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Abstract

A k—quasiperfect dominating set (k > 1) of a graph G is a vertex subset S such
that every vertex not in S is adjacent to at least one and at most k vertices in S.
The cardinality of a minimum k—quasiperfect dominating set of G is denoted by
¥,x(G). Those sets were first introduced by Chellali et al. (2013) as a generalization
of the perfect domination concept (which coincides with the case k = 1) and allow
us to construct a decreasing chain of quasiperfect dominating parameters

(1) ’711(G) > 712(G) > .2 Vl’A(G) = V(G)a

in order to indicate how far is G from being perfectly dominated. In this work, we
study general properties, tight bounds, existence and realization results involving
the parameters of the so-called QP-chain (1), for trees.
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1 Introduction

Recall that a tree is a connected acyclic graph. A leaf is a vertex of degree
1 and vertices of degree at least 2 are interior vertices. We denote by L(T')
the set of leaves of a tree T" and by ¢(7") the number of leaves of T'. A support
verter is a vertex having at least a leaf in its neighborhood and a strong
support vertexr is a support vertex adjacent to at least two leaves.

Given a graph GG, a subset S of its vertices is a dominating set of G if every
vertex v not in S is adjacent to at least one vertex in S. The domination
number ~(G) is the minimum cardinality of a dominating set of GG, and a
dominating set of cardinality v(G) is called a y-code [9].

An extreme way of domination occurs when every vertex not in S is adja-
cent to exactly one vertex in S. In that case, S is called a perfect dominating
set [2] and ,,(G), the minimum cardinality of a perfect dominating set of G,
is the perfect domination number. A dominating set of cardinality v,,(G) is
called a v,,-code.

In a perfect dominating set what is gained from the point of view of ac-
curacy is lost in size, comparing it with a dominating set. Between both
notions there is a graduation of definitions: k-quasiperfect domination. A k-
quasiperfect dominating set for k > 1 (v, -set for short) [7,11] is a dominating
set .S where every vertex not in S is adjacent to at most k vertices of S. Again
the k-quasiperfect domination number ~,, (G) is the minimum cardinality of a
Y,,-set of G and a 7y,, -code is a 7, -set of cardinality v, (G).

Given a graph G of order n and maximum degree A, v, ,-sets are precisely
dominating sets. Thus, one can construct the following chain of quasiperfect
domination parameters:

(2) n > 7,(G) 2 7,5(G) = ... 2 7,(G) =~(G),
known as the quasiperfect chain of GG, or simply the QP-chain of G.

2 Known general results

In this section, we review some results founded in the literature about quasiper-
fect parameters. Table 2 summarizes the values of parameters under consid-
eration for some simple families of graphs.

Theorem 2.1 [7] If G is a graph of order n wverifying at least one of the

following conditions: (1) A(G) > n —3; (2) A(G) < 2; (3) G is a cograph;
(4) G is a claw-free graph, then v,,(G) = v(G).



paths cycles cliques  stars bicliques wheels

G Pn Cn Kn Kl,n—l Kp,n—p Wn

A(G) 2 2 n—1 n-—1 n—p n—1
w(@ 151 F1-13) 1 1 2 1
M2(G) T3] 5] 1 1 2 1
1G) T3] (5] 1 1 2 1

Proposition 2.2 [3] Let G = (V, E) a graph of order n.
() 1F1(G) < AG), then 1,,(G) = ... = 1,5 (G) = 1(G);
(i) v,5(G) <n;
(iii) v,,(G) =1 if and only if A(G) =n — 1.
(iv) 7,(G) < n —LU(G) where ((G) is the number of vertices of degree one.

Theorem 2.3 [3] Let k,n be positive integers such thatn > 6 and 2 < k < n.
Then, there exists a graph G of order n such that A(G) = n—2 andv,,(G) = k.

Theorem 2.4 [3] Let (h,k,n) be a triple of integers such that 2 < h < 3,
2<k<nandn >9. Then, there exists a graph G such that |V (G)| = n,
A(G) =n—3, v(G) = h and v, (G) = k.

Theorem 2.5 [3] Let G be a graph of order n and A(G) = 3, other than the
bull graph. Then, v11(G) < n — 3.

Proposition 2.6 [3] Let G be either a cubic graph other than Ky, or a tree
with order n > 7 and A(G) = 3. Then, v,,(G) <n —4.

The join G = G1V G5 of graphs G and Gs is the graph such that V(G) =
V(Gl) U V(GQ) and E(G) = E(Gl) U E(Gg) U {’LLU U € V(Gl),v € V(Gg)}
Theorem 2.7 [3] Let G = G1 V G be a join graph of order n. Then,

(i) 7,,(G) =1 if and only if Gy or G3 have a universal vertex.
(ii) 7,,(G) = 2 if and only if both G1 and G have at least an isolated verte.
(iii) v,,(G) =n in other case.



