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BOOTSTRAP PERCOLATION IN RANDOM k-UNIFORM

HYPERGRAPHS

MIHYUN KANG1, CHRISTOPH KOCH2 AND TAMÁS MAKAI3

Abstract. We investigate bootstrap percolation with infection threshold r >

1 on the binomial k-uniform random hypergraph Hk(n, p) in the regime n−1 ≪

nk−2p ≪ n−1/r , when the initial set of infected vertices is chosen uniformly

at random from all sets of given size. We establish a threshold such that if
there are less vertices in the initial set of infected vertices, then whp only a few
additional vertices become infected, while if the initial set of infected vertices
exceeds the threshold then whp almost every vertex becomes infected. In addi-
tion, for k = 2, we show that the probability of failure decreases exponentially.

1. Introduction

Bootstrap percolation on a hypergraph with infection threshold r ≥ 1 is a deter-
ministic infection process which evolves in rounds. In each round every vertex has
exactly one of two possible states: it is either infected or uninfected. We denote
the set of initially infected vertices by Ar(0). We say that a vertex u is a neighbour
of v if there exists an edge containing both u and v. In each round of the process
every uninfected vertex v becomes infected if it has at least r infected neighbours,
otherwise it remains uninfected. Once a vertex has become infected it remains
infected forever. The process stops once no more vertices become infected and we
denote this time step by T . The final infected set is denoted by Ar(T ).

Bootstrap percolation was introduced by Chalupa, Leath, and Reich [4] in the
context of magnetic disordered systems. Since then bootstrap percolation processes
(and extensions) have been used to describe several complex phenomena: from
neuronal activity [1, 6] to the dynamics of the Ising model at zero temperature [7].

In the context of social networks, bootstrap percolation provides a prototype
model for the spread of ideas. In this setting infected vertices represent individuals
who have already adopted a new belief and a person adopts a new belief if at least
r of his acquaintances have already adopted it.

On the d-dimensional grid [n]d bootstrap percolation has been studied by Balogh,
Bollobás, Duminil-Copin, and Morris [3], when the initial infected set contains every
vertex independently with probability p. For the size of the final infection set they
showed the existence of a sharp threshold. More precisely, they established the
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threshold probability pc, such that if p ≤ (1− ε)pc, then the probability that every
vertex in [n]d becomes infected tends to 0, as n → ∞, while if p ≥ (1 + ε)pc, then
the probability that every vertex in [n]d becomes infected tends to one, as n → ∞.

Bootstrap percolation has also been studied for several random graph models.
For instance Amini and Fountoulakis [2] considered the Chung-Lu model [5] where
the vertex weights follow a power law degree distribution and the presence of an
edge {u, v} is proportional to the product of the weights of u and v. Taking into
account that in this model a linear fraction of the vertices have degree less than r
and thus at most a linear fraction of the vertices can become infected the authors
proved the size of the final infected set Ar(T ) exhibits a phase transition.

Janson,  Luczak, Turova, and Vallier [8] analysed bootstrap percolation on the
binomial random graph G(n, p) where every edge appears independently with prob-
ability p. For r ≥ 1 and n−1 ≪ p ≪ n−1/r they showed that there is a threshold
such that if the initial number of infected vertices is below the threshold, then the
process infects only a few additional vertices and if the initial number of infected
vertices exceeds the threshold, then almost every vertex becomes infected.

In this paper we investigate the binomial random hypergraph Hk(n, p), where
every edge (k-tuple of vertices) is present independently with probability p. We
choose the initial infected set uniformly at random and consider bootstrap perco-
lation with infection threshold r > 1 in the regime n−1 ≪ nk−2p ≪ n−1/r. The
main contribution of this paper are:

• strengthening of the result in [8], by showing that the failure probability
decreases exponentially (Theorem 2);

• extension of the original results from graphs to hypergraphs (Theorem 1).

2. Main Results

We extend the following result, which was originally proved in [8], to Hk(n, p):
Consider bootstrap percolation with infection threshold r on G(n, p), where n−1 ≪
p ≪ n−1/r. There is a threshold br = br(n, p) such that if |Ar(0)| ≤ (1− ε)br, then
with probability tending to one as n → ∞ (whp for short) only a few additional
vertices become infected, while if |Ar(0)| ≥ (1+ε)br, then whp almost every vertex
in the process becomes infected. For integers k ≥ 2 and r > 1 set

bk,r := bk,r(n, p) =











(

1 − 1
r

)

(

(r−1)!

n(( n

k−2
)p)

r

)1/(r−1)

if r > 2

1
2(2k−3)

1

n(( n

k−2
)p)2 if r = 2,

and note that the only difference for the r = 2 case is a 1/(2k− 3) multiplier. Since
2k − 3 = 1 when k = 2 this is consistent with the threshold in the graph case i.e.
b2,r = br.

