
ar
X

iv
:1

40
9.

41
92

v2
  [

m
at

h.
C

O
] 

 1
5 

Ju
l 2

01
5

Many T copies in H-free graphs

Noga Alon ∗ Clara Shikhelman †

Abstract

For two graphs T and H with no isolated vertices and for an integer n, let ex(n, T,H) denote

the maximum possible number of copies of T in an H-free graph on n vertices. The study of

this function when T = K2 is a single edge is the main subject of extremal graph theory. In the

present paper we investigate the general function, focusing on the cases of triangles, complete

graphs, complete bipartite graphs and trees. These cases reveal several interesting phenomena.

Three representative results are:

(i) ex(n,K3, C5) ≤ (1 + o(1))
√

3

2
n3/2,

(ii) For any fixed m, s ≥ 2m− 2 and t ≥ (s− 1)! + 1, ex(n,Km,Ks,t) = Θ(nm−(m
2
)/s) and

(iii) For any two trees H and T , ex(n, T,H) = Θ(nm) where m = m(T,H) is an integer depending

on H and T (its precise definition is given in Section 1).

The first result improves (slightly) an estimate of Bollobás and Győri. The proofs combine

combinatorial and probabilistic arguments with simple spectral techniques.

1 Introduction

For two graphs T and H with no isolated vertices and for an integer n, let ex(n, T,H) denote the

maximum possible number of copies of T in an H-free graph on n vertices.

When T = K2 is a single edge, ex(n, T,H) is the well studied function, usually denoted by

ex(n,H), specifying the maximum possible number of edges in an H-free graph on n vertices. There

is a huge literature investigating this function, starting with the theorems of Mantel [34] and Turán

[42] that determine it for H = Kr. See, for example, [39] for a survey.

In the present paper we show that the function for other graphs T besides K2 exhibits several

additional interesting features. We illustrate these by presenting several general results and by

focusing on various special cases of graphs H and T in certain prescribed families. The question is

interesting for many other graphs T and H, and many of the results here can be extended.

There are several sporadic papers dealing with the function ex(n, T,H) for T 6= K2. The first one

is due to Erdős in [16], where he determines ex(n,Kt,Kr) for all t < r (see also [9] for an extension).
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A notable recent example is given in [27], where the authors determine this function precisely for

T = C5 and H = K3.

The case T = K3 and H = C2k+1 has also been studied. Bollobás and Győri [8] proved that

(1 + o(1))
1

3
√
3
n3/2 ≤ ex(n,K3, C5) ≤ (1 + o(1))

5

4
n3/2. (1)

Győri and Li [25] proved that for any fixed k ≥ 2

(

k

2

)

exbip(
2n

k + 1
, C4, C6, . . . , C2k) ≤ ex(n,K3, C2k+1) ≤

(2k − 1)(16k − 2)

3
ex(n,C2k), (2)

where exbip(m,C4, C6, . . . , C2k) denotes the maximum possible number of edges in a bipartite graph

on m vertices and girth exceeding 2k.

Here we start with a simple characterization of the pairs of graphsH and T for which ex(n, T,H) =

Θ(nt), where t is the number of vertices of T . Combining this observation with the graph removal

lemma we establish an Erdős-Stone type result by giving an asymptotic formula for ex(n,Kt,H) for

any graph H with chromatic number χ(H) > t.

Next we study the case T = K3. Our first result characterizes all graphsH for which ex(n,K3,H) ≤
c(H)n. The friendship graph Fk is the graph consisting of k triangles with a common vertex. Equiv-

alently, this is the graph obtained by joining a vertex to all 2k vertices of a matching of size k. Call

a graph an extended friendship graph iff its 2-core is either empty or Fk for some positive k.

Theorem 1.1. There exists a constant c(H) so that ex(n,K3,H) ≤ c(H)n if and only if H is a

subgraph of an extended friendship graph.

We also slightly improve the upper estimates in (1) and in (2) above, proving the following.

Proposition 1.1. The following upper bounds hold.

(i) ex(n,K3, C5) ≤ (1 + o(1))
√
3
2 n3/2.

(ii) For any k ≥ 2, ex(n,K3, C2k+1) ≤ 16(k−1)
3 ex(⌈n/2⌉, C2k).

A similar result has been proved independently by Füredi and Özkahya [23], who showed that

ex(n,K3, C2k+1) ≤ 9k ex(n,C2k).

The next theorem deals with maximizing the number of copies of a complete graph while avoiding

complete bipartite graphs:

Theorem 1.2. For any fixed m and t ≥ s satisfying s ≥ 2m− 2 and t ≥ (s− 1)! + 1 there are two

constants c1 = c1(s, t) and c2 = c2(s, t) such that

c1n
m−(m2 )/s ≤ ex(n,Km,Ks,t) ≤ c2n

m−(m2 )/s.

The last two theorems focus on the case where the excluded graph H is a tree. Before stating

the results we give the following definitions:
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Definition 1.3. For a graph T , a set of vertices U ⊆ V (T ) and an integer h, the (U, h) blow-up

of T is the following graph. Fix the vertices in U , and replace each connected component in T \ U
with h vertex disjoint copies of it connected to the vertices of U exactly as the original component is

connected to these in T .

Definition 1.4. For two trees, T and H, let m(T,H) be the maximum integer m such that there is

a (U, |V (H)|) blow-up of T containing no copy of H and having m connected components in T \ U .

In this notation we prove the following.

Theorem 1.5. For every two integers t and h there are positive constants c1(t, h), c2(t, h) so that

the following holds. Let H be a tree on h vertices and let T be a tree on t vertices, then

c1(t, h)n
m ≤ ex(n, T,H) ≤ c2(t, h)n

m,

where m = m(T,H).

Finally we consider the case where T is a bipartite graph and H is a tree. For a tree H, any

H-free graph can have at most a linear number of edges. Therefore, by a theorem proved in [1], the

maximum possible number of copies of any bipartite graph T in it is bounded by O(nα(T )), where

α(T ) is the size of a maximum independent set in T . Using the next definition we characterize the

cases in which ex(n, T,H) = Θ(nα(T )).

Definition 1.6. An edge cover of a graph T (with no isolated vertices) is a set Γ ⊂ E(T ) such that

for each vertex v ∈ V (T ) there is an edge e ∈ Γ for which v ∈ e. Call an edge-cover minimum if it

has the smallest possible number of edges.

A set of vertices U ⊂ V (T ) is called a U(Γ)-set if each connected component of T \ U intersects

exactly one edge of Γ, and the number of these connected components is |Γ|.

Note that if Γ is an edge cover of T and U is a U(Γ) set, then any connected component of T \U
is either an edge of Γ or a single vertex.

Theorem 1.7. Let T be a bipartite graph with no isolated vertices and let H be a tree on h vertices.

Then the following are equivalent:

1. ex(n, T,H) = Θ(nα(T ))

2. For any minimum edge-cover Γ of T there is a choice of a U(Γ)-set U such that the (U, h)

blow-up of T does not contain a copy of H,

3. For some minimum edge cover Γ of T there is a choice of a U(Γ)-set U such that the (U, h)

blow-up of T does not contain a copy of H.

It is worth noting that for T 6= K2 the function ex(n, T,H) behaves very differently from its

well studied relative ex(n,H) = ex(n,K2,H). In particular, it is easy to see that for any graph

H with at least 2 edges, if 2H denotes the vertex disjoint union of two copies of H, then ex(n,H)
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and ex(n, 2H) have the same order of magnitude. In contrast, if, for example, H = C5 then by (1),

ex(n,K3,H) = Θ(n3/2) and it is not difficult to show that ex(n,K3, 2H) = Θ(n2). Similarly, it is

known that for any graph H, ex(n,H) is either quadratic in n or is at most n2−ǫ(H) for some fixed

ǫ(H) > 0, whereas it is not difficult to deduce from the results of Ruzsa and Szemerédi in [37] that

for the graph H consisting of two triangles sharing an edge n2−o(1) ≤ ex(n,K3,H) ≤ o(n2) as shown

in Section 3.

