 8n

C
≤ 8

C − 1
· 1

P
[
B10

] .
Corollaries 21-26 imply that for every B ∈ B ∪ B′, it holds that∑

B′∈B′:
B and B′ S-intersect

P
[
B′
]
≤ 4 · 14

C − 1
+

4 · 3
C − 2

+
4 · 9
C − 3

+
4 · 5
C − 4

+
4 · 4
C − 5

+ · 4 · 4
C − 6

.

The last upper bound together with (4) and our choice of the constant C imply
that f(G) is rainbow with a non-zero probability.

4 Lower bounds

In this section, we present three constructions of bounded colorings c and graphs
G with either small number of cherries or small maximum degree, which provides
the matching lower bounds for Theorems 2, 3, 5 and 7. We start with construct-
ing an edge-coloring of Kn that does not contain properly colored spanning trees
of radius two.

Lemma 27. For every integer n, there exists a locally 3-bounded edge-coloring
c of K3n such that c contains no properly edge-colored spanning tree of radius
two. Moreover, the coloring c is globally 9-bounded.

Proof. Split arbitrarily the vertex-set V (Kn) into n disjoint parts P1, . . . , Pn,

each of size 3. The coloring c uses a palette of colors [n]∪
(

[n]
2

)
and two vertices

x ∈ Pi and y ∈ Pj , where i ∈ [n] and j ∈ [n], are colored with the color {i, j}.
Note that if i = j, the edge xy has color {i}. It follows that the coloring c is
locally 3-bounded and globally 9-bounded.

Fix a tree T of radius two and let u be a central vertex of T , i.e., a vertex
that has distance at most 2 from every u′ ∈ V (T ). Suppose for contradiction
that c is T -proper. Fix a properly colored copy of T and let v ∈ V (Kn) be
the vertex corresponding to u. Without loss of generality, v ∈ P1. Let v2 ∈ P1

and v3 ∈ P1 be the other two vertices from the part P1, and u2 ∈ V (T ) and
u3 ∈ V (T ) their corresponding vertices in T . Since T is properly colored, at
least one of u2 and u3 is at distance two from u. Without loss of generality, u
and u2 have distance two in T , and let u4 be their (unique) common neighbor.
But then c(vv4) = c(v2v4), where v4 ∈ V (Kn) is the corresponding vertex to
u4, a contradiction.

For an integer m, let Tm be a tree of radius two with exactly one vertex of
degree m2/3 that has all the neighbors of degree m1/3 +1 and they have all their
other neighbors of degree one. Note that Tm has n := m+m2/3 +1 vertices and

contains
(
m2/3

2

)
+m2/3 ·m1/3 +m2/3 ·

(
m1/3

2

)
= m4/3 + (m−m2/3)/2 = Θ(n4/3)

cherries. Applying the previous lemma to Tm, we conclude that the upper
bounds on k in Theorems 2 and 7 are, up to a constant factor, best possible
even when we restrict the graphs G only to be trees.

19



Corollary 28. For every integer n, there exist an n-vertex tree T with Θ(n4/3)
cherries and a locally 3-bounded coloring c of Kn such that c is not T -proper.
Moreover, the coloring c is globally 9-bounded.

Next, consider a tree T ′m of radius two with one vertex of degree
√
m, all its

neighbors of degree
√
m and all their other neighbors of degree one. It follows

that T ′m has m+ 1 vertices and maximum degree
√
m. Lemma 27 implies that

both Theorems 3 and 5 are tight in the regime ∆(G) = Θ(
√
n).

Now we present a similar type of coloring to the one from Lemma 27 which
will not contain any properly colored graph of diameter two. We will then use
it to show that Theorem 3 is in fact tight, again up to a constant factor, for all
values of n and ∆. Even more, in this case we do not need G to be spanning.
In fact G can be of a fixed order completely independent on n (more precisely,
our graphs G will be only of order Θ

(
∆2
)
). Let us start with the following

auxiliary lemma.

Lemma 29. For a fixed integer ` ≥ 3, there exists a locally (3n/`)-bounded
edge-coloring of Kn such that c contains no properly colored `-vertex graph of
diameter two.