Corollary 2.8 [3] Let G = GV G2 be a connected cograph without universal
vertices. Then, v,,(G) = 2 if both G1 and Gy have at least an isolated vertez,
and 7v,,(G) = n in any other case.

Theorem 2.9 [3] Let h,k,n be integers such that 4 < n, 2 < h <k <n
satisfying either h+k <n or3h+k+1<2n. Then, there exists a claw-free
graph G of order n such that v(G) = h and v,,(G) = k.

The corona of a graph G, denoted by cor(G), is the graph obtained by
attaching a leaf to each vertex of G.

Theorem 2.10 [8,10] For any graph G the domination number satisfies v(G) <
n/2. And if G is a graph of even order n, then v(G) = n/2 if and only if G
18 the cycle of order 4 or the corona of a connected graph.

Graphs with odd order n and maximum domination number v(G) = |n/2]
are also completely characterized in [1], as a list of six graph classes.

Proposition 2.11 /5] Let T be a tree of order n > 3. Then

(i) Every v — code of T contains all its strong support vertices.
(i) Every ~y,, — code of T' contains all its strong support vertices.
(iii) 7y, (T) < n/2.
)

(iv) v, (T) = n/2 if and only if v(T) = n/2 if and only if T = cor(T") for
some tree T".

A tree for which removal of all its leaves results in a path is called a
caterpillar.

Proposition 2.12 [7] If T is a caterpillar, then v(T) = ~,,(T).

3 Owur results on Trees

Theorem 3.1 [4] Let T be a tree. Then, v, (T) < v(T) + [——=] — 1, for
every integer k € {1,...,A(T)}.

Corollary 3.2 For every tree T', v, (T) < 2v(T) — 1.

Remark 3.3 This bound is not true for gemeral graphs and the difference
between both parameters can be as large as desired. For example, the graph
displayed in Figure 1 satisfies v(G) =2 and v,,(G) = |[V(G)| > 2v(G) — 1.

Next, we present a realization theorem for the short chain v < 7, (T) <
27 — 1. Note that, for every caterpillar T' of order n > 3, Proposition 2.12
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Fig. 1. The pair of white vertices form a ~-code.

and Corollary 3.2 just allow two possible situations, namely, either (7)) =
11(T) < n/2 or y(T) < ~,(T) < n/2. In the following result, we show
that both of them are feasible and that parameters v and v, can take every
possible value in each case.

Proposition 3.4 [}] Let a,b,n be positive integers.

(i) If 2 < 2a < n, then there exists a caterpillar T of order n such that
NT) =74(T) = a.

(ii) If2 <a <b<2a—1 andn > 2b, then there exists a caterpillar T of
order n such that v(T) = a and v,(T) = b.

Proposition 3.5 [/] A caterpillar T' satisfies v,,(T') = 2v(T) — 1 if and only
if belongs to the family shown in Figure 2.

Let T a tree with maximum degree A > 3. Next theorem shows that for
each inequality of the QP-chain, both possibilities, the equality and the strict
inequality, are feasible.

Theorem 3.6 [4] There exists a tree with mazimum degree A > 3, satisfying
each one of the 2271 possible combinations of the inequalities of the QP- chain.

Finally, we present the general form of the QP-chain in the case of k-ary
trees, that has just two different terms.

h+1 _ 1
Proposition 3.7 [}] Let T = T(k, h) the full k-ary tree of order n = T

where all leaves are at distance h — 1 from the root, with k > 2, h > 3. Then

n—UT) =7, (T) = 72(T) = ... = 1p-1(T) > Np(T) = N1 (T) = A(T)
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Appendix

Proof of Theorem 3.1

Remark 1 Let T be a tree and S a dominating set. Then, since T  has no cyles,
every vertex not in S has at most one neighbor at each connected component
of the subgraph T[S].

Remark 2 Let T be a tree and S a dominating set such that the subgraph
T'[S] has at most k connected components. Then, S is a yy;-set.

Let S be a y-code of T'. If S is also a 7y;x-set, then the inequality stated in the
theorem holds.

Suppose on the contrary that S is not a ~y,-set.

We construct a vyy,-set S* containing S and satisfying the inequality stated
in the theorem. Let r be the number of connected components of the subgraph
induced by S, denoted by T[S]. Then, v(T') > r and, by Remark 2, r > k.

Consider a vertex zg € V(T) \ S with at least k + 1 neighbors in S and
let S; = SU{zo}. By Remark 1, all the neighbors of zg in S lie in different
connected components of T'[S], therefore S; is a dominating set inducing a
subgraph T'[S;] with at most r — k connected components. If S; is a yyx-set,
let S* = Sl.