The rest of this paper is organized as follows. In Section 2 we consider the dense case, describing

the simple characterization of pairs of graphs T and H so that ex(n, T,H) = Θ(nt) with t being the

number of vertices of T , and establishing an Erdős-Stone type result for ex(n,Kt,H) when χ(H) > t.

In Section 3 we study the case T = K3, proving Theorem 1.1 and Proposition 1.1. The proof of

Theorem 1.2 is given in Section 4, together with several related results, and the proofs of Theorems

1.5 and 1.7 are described in Section 5. The final Section 6 contains some concluding remarks and

open problems.

2 The dense case

The case where both T and H are complete graphs is studied by Erdős in [16] where he determines

that:

ex(n,Kt,Kk) =
∑

0≤i1≤···≤it≤k−2

t
∏

r=1

⌊n+ ir
k − 1

⌋.

A similar (though less accurate) result can be obtained for general graphs. We proceed with the

simple details.

An s blow-up of a graph H is the graph obtained by replacing each vertex v of H by an indepen-

dent set Wv of size s, and each edge uv of H by a complete bipartite graph between the corresponding

two independent sets Wu and Wv.

As this is going to be useful throughout the paper, denote the number of copies of a fixed graph

H in a graph G by N (G,H).

Proposition 2.1. Let T be a fixed graph with t vertices. Then ex(n, T,H) = Ω(nt) iff H is not a

subgraph of a blow-up of T . Otherwise, ex(n, T,H) ≤ nt−ǫ(T,H) for some ǫ(T,H) > 0.

Proof. If H is not a subgraph of a blow-up of T then the graph G which is the ℓ = ⌊n/t⌋-blow-up of

T contains no copy of H and yet includes at least ℓt = Ω(nt) copies of T . This establishes the first

part of the proposition.

To prove the second part, assume that H is a subgraph of the s-blow-up of T . We have to show

that in this case any H-free graph G = (V,E) on n vertices contains less than nt−ǫ copies of T for

some ǫ = ǫ(T,H) > 0. Indeed, suppose that G contains m copies of T . Let V = V1 ∪ V2 ∪ · · · ∪ Vt

be a random partition of V into t pairwise disjoint classes. Let u1, u2, . . . , ut denote the vertices of

T . Then the expected number of copies of T in which ui belongs to Vi for all i is m/tt. Thus we

can fix a partition V = V1 ∪ V2 ∪ · · · ∪ Vt so that the number of such copies of T is at least m/tt.

Construct a t-uniform, t-partite hypergraph on the classes of vertices V1, . . . , Vt by letting a set of
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vertices v1, . . . , vt with vi ∈ Vi be an edge iff G contains a copy of T on these vertices, where vi plays

the role of ui for each i. Therefore, this hypergraph contains at least m/tt edges. By a well known

result of Erdős [15], if the number of edges exceeds nt−ǫ for an appropriate ǫ = ǫ(t, s) > 0, then this

hypergraph contains a complete t-partite hypergraph with classes of vertices Ui ⊂ Vi, |Ui| = s for all

i. This gives an s-blow-up of T in the original graph G, providing a copy of H in it, contradiction.

It follows that m ≤ ttnt−ǫ, completing the proof.

When T = Kt is a complete graph, H is not a subgraph of any blow-up of T = Kt if and only

if χ(H) > t. In this case it is not difficult to determine the asymptotic value of ex(n, T,H) up to a

lower order additive term, as we show next. Note that the case t = 2 is the classical result of Erdős

and Stone [19].

Proposition 2.2. For any graph H, ex(n,Kt,H) = Ω(nt) if and only if χ(H) > t. Furthermore, if

indeed χ(H) = k > t then ex(n,Kt,H) = (1 + o(1))
(k−1

t

)

( n
k−1)

t

Proof. The first part follows directly from Proposition 2.1. To prove the second part fix t and H,

and suppose that χ(H) = k > t. We have to show that ex(n,Kt,H) = (1 + o(1))
(

k−1
t

)

( n
k−1)

t.

The lower bound is obtained by taking a Túran graph with no copy of Kk. To prove the upper

bound, assume G is an H-free graph on n vertices satisfying N (G,Kt) = ex(n,Kt,H). By the

previous proposition 2.1, as G is H-free N (G,Kk) ≤ ex(n,Kk,H) = o(nk).

Using the graph removal lemma (as stated in [2] following [37] and improved in [20]) we can

remove o(n2) edges from G and get a new graph G′ which is Kk-free. The removal of o(n2) edges

from G can remove at most o(n2)O(nt−2) = o(nt) copies of Kt, thus N (G′,Kt) = (1+o(1))N (G,Kt).

As G′ is Kk free one has N (G′,Kt) ≤ ex(n,Kt,Kk) =
∑

0≤i1≤···≤it≤k−2

∏t
r=1⌊n+ir

k−1 ⌋. This yields the
needed result.

3 Maximizing the number of triangles

3.1 Extended friendship graphs

In this subsection we prove Theorem 1.1. Here and throughout the paper, we often do not make any

serious attempt to optimize the absolute constants. We also assume, whenever this is needed, that

n is sufficiently large.

We first prove two lemmas.

Lemma 3.1. Let G = (V,E) be a graph with at least (9c − 15)(c + 1)n triangles and at most n

vertices, then it contains a copy of Fc.

Proof. Take a maximal set of edge-disjoint triangles in G, if they contain a subset of size at least c

touching the same vertex then we are done. Otherwise, one can color these triangles with 3(c−2)+1 =

3c − 5 colors so that no two triangles with the same color share a vertex (by simply coloring each

triangle with the smallest available color). Each triangle in our original graph G shares an edge with

one of these colored triangles, as they form a maximal set, so there is a set of unicolored triangles
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with at least (9c−15)(c+1)n
3c−5 = 3(c + 1)n triangles sharing edges with one of them (where here we are

counting the colored triangles too).

Focusing on the triangles colored in this color and the ones sharing edges with them, note that

there are at least 3(c+1)n of those organized in clusters, with each cluster consisting of one (colored)

central triangle and all others sharing an edge with it. There are at most n/3 central triangles and

hence more than 3cn triangles are not central, thus having two vertices in the center and one outside.

Call the outside vertex the external one. There are 3cn of them, so there must be a vertex v ∈ V

which is an external vertex of at least 3c triangles. At most 3 triangles from each cluster can share

an external vertex, so there are c triangles from different clusters sharing this vertex, and this is the

only vertex they share. These c triangles form a copy of Fc, as needed.

Lemma 3.2. For every k > 3 and n large enough there is a graph G on n vertices with at least

Ω(n1+ 1
k−1 ) triangles and no cycles of length i for any i between 4 and k.

We note that the exponent here can be slightly improved, at least for some values of k. In

particular, for k = 4 the best possible value is (1/6 + o(1))n3/2, as can be shown using the Erdős-

Rényi graph [18], or Theorem 4.6 below with t = 2. For our purposes here, however, the above

estimate suffices.

Proof. Let G′ be a random graph on a fixed set of n labeled vertices obtained by choosing, randomly

and independently, each of the
(n
3

)

potential triangles on the set of vertices to form a triangle in

G′ with probability p = 1
2n

− 2k−3
k−1 . Let X be the random variable counting the number of triangles

picked, and for 2 ≤ i ≤ k let Yi denote the random variable counting the number of cycles of length

i in which each edge comes from a different triangle. (In particular, Y2 counts the number of pairs

of selected triangles that share two vertices).