Proof. Split the vertex-set V (Kn) into n parts P1, . . . , P`/3, each of size 3n/`.
Analogously to the proof of Lemma 27, the coloring c uses a palette of colors
[`/3] ∪

(
[`/3]

2

)
and two vertices x ∈ Pi and y ∈ Pj are colored with the color

{i, j}. It holds that c is locally (3n/`)-bounded.
Now let G be an `-vertex graph of diameter two, and suppose c contains

a properly colored copy of G. By the pigeonhole principle, at least one of the
parts Pi ⊆ V (Kn) contains at least three vertices of G. Let u1, u2, u3 ∈ V (G)
be those vertices. If there is a pair of vertices from {u1, u2, u3} that does not
span an edge in G, then there is no part Pj for its common neighbor so that
we avoid having a monochromatic path on three vertices in c. But that means
{u1, u2, u3} must be a triangle in G. Since c(v1v2) = c(v2v3) = c(v3v1), we
conclude that c does not contain a properly edge-colored copy of G.

We are now ready to prove Proposition 4.

Proof of Proposition 4. Let PG(2, q) be a projective plane of order q, and let Gq

be the orthogonal polarity graph of PG(2, q), which was introduced by Erdős
and Rényi in [11]. Specifically, the vertex set of Gq is the set of all points of
PG(2, q), where two distinct vertices (x1, x2, x3) and (y1, y2, y3) are adjacent if
and only if x1y1 +x2y2 +x3y3 = 0. It follows that Gq has ` := q2 +q+1 vertices,

maximum degree ∆ := q+ 1, and diameter two. Note that
√
` ≤ ∆ ≤

√
1.3`. It

follows that the edge-coloring of Kn from Lemma 29 is not Gq-proper.

We finish this section with a construction of a coloring suitable for showing
that also Theorem 5 is tight, up to a constant factor, for any choice of ∆. We
start with an analogue of Lemma 29.

Lemma 30. Fix integers ` > 0 and n ≥ 4`, and let G be a graph of diameter
two with the additional property that for every v ∈ V (G), the neighborhood of
v does not contain an independent set of size 3. Then there exists a globally
(4`)-bounded coloring of Kn such that any rainbow copy of G in c contains at
most 3 vertices from the set {1, . . . , 4`} ⊆ V (Kn).
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Proof. Let X := {1, . . . , 4`}. It will be enough to describe just the colors of the
edges with at least one endpoint in X (the coloring of the subgraph induced by
V (Kn)\X can be, for instance, rainbow using only colors that are disjoint from
those we use in the rest of this paragraph). The set of colors we use for edges
that touch X will be [n]. If both v1 ∈ X and v2 ∈ X, then we color v1v2 with
min(v1, v2). In other words, c is a lexicographic coloring on the set X. On the
other hand, if v1 ∈ X and v2 ∈ V (Kn) \X, the color of v1v2 will be v2.

Suppose there is a rainbow copy of G that contains z ≥ 4 vertices from
the set X. Let v1 < v2 < · · · < vz be these vertices, and let u1, . . . , uz be
their corresponding vertices in G. For convenience, we also write ui < uj if
1 ≤ i < j ≤ z. It follows from the definition of c that at most one of the pairs
u1u2 and u1u3 can form an edge of G.

First consider the case u1u2 ∈ E(G). Let u be a common neighbor of u1

and u3, and v the vertex in Kn corresponding to u. It follows that v must be
in X (as otherwise c(vv1) = c(vv3) = v). Even more, v actually must be v2

(otherwise c(v1v2) = c(v1v)). Translated back to G, we conclude that u = u2.
The same reasoning applied to u1 and u4 yields that u2 is also their common
neighbor. But this is impossible, since c(v2v3) = c(v2v4).

Now suppose u1u3 ∈ E(G) (and hence u1u2 /∈ E(G)). Then the only com-
mon neighbor of u1 and u2 can be u3 and, analogously, the only neighbor of
u1 and u4 can be u3. But that means that all the vertices u1, u2 and u4 are
neighbors of u3, hence at least one of the three pairs from {u1, u2, u4} is an
edge of G. Let uu′ such that u < u′ be one such edge, and let v ∈ V (Kn)
and v′ ∈ V (Kn) be the vertices corresponding to u and u′, respectively. Since
v < v3, it follows that c(vv′) = c(vv3) = v, a contradiction.

