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Abstract. The problem addressed in this paper attempts to efficiently solve a network design with re-

dundant connections, often used by telephone operators and internet services. This network connects

customers with one master node and sets some rules that shape its construction, such as number of

customers, number of components and types of links, in order to meet operational needs and technical

constraints. We propose a combinatorial optimization problem called CmTNSSP (Capacitated m Two-

Node-Survivable Star Problem), a relaxation of CmRSP (Capacitated m Ring Star Problem). In this

variant of CmRSP the rings are not constrained to be cycles; instead, they can be two node connected

components. The contributions of this paper are (a) introduction and definition of a new problem (b)

the specification of a mathematical programming model of the problem to be treated, and (c) the ap-

proximate resolution thereof through a GRASP metaheuristic, which alternates local searches that obtain

incrementally better solutions, and exact resolution local searches based on mathematical programming

models, particularly Integer Linear Programming ones. Computational results obtained by developed

algorithms show robustness and competitiveness when compared to results of the literature relative to

benchmark instances. Likewise, the experiments show the relevance of considering the specific variant

of the problem studied in this work.

Keywords: Topological Network Design, Survivability, Greedy Randomized Adaptive Search

Procedure (GRASP), Variable Neighborhood Search (VNS), Metaheuristics.



1 Introduction

Along with the evolution of telephone communications, it began the development of com-

puters and digital data transmission. To communicate two remote computers the telephone net-

work was used as a transmission medium. This fact generated a number of associated services

that settled in a communications infrastructure that had grown up without sufficient planning.

Therefore some events occurred which devastating consequences are directly linked to this lack

of planning, such as the burning of a telephone exchange in a suburb of Chicago in May 1988,

which rendered uncommunicated 35,000 local subscribers, and affected 120,000 long distance

trunk lines, compromising the functioning at O’Hare air traffic control and outaging 911 service,

as detailed in the report Keeping the Phone Lines Open by Zorpette (1989). These accidents

reveal, among other things, the need for proper planning of telephone networks and data trans-

mission. Beyond all preventive actions that can be taken to avoid accidents as the one quoted

above, a key element to mitigate such impact is a proper design of telecommunication net-

works. The study of the structure, the introduction of minimum levels of connectivity between

their nodes, and redundancy are crucial to avoid catastrophic events upon the occurrence of a

failure. The main motivation for studying topological network design is its application in the

area of telecommunications (Stoer, 1992). Basically, the goal is to obtain structures with the

desired level of redundancy and fault-tolerant in some of its nodes or their links, and to allow

savings in construction costs. Initially, topological network design covered mainly availability

aspects (e.g. public switched telephone network). However, new applications over the Inter-

net infrastructure reveal the shortcomings of tree-like structures. On the other hand, mesh-like

structures present valuable connectivity properties but their deployment is prohibitively expen-

sive. A natural approach to an acceptable level of connectivity is to connect all terminals in

a ring or cycle in the cheapest way. This problem is known as Traveling Salesman Problem

Dantzig and Fulkerson (1954) and it is widely studied in the scientific literature. In the physical

design of a telephony deployment, it is useful to consider several two-connected components

joined to a perfect telephone exchange, but if some terminal nodes are far away, it is better

to connect them in more than one ring. A cost-effective “shape” of a solution is provided by

Baldacci et al. (2007). In that work, given a depot, several terminal nodes and optional nodes,

in order to connect all terminals, the authors propose to find the cheapest m rings joined in the

depot, while some terminals can be pending on some node of a ring. The number of nodes



within a ring must not exceed the depot capacity, and the cost of pending nodes is different

than the cost of the connections within the rings. The minimum-cost design of the m-rings is

called Capacitated m Ring Star Problem, termed here CmRSP for short. Furthermore a cor-

nerstone in the area of topological network design was offered by Monma et al. (1990). The

authors fully characterize the structure of minimum-cost two-node connected sub-networks in

metric graphs. They proved that a minimum-cost two-node connected metric network is either

a Hamiltonian tour or presents a special graph topology as an induced sub-graph sketched in

Figure 1. Motivated by this result we studied in a problem with two-node-connected structures

that can potentially have better cost than cycles.