Note that if we remove one of our chosen triangles from each such cycle, then the resulting graph

will contain no cycle of length between 4 and k. Indeed, if we have such a cycle using two edges of

one triangle then replacing those by the third edge will create a shorter cycle, that cannot exist by

assumption. Similarly, a cycle of length 4 cannot be created by two triangles if we leave no pair of

triangles sharing two vertices. Put Z = X −∑k
i=2 Yi, and note that it is enough to show that the

expectation of Z is at least Ω(n1+1/(k−1)). Indeed, if this is the case, then there is a graph G′ for

which the value of Z is at least Ω(n1+1/(k−1)). Fixing such a graph and omitting a triangle from

each of the short cycles counted by the variables Yi generates a graph G with the desired properties.

Since E(X) =
(

n
3

)

p and

E(Yi) =
n · (n − 1) . . . (n− i+ 1)(n − 2)i

2i
pi ≤ (n2p)i

2i
=

ni/(k−1)

i2i+1

a simple computation shows that E(Z) ≥ (1 + o(1))(1/12 − 1/128)n1+1/(k−1) , as needed.

We can now prove Theorem 1.1.
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Proof of Theorem 1.1 . We start by showing that ex(n,K3,H) is linear in n for any extended friend-

ship graph. Let H be an extended friendship graph with h vertices and let G be a graph on n vertices

with at least c(H)n triangles, where c(H) = 10h2. We show that G must contain a copy of H.

We first show that G contains a subgraph with minimum degree at least h. As long as there is a

vertex in G of degree smaller than h, omit it. This process must terminate with a nonempty graph

containing more than 9h2n triangles, since the total number of triangles that can be omitted this

way is smaller than
(

h
2

)

n < h2n. We can thus assume that the minimum degree in G is at least h,

and that it has at most n vertices and at least 9h2n triangles.

By Lemma 3.1 G contains a copy of the 2-core of H. This copy can be extended to a copy of

H. Indeed, if H is disconnected add to it edges to make it connected (keeping the 2-core intact).

We can now embed the missing vertices of H in G one by one, starting with the 2-core and always

adding a vertex with exactly one neighbor in the previously embedded vertices. Since the minimum

degree in G is at least h this can be done, providing the required copy of H.

To complete the proof of the theorem we have to show that if H is not a subgraph of an extended

friendship graph then there is a graph G with n vertices and ω(n) triangles containing no copy of H.

Note that H is not a subgraph of an extended friendship graph iff it either contains a cycle of length

greater than 3 or it contains two vertex disjoint triangles. In the first case, Lemma 3.2 provides a

graph G with a superlinear number of triangles containing no copy of H.

For the second case let G be the complete 3-partite graph K1,⌊n−1
2

⌋,⌈n−1
2

⌉. Here all the triangles

share a common vertex, hence no two are disjoint. As the number of triangles is ⌊ (n−1)2

4 ⌋, this

completes the proof.

Remark 3.1. For any connected graph H with h vertices, an n vertex graph consisting of a disjoint

union of ⌊n/(h− 1)⌋ cliques, each of size h− 1, contains no copy of H and at least Ω(h2n) triangles,

showing that the estimate in the proof of the last theorem is tight, up to a constant factor.

3.2 Cycles

In this subsection we prove Proposition 1.1, which (slightly) improves the estimates in [8] and [25].

We start with the proof of part (i). Let G = (V,E) be a C5-free graph on n vertices with the

maximum possible number of triangles. Clearly we may assume that each edge of G lies in at least

one triangle. Put |E| = m and N (G,K3) = t. For each vertex v ∈ V the graph spanned by its

neighborhood N(v) does not contain a path of length 3, and thus, by a known result of Erdős and

Gallai [17], the number of edges it spans satisfies |E(N(v))| ≤ dv , where dv = |N(v)| is the degree of

v. The number of edges in N(v) is exactly the number of triangles containing v and therefore

t ≤
∑

v dv
3

=
2m

3
(3)

Color the vertices of G randomly and independently, where each vertex is blue with probability

p (which will be chosen later to be p = 1/3) and red with probability 1 − p. For each edge e = uv

of G choose arbitrarily one vertex w = w(e) such that u, v, w form a triangle. Denote by E′ the set

7



of edges e = uv of G so that both u and v are colored blue and w is colored red, and denote by V ′

the set of all blue vertices. Note that the graph (V ′, E′) on the blue vertices contains no C4 since

otherwise each edge of this C4 forms a triangle together with a red vertex, providing a copy of C5 in

G, which is impossible. Therefore

|E′| ≤ ex(|V ′|, C4) = (
1

2
+ o(1))|V ′| 32 .

Taking expectation in both sides and using linearity of expectation and the fact that the binomial

random variable |V ′| is tightly concentrated around its mean we get

p2(1− p)m ≤ E(|E′|) ≤ (
1

2
+ o(1))(np)

3
2 .

This is because for each edge uv, the probability it belongs to E′ is p2(1− p). Thus

m ≤ (
1

2
+ o(1))n

3
2

1√
p(1− p)

.

Since the right hand side is minimized when p = 1
3 select this p to conclude that

m ≤ (
1

2
+ o(1))n

3
2
3
√
3

2
.

Plugging into (3) we get

t ≤ (
1

2
+ o(1))n

3
2

√
3 =

√
3

2
n

3
2 + o(n

3
2 )

as needed. �

The proof of part (ii) of Proposition 1.1 is similar. Here we do not optimize the value of the

probability p and simply take p = 1/2, for small values of k the result can be slightly improved. To

get the precise statement as stated in the proposition we use an additional trick. The details follow.

Let G = (V,E) be a C2k+1-free graph on n vertices with the maximum possible number of

triangles. As before, assume that each edge of G lies in at least one triangle, and for each edge

e = uv of G choose a vertex w = w(e) so that u, v, w form a triangle in G. Put |E| = m and

N (G,K3) = t. Since the neighborhood of any vertex v of G contains no path on 2k vertices, the

Erdős-Gallai theorem implies that it contains at most (k − 1)dv edges, implying that

t ≤
∑

v(k − 1)dv
3

=
2(k − 1)m

3
(4)

Split the vertices of G into m = ⌈n/2⌉ disjoint subsets, where if n is even each subset is of size 2

and otherwise one subset is of size 1. If a subset chosen is an edge uv of the graph G, we ensure that

if w = w(uv) then u = w(vw) and v = w(uw). As the subsets are disjoint, it is easy to check that

such a choice is possible. Now color the vertices randomly red and blue: in each subset one vertex is

colored red and the other is blue (where each of the two possibilities are equally likely). If n is odd

then the vertex in the last class gets a random color. As before, let E′ denote the set of edges e = uv

of G so that both u and v are colored blue and w = w(e) is colored red, and denote by V ′ the set of
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all blue vertices. The graph (V ′, E′) contains no C2k since otherwise we get a copy of C2k+1 in G,

which is impossible. Thus

|E′| ≤ ex(|V ′|, C2k) ≤ ex(⌈n/2⌉, C2k) (5)

since here |V ′| is always of cardinality either ⌈n/2⌉ or ⌊n/2⌋.
We claim that the expected cardinality of E′ is at least m/8. Indeed, if for an edge uv with

w = w(uv) no pair of the three vertices u, v, w lie in a single subset, then the probability that u, v

are blue and w is red is exactly 1/8. For the other edges note that if uv forms one of our subsets

and w = w(uv), then the probability that uv lies in E′ is 0, but the probability that uw lies in E′

is 1/4 and so is the probability that vw lies in E′. Hence the contribution from these three edges to

the expectation of |E′| is 2/4 > 3/8. Linearity of expectation thus implies that the expected value

of |E′| is at least m/8 and thus by (5), m/8 ≤ ex(⌈n/2⌉, C2k), and by (4)

t = N (G,K3) ≤
16(k − 1)

3
ex(⌈n/2⌉, C2k)

completing the proof. �

Remark 3.2. Bondy and Simonovits [11] proved that ex(n,C2k) ≤ O(kn1+ 1
k ). This has recently

been improved by Bukh and Jiang [13] to ex(n,C2k) ≤ O(
√
k log k n1+ 1

k ). Thus the upper bound

obtained from the above proof is ex(n,K3, C2k+1) ≤ O(k3/2
√
log k n1+1/k).