Theorem 1. For k ≥ 2 consider bootstrap percolation with infection threshold r > 1
on Hk(n, p) when n−1 ≪ nk−2p ≪ n−1/r. Assume the initial infection set is chosen

uniformly at random from all sets of vertices of size a = a(n). Then for any fixed

ε > 0 we have that

• if a ≤ (1 − ε)bk,r then whp |Ar(T )| = O(bk,r);
• if a ≥ (1 + ε)bk,r then whp |Ar(T )| = (1 + o(1))n.
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Using the methods developed for this result we also obtain a strengthened form
of the result for G(n, p) establishing exponentially small bounds on the failure
probability.

Theorem 2. Consider bootstrap percolation with infection threshold r > 1 on

G(n, p) when n−1 ≪ p ≪ n−1/r. Assume the initial infection set is chosen uni-

formly at random from the set of vertices of size a = a(n). Then for any fixed ε > 0
the following holds with probability 1 − exp(−Ω(b2,r)):

• if a ≤ (1 − ε)b2,r, then |Ar(T )| = O(b2,r);
• if a ≥ (1 + ε)b2,r, then |Ar(T )| = (1 + o(1))n.

The proofs rely on surprisingly simple methods. When the number of vertices
infected in the individual rounds is large, we apply Chebyshev’s or Chernoff’s in-
equality. However when the process dies out, these changes can become arbitrarily
small. In this case we couple the infection process with a subcritical branching
process which dies out very quickly.

3. Proof outlines

We first show the outline for the proof of Theorem 1. For brevity we will only
describe the r > 2 case in detail and comment on the differences for r = 2 at the
end.

Start with a given set of initially infected vertices Ar(0) and consider the infection
process round by round. At the end of round t ≥ 1 we partition the set of vertices
into A0(t),A1(t), ...,Ar(t) where the set Ai(t) consists of all the vertices which have
exactly i infected neighbours (these are vertices in Ar(t− 1)), for i < r, and Ar(t)
consists of all the vertices which have at least r infected neighbours.

For every 0 ≤ i ≤ r we aim to define a sequence {ai(t)}t≥0 in such a way that
|Ai(t)| ≈ ai(t). We use the following initial values for the sequences a0(0) = n,
ar(0) = a, and ai(0) = 0 for 0 < i < r.

As long as |Ar(t)| = o
(

(

nk−2p
)−1

)

the expected number of infected neighbours

of a vertex is o(1) and thus the typical vertex that becomes infected in this round
has exactly r infected neighbours in r different edges. In round t+ 1 we determine
for any uninfected vertex v ∈ V \Ar(t) whether it changes its partition class. Note
that this only happens if it has at least one neighbour which became infected in
round t. Therefore, for 0 < i ≤ r, the expected change |Ai(t+ 1)\Ai(t)| of the size
of the partition class can be approximated by

(1) ai(t + 1) − ai(t) ≈

i
∑

j=1

(

(ar(t) − ar(t− 1))j

j!
ai−j(t)

)((

n

k − 2

)

p

)i−j

,

ignoring any negative terms (which correspond to vertices leaving their partition
class). Similarly we assume that the number of vertices without infected neighbours
does not change significantly, i.e. a0(t + 1) = a0(t) = n. From (1) we deduce

(2) ai(t + 1) ≈
ar(t)i

i!
n

((

n

k − 2

)

p

)i

+ ai(0),

for 0 < i ≤ r. The behaviour of the sequence depends on the size a = |Ar(0)| of
the initial set. We will show the following: in the subcritical regime, characterised
by a ≤ (1 − ε)bk,r, the sequence {ar(t)}t≥0 converges to a value a∗ = O(bk,r) as
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t → ∞. On the other hand, in the supercritical regime, a ≥ (1+ε)bk,r, the sequence
{ar(t)}t≥0 tends to infinity as t → ∞.