Figure 1: Monma’s graph structure.

In the literature we have not found references to Capacitated m Two-Node-Survivable Star

Problem as is. Related work developed by Baldacci et al. (2007) treat exact resolution of Ca-

pacitated m Ring Star Problem. Such problem is slightly different to the problem treated in this

paper. In CmRSP 2-node-connected structures are exclusively cycles, whereas in our problem

(CmTNSSP) other two-node-connected structures are allowed. The CmTNSSP is therefore a

CmRSP relaxation. Baldacci et al. (2007) consider two mathematical programming formula-

tions of CmRSP, which is solved exactly by comparing the result of the implementation of both

formulations for a set of test cases; the authors propose a set of test instances comprising up to

100 nodes. Some authors also treat CmRSP and solve it exactly (Hoshino and De Souza, 2012)

and other authors do it using approximate methods. For example we can cite Naji-Azimi et al.

(2010) who use iterated heuristics and Mauttone et al. (2008) who use the GRASP metaheuris-

tic. Moreover, Naji-Azimi et al. (2012) proposed heuristics based on integer linear program-

ming (ILP) for the CmRSP and also they proposed larger instances comprising up to 200 nodes.

More recently, Zhang et al. (2014) proposed a memetic algorithm which improves previous

results and also the authors explore new instances comprising new cost structures.

There are some works that underly Baldacci’s work such Locating Median Cycles in Net-

works. This problem is a particular case of CmRSP and it is studied by Labbé et al. (2005). In



this problem the authors seek to build a network that consists of a main loop and nodes attached

to it, whose total cost is minimum. The cost is composed by cost of the edges that belong to

the cycle (routing costs) plus costs of connection of the edges with incidence in attached nodes.

Here, the total connection cost is bounded to a value given. In Labbé et al. (2004) the same au-

thors solve the RSP (Ring Star Problem), without imposing cost constraints on the edges that do

not belong to the cycle. Only service constraint are mentioned in this problem such as number

of attached nodes connected to the same node belonging to the cycle. In that study also RSP

is solved exactly. Other similar problems but with differences in the structures are discussed in

Richey (1990). In the CmRSP and in the CmTNSSP (the problem addressed in this paper), the

structure of feasible solutions are cycles or two-connected structures, while in the other prob-

lems mentioned above they are simple connected structures without redundancy such as paths

or trees.

In this paper we propose an alternative (to best our knowledge not yet studied) to design

2-node-connected low-cost solutions, useful in the context of building telecommunications net-

works with some level of survivability. We define the CmTNSSP and propose an ILP model to

solve exactly small instances. Also, we propose and implement an hybrid metaheuristic which

is then applied to known instances of the literature, and to other tests cases specifically designed.

This article is organized as follows. Description and formal definition are presented in Section

2. Integer lineal programming model is presented in Section 3. A GRASP-VND metaheuristic

is developed for the approximated resolution in Section 4. Computational results are reported

in Section 5. Conclusions and trends for future work are discussed in Section 6.

2 Problem Definition

The problem to be described is an example about planning that must be followed to build

fault-tolerant networks that meet some operational needs and technical constraints.

2.1 Problem description

Given a simple non directed graph G = (V,E), we want to get a sub-graph (network) that

meets certain topology, formally defined in Section 2.2. In this graph G we have a distinguished

node “d” that we call depot. Across the scope of this work the term “ node ” is used to refer

to any vertex within the set of vertices of any of the defined graphs. Both terms will be used

interchangeably. The set of remaining vertices V \ {d} will be partitioned into two disjoint



sets, one called set of terminal nodes T , and the other called set of auxiliary or Steiner nodes

W . Terminal nodes are those that must be necessarily present in the network and auxiliary ones

participate in the solution only if its inclusion improves construction costs of such network.