3.3 Books

An s-book is the graph consisting of s triangles, all sharing one edge.

Proposition 3.3. For each fixed s ≥ 2, if H = H(s) is the s-book then n2−o(1) ≤ ex(n,K3,H) =

o(n2)

Proof. The lower bound follows from the construction of Ruzsa and Szemerédi [37], based on Behrend’s

construction [7] of dense subsets of the first n integers that contain no three term arithmetic pro-

gressions. This construction gives graphs on n vertices with

m =
n2

eO(
√
logn)

= n2−o(1)

edges in which every edge is contained in a unique triangle. Therefore these graphs contain no

2-book, and hence no s-book, showing that

ex(n,K3,H(s)) ≥ m/3 ≥ n2

eO(
√
logn)

= n2−o(1).

The upper bound follows from the triangle removal lemma proved in [37]. If G is a graph on n

vertices containing t triangles and no copy of H(s), then every edge is contained in at most s − 1

triangles. Therefore, one has to remove at least t/(s− 1) edges of G in order to destroy all triangles.

It follows that if t ≥ ǫn2 then, by the triangle removal lemma, the number of triangles in G is at

least δn3 for some δ = δ(ǫ, s) > 0 , and thus, by averaging, G contains an r-book for r ≥ 2δn > s,

contradiction. Thus t = o(n2), as needed.
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4 Complete graphs and complete bipartite graphs

In this section we consider the cases in which T and H are either complete or complete bipartite

graphs. Note that when both T and H are complete graphs the precise value of ex(n, T,H) is

known, as mentioned in Section 2. The following argument suffices to provide the precise value of

ex(n,Ka,b,Kt). If u and v are two non-adjacent vertices in a Kt-free graph G, then by making the

set of neighbors of u identical to that of v (or vice versa), the graph stays Kt-free, and one can

always choose one of these modifications to get a graph containing at least as many copies of Ka,b

as G. This is because every copy of Ka,b in G that contains both u and v remains a copy in the

modified graph as well. Repeating this procedure until every two nonadjacent vertices have the same

neighborhoods we get a complete multipartite graph with n vertices and at most t− 1 color classes,

and one can now optimize the sizes of the color classes to obtain the maximum possible number of

copies of Ka,b. (Note that this optimum is not necessarily obtained for equal or nearly equal color

classes. Note also that the precise argument here requires to ensure the process above converges.

To do so we can assign all potential copies of Ka,b nearly equal algebraically independent weights,

and always select the modification that maximizes the total weight of all copies obtained. It is not

difficult to argue that for large n, in the extremal graph for any two distinct vertices, there are copies

of Ka,b containing exactly one of them, and therefore in the above process the total weight keeps

increasing and it must converge.) The same argument shows that for any complete multipartite

graph T with less than t color classes, the extremal graph giving the value of ex(n, T,Kt) is itself a

complete multipartite graph.

As to the case when H = Ks,t for s ≤ t and T = Km, note that if H = K1,t, then it is a star and

avoiding it in a graph means bounding the degrees of the vertices. Thus to find ex(n,Km,K1,t) for

m ≤ t first note that as each vertex has degree at most t− 1 the number of Kms is at most n
m

( t−1
m−1

)

.

On the other hand, if n is divisible by t then taking n
t disjoint copies of Kt will yield

n
t

( t
m

)

= n
m

( t−1
m−1

)

copies of Km. If n is not divisible by t a similar bound can be achieved by taking ⌊nt ⌋ copies of Kt and

a clique on the remaining vertices. In [26] it is conjectured that the above construction is optimal,

and this is proved for some specific cases.

For general m, s, t we start by proving Theorem 1.2. After that we prove another bound for

cases that do not satisfy the assumptions of the theorem and then establish tighter results for several

values of s, t when T = K3.

To prove Theorem 1.2 in a more precise form we prove two lemmas, one for the upper bound and

one for the lower.

Lemma 4.1. For any fixed m ≥ 2 and t ≥ s ≥ m− 1

ex(n,Km,Ks,t) ≤ (
1

m!
+ o(1))(t − 1)

m(m−1)
2s nm−m(m−1)

2s

Proof. We apply induction on m.

For m = 2, by the theorem of Kövari, Sós and Turán in [32]:

ex(n,K2,Ks,t) = ex(n,Ks,t) ≤ (
1

2
+ o(1))(t − 1)

1
sn2− 1

s .

10



This serves as our base case.

Now assume we have proved this for m and let us prove it for m+ 1. In what follows it will be

convenient to use the means-inequality: For each r < s and positive reals x1, . . . , xn:

n
∑

i=1

xri ≤ n1−r/s(

n
∑

i=1

xsi )
r/s.

Let G = (V,E) be a Ks,t free graph on n vertices, and let us bound the number of copies of Km+1

in it. For each v ∈ V we know that its neighborhood N(v) does not contain any copy of Ks−1,t. By

the induction assumption we can bound the number of copies of Km in N(v):

N (N(v),Km) ≤ ex(dv ,Km,Ks−1,t) ≤ (
1

m!
+ o(1))(t − 1)

m(m−1)
2(s−1) d

m−m(m−1)
2(s−1)

v

By bounding the number of Km in each N(v) we can bound the number of Km+1 in G resulting

in:

N (G,Km+1) ≤
1

m+ 1
(
1

m!
+ o(1))(t − 1)

m(m−1)
2(s−1)

∑

v

d
m−m(m−1)

2(s−1)
v

≤(
1

(m+ 1)!
+ o(1))(t − 1)

m(m−1)
2(s−1) (

∑

v

dsv)
m(2s−m−1)

2s(s−1) n
1−m(2s−m−1)

2s(s−1) (6)

≤(
1

(m+ 1)!
+ o(1))(t − 1)

(m+1)m
2s n

m(2s−m−1)
2(s−1)

+1−m(2s−m−1)
2s(s−1) (7)

=(
1

(m+ 1)!
+ o(1))(t − 1)

(m+1)m
2s n(m+1)− (m+1)m

2s

Here we used the means inequality to get the first inequality (an easy calculation shows that

m− m(m−1)
2(s−1) < s). To bound the sum

∑

v d
s
v we used the fact that the number of s-edged stars in G

cannot exceed
(n
s

)

(t−1) because otherwise t of them will share the same s leaves, creating a Ks,t.

Lemma 4.2. For any fixed m, s ≥ 2m− 2 and t ≥ (s− 1)! + 1

ex(n,Km,Ks,t) ≥ (
1

m!
+ o(1))nm−m(m−1)

2s

Proof. We use the projective norm-graphs constructed in [4], where it is shown that H(q, s) has

n = (1 + o(1))qs vertices, is d = (1 + o(1))qs−1-regular, and is Ks,(s−1)!+1 free. An (n, d, λ) graph

is a d-regular graph on n vertices in which all eigenvalues but the first have absolute value at most

λ. As shown in [3] (see also [31], Theorem 4.10) the following holds: Let G1 be a fixed graph with

r edges, s vertices and maximum degree ∆. Let G2 be an (n, d, λ) graph. If n ≫ λ(nd )
∆ then the

number of copies of G1 in G2 is (1 + o(1)) ns

|Aut(G1)|(
d
n)

r.