First consider the subcritical regime. Since in this case ar(t) converges we have
that the differences ∆(t) := ar(t + 1) − ar(t) form a decreasing function in t and
show that, for any fixed η > 0, there exists a τ , which does not depend on n, such
that ∆(τ) ≤ ηbk,r. The fact that |Ai(t)| is concentrated around ai(t) for t < τ
follows from Chebyshev’s inequality.

Since we are in the subcritical regime the size of the individual generations will
become small and the concentration will fail. In order to avoid this we attempt
to analyse the remaining steps together. Consider the forest where every vertex in
Ar(τ + 1)\Ar(τ) is a root. Recall that in order for a vertex to become infected in
round t+1 it must have a neighbour that got infected in round t. The children of a
vertex v ∈ Ar(t+ 1)\Ar(t) will be the vertices u ∈ Ar(t+ 2)\Ar(t+ 1) which lie in
an edge containing v and should this relation not be unique for some vertex u, u is
assigned arbitrarily to one of the candidates. Clearly every vertex of Ar(T ) \Ar(τ)
is contained in the forest and thus the size of this forest matches the number vertices
which got infected after round τ .

Note that for every δ > 0 there exists a t0 such that |Ai(t)| ≤ (1 + δ)ai(τ), for
every 0 ≤ i ≤ r and τ < t ≤ t0. Also up until time t0+1 we have an upper coupling
by a Galton-Watson branching process with |Ar(τ + 1)\Ar(τ)| roots and offspring

distribution
∑r−1

j=0 Bin((1 + δ)ar−j(τ), qj) where

qj =

(

n

k − 2

)

p
(δar(τ))j−1

(j − 1)!

((

n

k − 2

)

p

)r−j−1

.

For small enough δ the expected number of offspring in one step is
∑r−1

j=0(1 + δ)ar−j(τ)qj < 1 and therefore this is a subcritical process, i.e. it dies

out with probability 1. For every t we have that |Ar(t)| ≤ (1 + δ)ar(τ) implies
|Ai(t + 1)| ≤ (1 + δ)ai(τ), for all 0 ≤ i < r, by (2), and thus it is enough to show
that |Ar(T )| ≤ (1 + δ)ar(τ). Due to the upper coupling with the branching pro-
cess we have that the probability that |Ar(T )| > (1 + δ)ar(τ) is dominated by the
probability that the total size of the branching process exceeds δar(τ). However
for properly chosen η, δ > 0 the probability that the total size of the branching
process exceeds δar(τ) is sufficiently small. Therefore we have that there are at
most (1 + δ)ar(τ) infected vertices in total.

Now for the supercritical case. Recall that (1) and (2) hold when

ar = o
(

(

nk−2p
)−1

)

. Again we consider the differences ∆(t) = ar(t + 1) − ar(t).

Although at the beginning of the process the values of ∆(t) decrease there exists a
value t1 not depending on n such that for every t > t1 we have that ∆(t+1) > ∆(t).
In fact there exists a t2 not depending on n such that for t ≥ t2 we have that
∆(t + 1) > 2∆(t). Therefore the probability of non-concentration is dominated by
a geometric sequence and applying the union bound gives us concentration as long

as ar(t) = o
(

(

nk−2p
)−1

)

. When ar(t) = Ω
(

(

nk−2p
)−1

)

the expected number

of neighbours is Ω(1) and thus our approximation in (1) does not hold any more.
Refining these approximations shows that at most 2 rounds are required for almost
every vertex to become infected, with Θ(n) vertices becoming infected in every
required step.
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Recall that for r > 2 the typical vertex became infected when it was contained
in r different edges each containing a different infected vertex. When r = 2 this
is equivalent to finding two intersecting edges each containing a different infected
vertex. However unlike the r > 2 case finding two such edges in step t implies
that every vertex in these edges is infected by step t + 1. Two intersecting edges
typically overlap in exactly one vertex and thus finding such an edge pair implies
that 2k − 3 vertices will become infected, not just one. Taking this into account
gives us the modified bound on the threshold.

The proof of Theorem 2 is analogous. In the random graph case, in round t of
the process only those edges are examined which contain exactly one vertex from
A(t)\A(t−1) and no vertices from A(t−1). Since each of these edges can contain at
most one uninfected vertex the behaviour of the individual vertices is independent.
Thus we can replace Chebyshev’s inequality with Chernoff’s inequality and achieve
a stronger bound on the failure probability.
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