Finally, consider the case when u1u2 /∈ E(G) and u1u3 /∈ E(G). Let u ∈
V (G) be a common neighbor of u1 and u2 and v its corresponding vertex in Kn.
Note that v > v3. By the same reasoning as in the previous two paragraphs,
v ∈ X, and u is also a common neighbor of u1 and u3. But then the vertices
u1, u2 and u3 are all neighbors of u and hence they must span at least one edge
in G. It follows that this edge must be u2u3. But since c(u2u3) = c(u2u) = u2,
the proof of the lemma is finished.

For an integer m, let Hm be an m2-vertex graph with the vertex set [m]×[m],
where two vertices (i, j) and (i′, j′) are adjacent if and only if i = i′ or j = j′.
Hm has maximum degree 2m − 2, diameter two, and for each v ∈ V (Hm), the
neighborhood of v induces a subgraph with independence number at most 2.
We conclude the section by applying Lemma 30 to n-vertex graphs that are
disjoint unions of n/m2 copies of Hm.

Proof of Proposition 6. Let m := ∆/2+1 and G be an n-vertex graph consisting
of ` := n/m2 disjoint copies of Hm. Note that the maximum degree of G is ∆.
Next, let c be the globally

(
16n/∆2

)
-bounded coloring from Lemma 30 applied

with n and `.
Suppose c is G-rainbow. By the pigeonhole principle, at least one of the `

copies of Hm must contain at least 4 vertices from the set X := {1, . . . , 4`}.
However, Lemma 30 implies that each rainbow copy of Hm can intersect X in
at most 3 vertices, a contradiction.
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5 Concluding remarks

In this paper we showed that any locally k-bounded edge-coloring of Kn with
constant k is G-proper for all n-vertex graphs G with at most O(n4/3) cherries.
In particular, this confirms an old conjecture of Shearer. Moreover, the bound
Θ
(
n4/3

)
is best possible, even if we restrict our attention only to trees. More

generally, we proved that if G is an n-vertex graph with r cherries, any locally
k-bounded edge-coloring of Kn is G-proper for k = O

(
n

r3/4

)
. However, we do

not know whether the dependency k = O
(

n
r3/4

)
for graphs G with r � n4/3

cherries is optimal. Similarly, is the same dependency best possible for finding
a rainbow copy of G in globally k-bounded edge-colorings of Kn?

We have also observed that the dependency k = O
(
n/∆2

)
in Theorems 3

and 5 cannot be further improved, even in the case when G is a spanning
tree, e.g, consider the

√
n-ary tree of radius two. However, a simple greedy

embedding together with the fact that trees are 1-degenerate shows that if G
is a tree on (1 − ε)n vertices with maximum degree ∆ and k = εn/∆, then
any locally k-bounded coloring of E(Kn) is G-proper. This leads to a natural
question whether the bound k = O(n/∆2) can be improved for spanning trees
with maximum degree ∆� √n.

Finally, for any graph G with maximum degree ∆, the proofs of Theorems 3
and 5 hold (with slightly worse constants in the upper bounds on k) even if we

replace the graph Kn by a graph K with minimum degree at least n−O
(

n
∆(G)

)
.

This follows simply by adding to the set of bad events in the application of local
lemma those events, that take care of mapping an edge of G to a non-edge of
K. The corresponding proofs are then modified analogously to the modification
of the proof of Theorem 2 in order to establish Theorem 7. Therefore, if c is a
locally (globally) bounded coloring of the edges of Kn as stated in Theorem 3
(Theorem 5), we can find, by iteratively applying the previous claim, Θ

(
n

∆2

)
properly colored (rainbow) edge-disjoint copies of G in c instead of just one.
Similarly, the proofs of Theorems 2 and 7 can be used to find properly colored
and rainbow copies of a graph with r cherries in bounded colorings of graphs
with large minimum degree.
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