In our case we take G1 = Km and G2 = H(q, s). By the results in [41] or [5] we know that

the second eigenvalue, in absolute value, of H(q, s) is q
s−1
2 , thus to get the inequality n ≫ λ(nd )

∆ it

suffices that m < s+3
2 . Plugging the choice of G1, G2 into the result mentioned above implies:

11



N (H(q, s),Km) =(1 + o(1))
nm

m!
(
1

q
)(

m

2 )

=(
1

m!
+ o(1))(qs − qs−1)m(

1

q
)(

m

2 )

=(
1

m!
+ o(1))qs(m−m(m−1)

2s
)

=(
1

m!
+ o(1))nm−m(m−1)

2s

Note that for m = 3 the lower bound above applies only for s ≥ 4. The following result provides

a similar bound for s ∈ 2, 3 as well.

Lemma 4.3. For any fixed s ≥ 2 and t ≥ (s− 1)! + 1 we have ex(n,K3,Ks,t) = Θ(n3− 3
s )

Proof. In view of the previous upper bound it suffices to show the existence of a graph G with n

vertices containing no copy of Ks,t and containing at least Ω(n3− 3
s ) triangles. For this we apply again

the projective norm-graphs H(q, s) constructed in [4], which are Ks,t free.

The graph H = H(q, s) is defined in the following way: V (H) = GF (qs−1) × GF (q)∗ where

GF (q)∗ is the multiplicative group of the q element field. For A ∈ GF (qs−1) define the norm

N(A) = A · Aq . . . Aqs−2
.

Two vertices (A, a) and (B, b) are connected in H if N(A+B) = ab. Note that |V (H)| = qs − qs−1

and H is qs−1 − 1 regular.

We need to show that H(q, s) has the right number of triangles. As mentioned above, the

eigenvalues and multiplicities of H(q, s) are given in [41], [5]. These are as follows: qs−1 − 1 is of

multiplicity 1, 0 is of multiplicity q − 2, 1 and −1 are of multiplicity (qs−1 − 1)/2 each, and

q(s−1)/2, −q(s−1)/2 are of multiplicity (qs−1−1)(q−2)/2 each. Summing the cubes of the eigenvalues

we conclude that the number of closed walks of length 3 in H(q, s) is (qs−1 − 1)3 = (1 + o(1))q3s−3.

A closed walk of length 3 is not a triangle iff it contains a loop. Fixing A ∈ GF (qt) the vertex

(A, x) has a loop iff N(A + A) = x2. There are at most 2 solution x for each given A. Thus

there are no more than 2qs−1 loops. A closed walk of length 3 containing a loop must also contain

an additional edge taken twice (this additional edge may also be the loop itself). As the graph

is qs−1 − 1 regular we get at most 6qs−1qs−1 = o(q3s−3) such walks containing a loop. As the

number of closed walks of length 3 is (1 + o(1))q3s−3 this is negligible and the number of triangles is

(16 + o(1))q3s−3 = Θ(|V (H)|3−3/s), as needed.

Remark 4.1. For the special case of s = t = 3 it can be shown that the construction of Brown [12]

gives another example of a K3,3-free on n vertices with essentially the same number of triangles.

Remark 4.2. The number of triangles in the projective norm graphs is also computed in a recent

paper of Kostochka, Mubayi and Verstraëte [30], motivated by an extremal problem for 3-uniform

hypergraphs. They estimate this number directly, without using the eigenvalues.
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For values of s, t and m that do not satisfy the restrictions in the previous results we provide

slightly weaker results in the following lemmas:

Lemma 4.4. For any fixed m and t ≥ s ≥ 1 such that t+ s > m

ex(n,Km,Ks,t) ≤ (1 + o(1))
(m − s)!(t− 1)

s−1
2

m!

(

t− 1

m− s

)

n
s+1
2

Proof. We apply induction on s. As the base case take s = 1. In this case the fact that G is K1,t

free implies that the degrees of all vertices are at most t− 1. Thus each vertex can take part in no

more than
( t−1
m−1

)

copies of Km and hence

ex(n,Km,K1,t) ≤
1

m

(

t− 1

m− 1

)

n

Note that if t | n then this bound is achieved by the disjoint union of n
t pairwise vertex disjoint

copies of Kt.

Assuming the result for s − 1 we prove it for s. If G is Ks,t free, then for each v ∈ V its

neighborhood cannot contain a copy of Ks−1,t. By the induction hypothesis this bounds the number

of copies of Km−1 by

(1 + o(1))
(m − s)!(t− 1)

s−2
2

(m− 1)!

(

t− 1

m− s

)

d
s

2
v

where dv is the degree of v. This is clearly also the number of copies of Km containing v. Therefore,

N (G,Km) ≤ 1

m
(1 + o(1))

∑

v

(m− s)!(t− 1)
s−2
2

(m− 1)!

(

t− 1

m− s

)

d
s

2
v

≤ (1 + o(1))
(m − s)!(t− 1)

s−2
2

m!

(

t− 1

m− s

)

(
∑

v

dsv)
1
2n

1
2 (8)

≤ (1 + o(1))
(m − s)!(t− 1)

s−1
2

m!

(

t− 1

m− s

)

n
s+1
2 (9)

where we get (8) from the means inequality and (9) from the fact that we cannot have more than
(n
s

)

(t− 1) copies of s stars in G.

Note that unlike Theorem 1.2 to get the bound in Lemma 4.4 we need to assume nothing but

the obvious fact that Km does not contain a copy of Ks,t. On the other hand for every m, s ∈ N one

has s+1
2 ≥ m− m(m−1)

2s where we have an equality when s = m− 1 and s = m. Thus when s < m− 1

we must use Lemma 4.4, but if s ≥ m− 1 Lemma 4.1 gives a better upper bound.

Lemma 4.5. For any m and t > m− 2 > 1

ex(n,Km,K2,t) ≥
1

4
m

−4m
3 n

4
3

13



Proof. In [33] Lazebnik and Verstraëte show that there exists an m−uniform hypergraph H on n

vertices, with at least 1
4m

−4m
3 n

4
3 hyperedges and with girth at least 5. Let G be the graph obtained

from H by replacing each hyperedge of H by a copy of Km. We next observe that G contains no

copy of K2,t.

Assume towards a contradiction that G contains a copy of K2,t. As t > m − 2 the copy of K2,t

cannot be contained in a single Km and so there must be at least two edges in it that come from two

different Kms. These two edges are a part of a C4 hence in the hypergraph H this C4 has vertices in

at least two hyperedges. Thus H must contain a cycle of length between 2 and 4 in contradiction to

the assumption that H has girth at least 5. Therefore G is K2,t free with at least 1
4m

−4m
3 n

4
3 copies

of Km, as needed.

Finally for s = 2 we can determine the asymptotic behavior of ex(n,K3,K2,t) up to a lower order

term, as shown next.

Theorem 4.6. For any fixed t ≥ 2, ex(n,K3,K2,t) = (1 + o(1))16 (t− 1)3/2n3/2.

Proof. The upper bound follows from the assertion of Lemma 4.1 with m = 3 and s = 2. To prove

the lower bound we apply a construction of Füredi [22], extending the one of Erdős and Rényi [18].

The details follow. Let F be a finite field of order q, where t− 1 divides q− 1, and let h be a nonzero

element of F that generates a multiplicative subgroup A = {h, h2, ..., ht−1 = 1} of order t− 1 in F
∗.