A feasible solution consists of a certain number m of related sub-graphs, which will share the

d node, so that if we remove this node the resulting graph would be divided into m connected-

components. Each component connects depot d with a set of terminal nodes which cardinality

cannot exceed a given capacity Q. This parameter narrows the number of nodes of each com-

ponent in response to connection constraints and latency in communications. Terminal nodes

present in each of these m connected-components either belong to an associated structure with

redundancy which is part of the component, or are attached to such structure by an edge. In this

associated structure with redundancy, every pair of vertices are connected by two independent

paths. Steiner nodes, if included, can belong to redundancy associated structures but cannot be

attached to these structures by an edge.

The graph G has two associated matrix costs. One of them determines the cost of connecting

each pair of vertices if both are part of the related structure with redundancy (routing costs)

and the other determines the cost of connecting a pair of vertices if one of them is attached to

the structure by an edge (connection costs). Usually when designing networks the cost of the

core routers is greater than the cost of access routers, therefore this situation is covered by the

definition of different costs.

Our problem consist in getting a sub-graph of G, which is of minimum cost and built under

the above assumptions. We will call this problem Capacitated m Two Node Survivable Star

Problem (CmTNSSP). In Figure 2 we can see an example of a feasible solution, where the

rectangular node is the depot, black nodes are terminals and the white node is optional. Edges

drawn with full lines describe routing costs and dotted ones connection costs.

Figure 2: An example of CmTNSSP solution.



2.2 Formal definition

To give a formal definition of CmTNSSP we will establish some definitions and conventions

which we will work hereinafter.

Network design problems with connectivity requirements can be defined in two ways:

• With respect to the amount of edges (links) that may fail in the network without leaving

disconnected any two terminal nodes. These requirements translate into edge-disjoint

paths between pairs of terminal nodes.

• With respect to the number of nodes that can fail (together with their incident edges)

without leaving disconnected any two terminal nodes. These requirements result in node-

disjoint paths between pairs of terminal nodes.

The following definitions are taken from Stoer (1992).

Definition 1. Let G = (V,E) an undirected graph with V a set of vertices and E a set of edges,

a pair of nodes (i, j) ∈ V × V has k-edge-connectivity or is k-edge-connected in G, when at

least k edge-disjoint paths (which share no edge) are connecting i with j.

This definition is equivalent to stating that any cut in the graph for nodes i, j contains at least

k edges.

Definition 2. We say that a graph G = (V,E) is k-edge-connected if, for every pair of nodes

(i, j) inV , this couple is k-edge-connected.

Analogously the node-connectivity concepts are defined.

Definition 3. We say that a pair of nodes (i, j) has k-node-connectivity or is k-node-connected

in a given graph, when at least k node-disjoint paths (i.e. they do not share any nodes except i ,

j) are connecting i with j.

Definition 4. We say that a graph is k-node-connected if every pair of nodes i, j thereof is

k-node-connected.

Readers can note that if two paths with the same endpoints i, j are node-disjoint, then they

are also edge-disjoint; but not reciprocally.



Definition 5. Given a graph G = (V,E) and a vertex i ∈ V we call degree of i and we noted

δ(i) to the number of incident edges to node i.

Once specified these definitions, let us now turn to the formal definition of CmTNSSP.

Let G = (V,E) be a graph where V is a set of vertices, E is a set of edges and d ∈ V is a

distinguished node of V called depot.

Let T ⊆ V \ {d} a set of nodes, which we call terminal nodes of the graph G.

Let T̂= T ∪ {d} the set of terminals with depot node included.

Let W = V \ T̂ a set of optional (or Steiner nodes) of G.

We want to construct a graph H in such a way that:

H = H1 ∪H2 ∪H3 · · · · · · ∪Hm (1)

where each component Hi is defined as:

Hi = G′
i ∪ Si i = 1, · · ·m (2)

and meets:

• G′
i = (U ′

i , E
′
i) U ′

i ⊆ V y E ′
i ⊆ E, i = 1, · · ·m are 2-node-connected graphs,

• Si = (V̄i ∪ Ūi, Ēi), Ūi ⊆ U ′
i , V̄i ⊂ T, V̄i ∩ U ′

i = φ,

Ēi = {(ui, vi)}, ui ∈ Ūi, vi ∈ V̄i, Ēi ⊂ E

δ(vi) = 1 ∀vi ∈ V̄i i = 1, · · ·m .