Otherwise, consider a vertex x; € V(T)\ S having at least k+ 1 neighbors
in S and let Sy = S; U {z;}. By Remark 1, all the neighbors of z; in S;
lie in different connected components of T[S;], therefore Sy is a dominating
set inducing a subgraph T'[Ss] with at most (r — k) — k = r — 2k connected
components. If Sy is a yyi-set, let S* = Ss.

Otherwise, we repeat this procedure until we obtain a ~;;-set. Observe that
this procedure will end since the number of connected components induced
by the sets Si, So, . .. is strictly decreasing. Moreover, since T'[S;] has at most
r —ik connected components, by Remark 2, S; is a v,-set whenever r — ik <
k. Therefore, the number of steps needed in order to obtain that S; is a ~vy,-set,
is at most i = [7£].

Let S* = S; be a y-set obtained in this way, where j < [Z2]. Then,

1) <51 5155 220 [ 5] 220 O] s [0



Proof of Proposition 3.4

(i)

(i)

Consider the caterpillar obtained by attaching a leaf to each of the first
a — 1 vertices of a path of order a and n — 2a + 1 > 1 leaves to the last
vertex of the path (see Figure 3). Then the vertices of the path is both
a y-code and a ~y,,-code, and y(T') = v,,(T) = a.

Uy Uz U3 Ug—1 Uq
n—2a+1)

Fig. 3. T has order n, ¥(T) = v,,(T) = a.

Note that v(7') = 1 implies 7,,(T") = 1, so if both parameter do not agree
them ~(T") > 2.

Using that 1 < b—a < a — 1, let P be the path of order b with
consecutive vertices labeled with

U1, V1.« Up—qy UVp—qs Up—q+1; Ub—q+25 - - - 5 Ug

and consider the caterpillar obtained by attaching two leaves to each of

the vertices uy, us, . .., up_,, one leaf to each of the vertices up_q12, Up_qr3, - - -
and n — 2b 4 1 leaves to vertex uy_,11 (see Figure 4). Since n — 2b +
1 > 2 we obtain that {uy,us,...,u.} is a y-code with a vertices and
{ur,ug, ..., uq} U{vi, ..., vp_a} is a y;;-code with b vertices.
wy U] Uz Uy Up_q Vp_q Ub—at+l Ub—a+2 Ug—1  Uq
A J A . Of\- ----- A . I I ------ I_I
n—2b+1)

Fig. 4. T has order n > 2b, a = v(T) < v, (T) =b < 2a — 1.

JU(Z



Proof of Theorem 3.6

Remark 1 If u is a vertex of a graph GG with at least d leaves in its neighbor-
hood, then w is in every v, 5-code, for any h € {1,...,d — 1}.

Remark 2 If GG is a graph with maximum degree A and u is a vertex with
at least A — 1 leaves in its neighborhood, then w is in every =, -code, for any
he{l,...,A—2}.

Remark 3 Let T be a tree with maximum degree A and s support vertices.
Then v, A(T) =(T) = s.

Let A > 3. For alli e {1,...,A — 1}, we write ®; for the symbol ‘=" or ‘>’
in 71,¢(T) > 71,i+1<T)'
(i) Case 1. If ®;is‘="foralli € {1,..., A—2}. We distinguish two subcases.
(a) Case 1.1. If ®a_; is ‘=". The complete bipartite graph 7" = K; A is
a tree with maximum degree A satisfying:

1, (T) = 712(T> == '71,A71(T) = ’71’A(T> =(T) =1.

(b) Case 1.2. If ®a_; is *>". We consider the following tree 7" with
maximum degree A: let u be a vertex of degree A adjacent to vertices
Tr1,%a,...,TA, and attach A — 1 leaves to each z;, 1 <i < A. Then,
we easily derive from Remark 2 that {z;,...,2a} is a y-code and
{u,z1,...,2a} is a v, ,-code for any 4 such that i < A. Therefore, T
satisfies 7

A+l =7, (T) = 7,(T) = ... = 717A_1(T) > 'VLA(T) =(T) = A.

A-1 A-1 A—-1

Fig. 5. Trees illustrating Case 1. of Theorem 3.6.

(i) Case 2. If ®; is ‘>’ for some 7 € {1,..., A —2}.
If A = 3, consider the graphs showed in Figure 6. The tree T on the
left side satisfies 6 = v, (T) > 7,,(T) = v, 5(T) = y(T) = 4, since
support vertices form a -code (and also a 712—éode and a 7;3-code), and



all vertices but the leaves form a 7,,-code. The tree T" on the right side
satisfies v,,(T) = 18 > ~,,(T) = 12 > ~,,(T) = y(T) = 11, since
support vertices together with vertex u form a v-code (and also a 73-
code), support vertices together with vertices u and v form a 7j9-code,
and all vertices but the leaves form a ~,,-code.