The vertices of the graph G = G(F, t− 1) are all nonzero pairs in (F×F), where two pairs (a, b) and

(a′, b′) are considered equivalent if for some hα ∈ A, hαa = a′ and hαb = b′. Two vertices (a, b), (c, d)

are connected if ac+bd ∈ A. The number of vertices of G is n = (q2−1)/(t−1) and it is not difficult

to check that it is regular of degree q, where here each loop adds one to the degree. Indeed, for a fixed

vertex (b, c) and for each hα ∈ A there are exactly q solutions (x, y) to the equation bx + cy = hα,

and as any neighbor (x, y) of (b, c) is obtained this way t− 1 times, by our equivalence relation, the

graph is q-regular. Note that there is a (unique) loop at a vertex (x, y) iff x2 + y2 ∈ A. For each

fixed hα ∈ A and each fixed x ∈ F there are at most 2 solutions for y, showing that the number of

loops is at most 2q(t− 1)/(t − 1) = 2q (it is in fact smaller, but this estimate suffices for us).

It thus follows that the number of edges of G (without the loops) is m = (12 + o(1))q3/(t− 1) =

(12 + o(1))
√
t− 1 n3/2.

We claim that any two distinct vertices (a, b) and (c, d) of G have exactly t−1 common neighbors

(if there is a loop in one of these vertices and they are adjacent, this counts as a common neighbor).

Indeed, the vertex (x, y) is a common neighbor if for some 0 ≤ α, β ≤ t− 2

ax+ by = hα

cx+ dy = hβ .

These two equations are linearly independent, and hence there is a unique solution for each choice

of α, β. As the number of choices for α and β is (t− 1)2, and every common neighbor is counted this

way t− 1 times, the claim follows.
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By the above claim, G is K2,t-free. In addition, since the endpoints of each edge in it have

t − 1 common neighbors, each edge is contained in t − 1 triangles (including the degenerated ones

containing a loop). The number of triangles containing a loop is smaller than 2q2 which is far smaller

than the number of edges m = Θ(q3/(t− 1)). Therefore, the number of triangles is

(1 + o(1))
1

3
m(t− 1) = (1 + o(1))

1

6
(t− 1)

√
t− 1 n3/2

completing the proof.

We conclude the section by considering the case T = Ka,b and H = Ks,t where we establish the

following.

Proposition 4.7. (i) If a ≤ s ≤ t and a ≤ b < t then

ex(n,Ka,b,Ks,t) ≤ (1 + o(1))
1

a!(b!)1−a/s

(

t− 1

b

)a/s

na+b−ab/s,

and if a = b the above bound can be divided by 2.

(ii) If (a− 1)! + 1 ≤ b < (s+ 1)/2 then for all t ≥ s, ex(n,Ka,b,Ks,t) = Θ(na+b−ab/s).

Proof. (i) Let G = (V,E) be a Ks,t-free graph on n vertices. For each subset B of b vertices, let

nB denote the number of common neighbors of all vertices in B. The number of copies of Ka,b in

G is clearly exactly
∑

B

(nB

a

)

for b < a, where the summation here and in what follows is over all

b-subsets B of V . If a = b the right hand side should be divided by 2. We proceed with the case

a < b recalling that a factor of 1/2 can be added if a = b. By the means inequality, the number of

copies of Ka,b in G is at most

1

a!

∑

B

na
B ≤ 1

a!

(

n

b

)1−a/s

(
∑

B

ns
B)

a/s

≤ (1 + o(1))
nb−ab/s

a!(b!)1−a/s
(

(

t− 1

b

)

ns)a/s = (1 + o(1))
1

a!(b!)1−a/s
(

(

t− 1

b

)

)a/sna+b−ab/s.

Here we used the fact that
∑

B ns
B ≤ (1 + o(1))

(t−1
b

)

ns since if we have more than
(t−1

b

)

subsets of

cardinality b in V with each of them having the same s-subset among their common neighbors, then

we get a copy of Ks,t, which is impossible.

(ii) The projective norm graphs give, as in the proof of Lemma 4.2, that if (a−1)!+1 ≤ b < (s+1)/2

then ex(n,Ka,b,Ks,t) ≥ Ω(na+b−ab/s). This and part (i) supply the assertion of part (ii).

5 Forbidding a fixed tree

In this section we prove Theorems 1.5 and 1.7.
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5.1 Proof of Theorem 1.5

Let G = (V,E) be a graph, and let T be a tree on a set V (T ) = {u1, . . . , ut} of t vertices. Let

V = V1 ∪ V2 ∪ · · · ∪ Vt be a partition of V into t pairwise disjoint sets. Call a copy of T in G proper

if its vertices are v1, v2, . . . , vt where vi ∈ Vi and vi plays the role of ui in this copy. For a subset

U ⊂ V (T ) and an integer h, call a (U, h)-blow-up of T proper if each vertex v of the blow-up belongs

to Vi if and only if it plays the role of ui in the blow up.

Recall that a graph is h′-degenerate if every subgraph of it contains a vertex of degree at most

h′. It is easy and well known that if a graph is not h′-degenerate then it contains a copy of any tree

with h′ edges.

The main part of the proof is the following lemma.

Lemma 5.1. For every positive integers t, h, h′,m there is a C(t, h, h′,m) so that the following

holds. Let T be a tree on a set V (T ) of t vertices, let G = (V,E) be a graph on n vertices and let

V = V1 ∪ · · · ∪Vt be a partition of V . If G is h′ degenerate and it contains at least C(t, h, h′,m)nm−1

proper copies of T , then it must contain a proper (U, h) blow-up of T , such that T \U has m connected

components.

Proof. We apply induction on m+ t.

The base case m+t=3: In this case t = 2, that is, T is an edge, and m = 1. Let G = (V,E)

and V = V1 ∪ V2 be a graph and a partition of its vertex set as in the statement of the lemma, and

suppose it contains at least (h−1)2+1 proper copies of T . These copies form a bipartite graph with

vertex classes V1, V2 and hence, by König’s Theorem, it must contain either a star or a matching of

size h. A matching is a proper (∅, h) blow-up of T = K2 and a star is a proper ({v}, h) blow-up,

where v is one of the vertices of T . In both cases T \U has 1 connected component. This establishes

the base case.

Induction step Assuming the assertion holds for any m and t satisfying m+ t < k, we prove it

for m+ t = k, (k ≥ 4). Let T be a tree on t vertices, and suppose that V (T ) = {u1, ..., ut} where u1

is a leaf and u2 is its unique neighbor. Let G = (V,E) be an h′-degenerate graph with n vertices, and

let V = V1∪ . . . Vt be a partition of its vertex set. Suppose that G contains at least C(t, h, h′,m)nm−1

proper copies of T . We have to show that it contains a proper (U, h) blow-up of T such that T \ U
has m connected components.

For each vertex v ∈ V2 let d1(v) be the number of its neighbors in V1. Furthermore, put T ′ =

T \ {u1} and let Nu2(T
′, v) be the number of copies of T ′ in which v plays the role of u2 and

for each 2 < i ≤ t the vertex playing the role of ui lies in Vi. The following clearly holds, with

C = C(t, h, h′,m):

Cnm−1 ≤
∑

v∈V2

d1(v) · Nu2(T
′, v)

=
∑

v∈V2,d1(v)≥h

d1(v) · Nu2(T
′, v) +

∑

v∈V2,d1(v)<h

d1(v) · Nu2(T
′, v)

One of the summands must be at least C
2 n

m−1. We consider both cases.
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Case 1:
∑

v∈V2,d1(v)≥h d1(v) · Nu2(T
′, v) ≥ C

2 n
m−1.