Hereinafter the set of nodes vi ∈ V̄i we will call pendant nodes, the set of nodes ui ∈ Ūi base

of pendant nodes, and the set of edges {(ui, vi)} ∈ Ēi we will call pendant edges. Let T (Hi)

the set of terminal nodes of the i-th component of the graph H , there is a capacity constraint

such that:

|T (Hi)| ≤ Q (3)



For the distinguished node d defined above, the following is met:

d = H1 ∩H2 ∩H3...... ∩Hm (4)

We also define C = {cij}i,j∈V as the routing costs, i.e. the cost of a certain edge (i, j)

which belongs to some G′
k, with k = 1 · · ·m. Analogous, let us now define D = {dij}i,j∈V as

the connection costs matrix, i.e. the cost of the edge (i, j) when this edge belongs to Sk, with

k = 1 · · ·m.

Our goal is to construct a graph H defined above, which should be a minimum cost graph,

where such cost includes routing and connection costs.

Proposition 1. (Complexity) CmTNSSP belongs to class of NP-Hard problems.

Proof. Given an undirected graph G = (V,E) the Minimum-Weight Two-Connected Spanning

Network (Monma et al., 1990) is a particular case of CmTNSSP with m = 1, Q = |V |,

W = φ, y V̄1 = φ. Last condition can be forced making large enough elements of connection

costs matrix D. As the Minimum-Weight Spanning Two-Connected Network belongs to the

class of problem NP-Hard (Monma et al., 1990) this demonstrates CmTNSSP also belongs to

the same class.

3 Integer Linear Programming model

In this section we propose an integer lineal programming model for the CmTNSSP. This

model was translated to an algebraic language and solved as we will see in Section 5.

Let be the set of adjacent nodes to node i ∈ V as Adj(i) as follow:

Adj(i) = {j ∈ V : (i, j) ∈ E}

Below we define decision variables of the model:

Xk
i =







1 if node i ∈ V belongs to G′
k (2-connected structure of sub-network Hk)

0 otherwise



Y k
i =







1 if node i ∈ T is a pendant node of G′
k (2-connected structure of sub-network Hk)

0 otherwise

Y k
i,j =



















1 if i ∈ T and j ∈ V are connected by edge (i, j) ∈ E,

being i a pendant node of G′
k (2-connected structure of sub-network Hk)

0 otherwise

y
(u,v,k)
(i,j) =



















1 if edge (i, j) is used in the path from u to v

in the direction from i to j within component Hk

0 otherwise

Xk
i,j =







1 if there is a path between i and j within component Hk

0 otherwise

xi,j =







1 if edge (i, j) is used in the solution

0 otherwise

wi,j =







1 if edge (i, j) is a pendant edge used in the solution

0 otherwise

zi =







1 if pendant node i is used in the solution

0 otherwise

In the following we present the mathematical programming formulation splitted in several parts

representing different aspects of the problem.

min

m
∑

k=1

(
∑

i,j∈V

cij(xij − wij) +
∑

i,j∈V

dijwij) (5)

subject to:

m
∑

k=1

Xk
i + Y k

i = 1 ∀i ∈ T (6)

m
∑

k=1

Xk
d = m (7)



m
∑

k=1

Xk
i ≤ 1 ∀i ∈ W (8)

Y k
i = 0 ∀i ∈ W , ∀k ∈ 1 · · ·m (9)

∑

i∈T

(Xk
i + Y k

i ) ≤ Q ∀k ∈ 1 · · ·m (10)

Y k
ij ≤ xij ∀i ∈ T , ∀j ∈ V , ∀k ∈ 1 · · ·m (11)

Y k
i =

∑

j∈Adj(i)

Y k
ij ∀i ∈ T , ∀k ∈ 1 · · ·m (12)

Constraint 6 ensures that any terminal node, either belongs to a 2-connected structure of an

unique component Hk or hangs on it, distinguished node d (depot) belongs to the m compo-

nents (Constraint 7). Inequalities 8 and 9 ensure that Steiner nodes belong to the 2-connected

structures of the components Hk or they don’t participate in the solution, while Constraint 10 is

the capacity constraint, stating that each component Hk can have Q terminal nodes excluding

the d node. Constraint 11 implies that if nodes i and j are connected in the component Hk

where i is a pendant node, then the edge (i, j) belongs to the solution. Inequality 12 rules that

if node i hangs from the 2-connected structure, then it does across one and only one edge.