LRTn i <

Y11 > Y12 = 713 Y11 > V12 > 713

Fig. 6. Trees illustrating Case 2 of Theorem 3.6 when A = 3.
Now suppose A > 4. Let
{i17i27 s 7ik} = {j : 71,j(T) > 71,j+1(T) ) ] S A— 2};

where k > 1 by hypotheses, and assume 1 < iy < ... <1 < A—2. We
distinguish two subcases.

Fig. 7. Trees illustrating Case 2.1 (above) and Case 2.2 (bottom).

(a) Case 2.1. If ®a_; is ‘="

Consider a path P of length k+ 2 with consecutive vertices labeled
Uiy -+ Ugy, v, w. Attach i; new vertices to u;; and A — 1 leaves to
each one of those new vertices. Attach also A — 2 leaves to vertex v.

For each vertex x of the path P, let N'(x) be the set of vertices of
N (z) not belonging to the path P. Let A = UY_ N'(u;, ).

It is not hard to verify that AU {v} is a y-code of T, and also a
Y1,a—1-code. Moreover, AU {v} U {u;, : h < j < k} is a yy-code if
The1 <1 < 1p.



(b) Case 2.2. If ®a_1 is >
Consider the tree constructed in case 2.1 and attach A — 1 new
vertices to w and A — 1 leaves to each one of those new vertices.
With the same notations as in Case 2.1, it is easy to verify that
AU{v}UN'(w) is a y-code of T and AU{v,w} UN'(w) is a 1 ao—1-
code. Moreover, AU {v,w} U N'(w) U {u;; : h < j <k} is a yy-code
if th—1 <1 < .

Lemma 3.8 Let T' be a tree of order n > k + 1 (k > 2) with all interior
vertices of degree at least k + 1, except at most one vertex of degree k, then

’717k_1(T) =n — E(T)

Proof. Notice that V(T') \ L(T') is a 71 ,-1-set for all & > 2. Suppose that
S is a 1 ,—1-code such that S # V(T)\ L(T). If V(T)\ L(T) C S, then
|S| > |V(T) \ L(T)| which is a contradiction. Therefore, there exists a vertex
up € V(T') \ L(T) such that ug ¢ S. Consider the connected component Ty
of ug in T\ S. Notice that Ty is a tree of order ng > 1. If T has only the
vertex ug ¢ L(T), then vy is adjacent to at least k vertices of S, which is a
contradiction. If Tj has at least two vertices, Tj has at least two leaves in 1.
Observe that a leaf w of Ty can not be a leaf of T, otherwise the only neighbor
of w is not in S, contradicting the fact that S is a dominating set. Therefore,
Th has a leaf wy that is a vertex of degree al least k + 1, implying that > k
neighbors of wy are in .S, which is again a contradiction. O

Proof of Proposition 3.7

The set of interior vertices of a tree is a 7 ;-set for any ¢ > 1. Therefore,
by Lemma 3.8, n — (1) = v,,(T) = v12(T) = ... = y1,-1(T). On the other
hand, for any h > 3 consider the set S described as follows:

S = U L2+3i, if h = 37”, r> 1,

0<i<r—1
S={z}U U Ls;, where z € Lo, it h=3r+1, r > 1;
1<i<r
S = U L1+3i, 1fh:37’—i—2, r Z 1.
0<i<r

Notice that S contains exactly the vertices of one of each three consecutive
levels, taking into account that S must contain the strong support vertices,
i.e., the vertices of level h — 1, and in the case h = 3r + 1 we have to add a

vertex z of level 2 to dominate the root (see in Figure 8 an illustration of case
k=2).



A

h =3r h=3r+1 h=3r-+2

Fig. 8. If we add new groups of three levels in each case, being black vertices those
of the middle level, the set of black vertices is a dominating code of T'(2,h), h > 3.

By construction, it is obvious that S is a v, y-set and a 7, y4+1-set, since a
vertex not in .S has at most k neighbors in S. We claim that S is a dominating
code and consequently a 7, y-code and a 7; yy1-code. Let S be a dominating
code of T'(k,h), k > 2, h > 3. We know that S contains all its strong support
vertices, Lj_1, and these vertices dominate vertices of levels h, h—1 and h—2.
So, we may assume that S does not contain any vertex of level h — 2, otherwise
we can change a vertex x € S N Ly_o by its neighbor in level h — 3 obtaining
also a dominating code. Therefore, S is obtained by adding a dominating
code of the tree T'(k,h — 3). Reasoning recursively, we deduce that S is a
dominating code.
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