If m = 1, then there is a vertex v ∈ V2 with d1(v) ≥ h and Nu2(T
′, v) ≥ 1. This implies the

existence of a proper (V (T ) \{u1}, h) blow-up of T . If m > 1, as G has at most h′n edges (since it is

h′-degenerate),
∑

v∈V2,d1(v)≥h d1(v) ≤ |E(G)| ≤ h′ · n, and thus there must be a vertex v2 for which

Nu2(T
′, v2) ≥ C

2h′nm−2.

Consider the induced subgraph G′ of G on the set of vertices V ′ = {v2} ∪ V3 ∪ · · · ∪ Vt, with

this partition into (t − 1) disjoint sets. This graph contains all the proper copies of T ′ in which v2

plays the role of u2. G′ is also h′-degenerate, and contains at least C′

2hn
m−2 proper copies of T ′. As

|V (T ′)| = t− 1 (and also m− 1 < m) we can use the induction assumption on G′, and find a proper

(U, h) blow up of T ′ in G′ in which T ′ \ U has m− 1 connected components and u2 ∈ U as there is

only one vertex, v2 ∈ V2, and hence only v2 can play the role of u2 in G′. The same set U thus gives

the required proper (U, h) blow up of T , as T \ U has all of the connected components of T ′ \ U ′

together with a new connected component which is {u1}. There is a copy of this proper (U, h) blow

up of T as we can complete the (U, h) blow up of T ′ with h neighbors of v2.

Case 2:
∑

v∈V2,d1(v)<h d1(v) · Nu2(T
′, v) ≥ C

2 n
m−1.

Let G′ be the induced subgraph of G on V ′
2 ∪ · · · ∪ Vt, where V ′

2 is the set of all vertices of V2

satisfying 1 ≤ d1(v) < h. As
∑

v∈V2,1≤d1(v)<h d1(v)Nu2(T
′, v) ≥ C

2 n
m−1 and |V (T ′)| = t − 1 we

can use the induction assumption and find a proper (U ′, h2) blow-up of T ′ with T ′ \ U ′ having m

connected components. It is left to complete this blow-up to the required proper (U, h) blow up of

T .

Consider the vertices that play the role of u2 in the (U ′, h2) blow up of T ′. There are two options:

either there is only one such vertex or there are h2 of them. If it is a single vertex then we complete

the blow-up into a proper (U, h) blow up of T by taking U = U ′ ∪ {u1} (this is actually a (U, h2)

blow-up). If there are h2 of them, consider the bipartite graph consisting of h2 edges, 1 from each

copy of u2 to an arbitrarily chosen neighbor of it in V1. This graph must contain either a matching

of size h or a star with h edges. A matching will leave us with the same U = U ′ and for a star we

take U = U ′ ∪ {u1}. In both cases the proper (U, h) blow up is contained in G and T \ U has m

connected components.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let H and T be trees with h and t vertices, respectively, and suppose m =

m(T,H). By the definition of m(T,H) there exists a U such that T \U has m connected components,

and the (U, h) blow-up of T has no copy of H. Using the same set U define GT to be a (U, n−|U |
t−|U | )

blow-up of T .

We next show that GT is H free and has at least c1(t, h)n
m copies of T . If there is a copy of H

in GT , then it uses h vertices and is thus contained in a (U, h) blow up of T . But by the definition of

m this blow-up is H free, so GT must be H free too. To find c1(t, h)n
m copies of T , recall that T \U

has m connected components, and note that any choice of a copy of each connected component can

be completed into a copy of T .
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On the other hand, if ex(n, T,H) > ttC(t, h, h,m)nm take a random partition of the vertex set

V of the extremal graph G into t pairwise disjoint sets V1, . . . , Vt. Each fixed copy of T becomes a

proper copy with respect to this partition with probability 1/tt. Thus, by linearity of expectation,

the expected number of proper copies is at least C(t, h, h,m)nm, and hence there is a partition with

at least that many proper copies. As G is H-free it is h-degenerate. By the lemma above it contains a

(U, h) blow-up of T where T \U has m+1 connected components. This contradicts the maximality of

m(T,H), so ex(n, T,H) ≤ ttC(t, h, h,m)nm. Finally define c2(t, h) = max1≤m≤t/2 C(t, h, h,m).

5.2 Proof of Theorem 1.7

We need the following well known result, see, for example, Theorem 7.3 in [10] for a proof.

Lemma 5.2. In any bipartite graph with no isolated vertices, the number of vertices in a maximum

independent set is equal to the number of edges in a minimum edge-cover.

Proof of Theorem 1.7 . We prove the equivalence of the statements by deriving (2) from (1), (3)

from (2) and (1) from (3).

1 ⇒ 2 Assume ex(n, T,H) = Θ(nα(T )). Fix any minimum edge cover Γ of T and enumerate

the vertices of T arbitrarily {u1, .., ut}, where t is the number of vertices of T . Let G = GT be an

extremal graph, that is, a graph on n vertices with cnα(T ) copies of T and no copy of H. Enumerate

the vertices of GT randomly, and call a copy of T monotone if it is spanned by a set of vertices

enumerated i1 < .. < it where ij plays the role of uj in T . By linearity of expectation the expected

number of monotone copies of T in G is c
t!n

α(T ) = c′nα(T ). Fix a numbering with at least that many

monotone copies. We next show that this graph must contain a (U, h) blow up of T for some choice

of a U(Γ)-set U .

Denote the set of edges in the edge cover Γ by {e1, .., eα(T )}. We can map the monotone copies

of T to choices of edges that play the role of Γ so there must be at least c′nα(T ) = c′n|Γ| such choices

(the equality is by Lemma 5.2). Consider the following hypergraph H = (VH, EH). The vertices

VH are the edges of G and a set {v1, ..., vα(T )} forms an edge in EH if the corresponding edges in

G span a monotone copy of T , where each edge plays its enumerated role in Γ. By the assumption

on G, we have |EH| = c′nα(T ), and |VH| ≤ hn. By the main theorem in [15] there is a K
α(T )
s,..,s in

our hypergraph, where s = h2, provided n is sufficiently large. Therefore there are disjoint sets of

vertices U1, .., Uα(T ) ⊂ VH such that for any choice of ui ∈ Ui, {u1, ..., uα(T )} ∈ EH and |Ui| = h2 for

all i.

Returning to GT note that the K
α(T )
s,..,s in our hypergraph provides pairwise disjoint sets of edges

E1, .., Eα(T ) ⊂ E(GT ), each of size s = h2, such that any choice of a single edge from each set Ei

spans a monotone copy of T in G, where the edge from Ei plays the role of the edge ei in the copy.

We next show that E1, .., Eα(T ) and the edges connecting them in G contain a (U, h) blow up of T ,

with U being a U(Γ)-set.

To this end we define the set U ⊂ V (T ). First note that a minimum edge cover does not contain

a path of length 3 and hence Γ must be a union of stars and single edges. Define the complement U c

of U in the following way. If the edges ei1 , .., eik ∈ E(T ) form a star in Γ take the leaves of the star
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into U c. For a single edge in Γ, say ej , consider the corresponding set Ej. It must contain either

a star with at least h edges or a matching with at least h edges. If it contains an h-star, take into

U c the endpoint which is not the center of the star. If it contains a matching of size h, take into U c

both the vertices of ej . Finally, put U = V (T ) \ U c.

It is left to show that U is indeed a U(Γ)-set with the required properties. We first show that

the connected components in T \U have the needed properties. As V (T ) \U = U c, the choice of U c

ensures that each edge in Γ has a non-empty intersection with a connected component in T \ U . It

is left to show that no connected component in U c can intersect two edges of Γ.

Assume towards contradiction that there is a connected component in U c that intersects more

than one edges of Γ. Then there must be two vertices ui, uj chosen into U c that are connected by

an edge of E(T ) \Γ. This means that in GT there is a set of vertices of size at least h corresponding

to uj and another set of size h corresponding to ui, where any choice of two vertices, one from each

set, can be completed into a copy of T . Thus all the vertices in the first set must be connected to

all those in the second. But in this case GT contains a complete bipartite graph Kh,h and hence

contains a copy of H, contradicting the assumptions.

We conclude that in T \ U , each connected component intersects a single edge of Γ, and that

each edge in Γ intersects a single connected component in T \ U , as needed. Note also that by the

discussion above T \ U is a vertex disjoint union of edges and single vertices.

GT contains a (U, h) blow-up of T , as it contains h copies of each vertex in U c and they are

connected in G as needed to form the required blow-up.

2 ⇒ 3 This is obvious.

3 ⇒ 1 Assume there is a minimum edge cover Γ of T and a (U, h) blow up of T that does not

contain a copy of H with U being a U(Γ) set. Any H free graph has at most hn edges, thus by [1]

the number of copies of T in such a graph is at most O(nα(T )), providing the required upper bound.

For the lower bound let GT be a (U, n−|U |
t−|U | ) blow up of T . We claim that if the (U, h) blow up

of T does not contain a copy of H, then GT does not contain one either. Indeed, as in the proof

of Theorem 1.5, if we assume that the (U, n−|U |
t−|U | ) blow-up does contain a copy of H then this copy

uses at most h vertices and hence must be contained in the (U, h) blow-up as well, contradicting the

assumption.

T \U has α(T ) = |Γ| connected components as U is a U(Γ)-set. There are Θ(n) choices for each

connected component in T \U , and each choice produces a copy of T in GT . Thus we have Θ(nα(T ))

copies and ex(n, T,H) = Θ(nα(T )).

Theorem 1.7 provides a characterization of the pairs (T,H) of a bipartite graph T and a tree

H for which ex(n, T,H) = Θ(nα(T )). This characterization yields the following result about the

complexity of the corresponding algorithmic problem.

Theorem 5.1. The problem of deciding, for a given input consisting of a bipartite graph T and a

tree H, if ex(n, T,H) = Θ(nα(T )) is co−NP -hard.

Proof. Let G be a graph on m vertices with minimum degree at least 4. Let T be the bipartite graph

(A ∪ B,E) with A being the set of vertices of G, V (G), and B being the set of edges of G, E(G).
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The edges of the bipartite graph are as follows, a couple {v, e} is an edge in T if v ∈ e in G. Let H

be a path of length 2m+ 1.

Claim 5.2. ex(n, T,H) = Θ(nα(T )) if and only if the graph G does not contain a Hamilton path.

Before proving this claim note that it is well known that the problem of deciding if an input

graph G contains a Hamilton path is NP -complete (see, e.g., [24]). It is not difficult to show that

for any fixed δ (and in particular for δ = 4) this problem remains NP -hard even when restricted to

input graphs of minimum degree at least δ. To see this, consider a graph F with minimum degree

d. Let F ′ be the graph obtained from F by adding to it a set of (d + 2) new vertices that form a

clique, and by joining one of the vertices of this clique to all vertices of G. It is easy to check that F

has a Hamilton path if and only if F ′ has such a path, and that the minimum degree of F ′ is d+ 1.

Repeating this argument we conclude that indeed the Hamilton path problem remains NP -hard

when restricted to input graphs of minimum degree at least δ. It thus suffices to prove Claim 5.2 in

order to establish the theorem.

To prove this claim, we choose a specific minimum edge cover Γ in T , and show that for this edge

cover checking if the second condition in Theorem 1.7 holds is equivalent to deciding if the graph G

contains a Hamilton path.

Since the degree of each vertex in A is at least 4 and the degree of each vertex of B is 2, it follows

from Hall’s Theorem that the graph T contains |A| vertex disjoint stars, one centered at each vertex

of A, with each star having two leaves. We can now complete these arbitrarily into a minimum edge

cover, by connecting each vertex of B that does not lie in these stars to an arbitrary neighbor in A.

This provides a minimum edge cover Γ in which every connected component is a star with at least

two leaves.

The only possible U(Γ)-set for this Γ is A. The (A, 2m + 2) blow-up of T contains a copy of H,

which is a path of length 2m + 1, if and only if G contains a Hamilton path, as such a path must

alternate between A and B, and can visit each vertex in A only once.

6 Concluding remarks and open problems

• In Section 5 we have shown several cases in which when H is a tree, ex(n, T,H) = Θ(nk) where

k is an integer. We believe that this phenomenon is more general, and that if H is a tree then

for any graph T , ex(n, T,H) = Θ(nk(T,H)) for some integer k = k(T,H).

• One of the cases we focused on is ex(n,K3,H). Even in this special case there are many

difficult problems that remain open. One such problem that received a considerable amount

of attention is the case that H is the 2-book, that is, two triangles sharing an edge. This is

equivalent to the problem of obtaining tight bounds for the triangle removal lemma, which is

wide open despite the fact we know that here n2−o(1) ≤ ex(n,K3,H) ≤ o(n2) and despite some

recent progress in [20].
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The determination of ex(n,K3,H) is complicated in many cases, and we do not even know its

correct order of magnitude for some simple graphs like odd cycles. In this specific case, however,

it may be that the lower bound in (2) and the upper bound in Proposition 1.1 differ only by a

constant factor, as it may be true that the functions ex(m,C2k) and exbip(m,C4, C6, . . . , C2k)

differ only by a constant factor. The problem of determining the correct order of magnitude of

ex(n,K3,Ks,s,s) also seems complicated, the method in [35] yields some upper estimates.

• If G contains no copy of some fixed tree H on t+ 1 vertices, then the minimum degree of G is

smaller than t. Thus there is a vertex v contained in at most
(

t−1
m

)

copies of Km, and we can

omit it and apply induction to conclude that in this case ex(n,Km,H) < tmn/m!. It may be

that for any such tree the H-free graph G on n vertices maximizing the number of copies of

Km is a disjoint union of cliques all of which besides possibly one are of size t. As mentioned

in the beginning of Section 4 this is open even for H = K1,t.

• As done for the classical Turán problem of studying the function ex(n,H) for finite or infinite

classes H of graphs, the natural extension ex(n, T,H), which is the maximum number of copies

of T in a graph on n vertices containing no member of H, can also be studied. Unlike the case

T = K2, there are simple examples here in which H = {H1,H2} contains only two graphs, and

ex(n, T,H) is much smaller than each of the quantities ex(n, T,H1) and ex(n, T,H2). It will

be interesting to further explore this behavior.

• Another variant of the problem considered here is that of trying to maximize the number of

copies of T in an n-vertex graph, given the number of copies of H in it. The case H = K2 has

been studied before, see [1], [28], but the general case seems far more complicated.

• One of the exciting developments in Extremal Combinatorics in recent years has been the study

of sparse random analogs of classical combinatorial results, like Turán’s Theorem, Ramsey’s

Theorem, and more. This was initiated in [21] and studied in several papers including [36]

and [29], culminating in the papers [14] and [38]. See also [6] and [40] for a more recent

effective approach for investigating these problems. The natural sparse random version of the

basic problem considered here is the study of the following function. For two graphs H and T

with no isolated vertices and for a real p ∈ [0, 1], let ex(n, T,H, p) be the expected value of the

maximum number of copies of the graph T in an H-free subgraph of the random graph G(n, p).

Thus ex(n, T,H, 1) is the function ex(n, T,H) studied here. The behavior of ex(n, T,H, p) for

T = K2 is quite well understood in many cases, by the results in the papers mentioned above,

and it seems interesting to investigate the behavior of the more general function.
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[15] P. Erdős, On extremal problems of graphs and generalized graphs. Israel Journal of Mathematics

2.3 (1964), 183-190.
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