∑

(u,j)∈E

y
(u,v,k)
(u,j) ≥ 2Xk

(u,v) − Y k
u ∀u, v ∈ T̂, u 6= v, ∀k ∈ 1 · · ·m (13)

∑

(i,v)∈E

y
(u,v,k)
(i,v) ≥ 2Xk

(u,v) − Y k
v ∀u, v ∈ T̂, v 6= u, ∀k ∈ 1 · · ·m (14)

∑

(i,p)∈E

y
(u,v,k)
i,p −

∑

(p,i)∈E

y
(u,v,k)
(p,i) ≥ 0 ∀u, v ∈ T̂, ∀p ∈ V \ u, v, ∀k ∈ 1 · · ·m (15)

y
(u,v,k)
(i,j) + y

(u,v,k)
(j,i) ≤ xi,j ∀u, v ∈ T̂, u 6= v, ∀(i, j) ∈ E, ∀k ∈ 1 · · ·m (16)

Constraint 13 to 16 are the flow inequalities that ensure 2-connectivity between any pair of

nodes on the 2-connected structure in each component and simple connectivity when one of

them (or both) are pendant nodes.

Xk
i +Xk

j ≤ 1 +Xk
i,j ∀i ∈ V , ∀j ∈ V , ∀k ∈ 1 · · ·m (17)

Xk
i + Y k

j ≤ 1 +Xk
i,j ∀i ∈ V , ∀j ∈ T , ∀k ∈ 1 · · ·m (18)



Y k
i + Y k

j ≤ 1 +Xk
i,j ∀i ∈ T , ∀j ∈ T , ∀k ∈ 1 · · ·m (19)

Constraints 17 to 19 indicate that if the nodes are present in the solution in the same compo-

nent Hk, then they are connected.

2Xk
i,j ≤ Xk

i +Xk
j + Y k

i + Y k
j ∀i ∈ V , ∀j ∈ V , ∀k ∈ 1 · · ·m (20)

m
∑

k=1

Xk
i,j ≤ 1 ∀i, j ∈ V (21)

Constraint 20 determines that if i and j are connected within the same component Hk then it

holds that such nodes belong to the solution and either both belong to the 2-connected structure

of the component Hk or one of them hangs of it. Inequality 21 ensures that if nodes i and j are

connected, just do it in to an unique component.

m
∑

k=1

Y k
i ≤ zi ∀i ∈ T (22)

∑

j∈Adj(i)

xi,j − 1 ≤M(1− zi) ∀i ∈ T M ∈ Z
+, M ≥ max(δi) i = 1 · · · |V | (23)

Constraints 22 and 23 guarantee that the pendant nodes have degree one, and others have

degree less or equal than the degree of the node with the highest degree of graph G.

m
∑

k=1

Y k
i,j = wi,j ∀i ∈ T , j ∈ Adj(i) (24)

wi,j ≤ xi,j ∀i ∈ T , j ∈ Adj(i) (25)

Y k
i,j ≤ Xk

j ∀i ∈ T , ∀j ∈ Adj(i), ∀k ∈ 1 · · ·m (26)

(
∑

i∈Ady[j]

xj,i −
∑

i∈Ady[j]

Y k
i,j) ≥ 2Xk

j ∀j ∈ V \ T , ∀k ∈ 1 · · ·m (27)

2y
(u,v,k)
i,j ≤ Xk

i,j +Xk
u,v ∀u, v ∈ T̂, ∀i, j ∈ V, u 6= v, ∀k ∈ 1 · · ·m (28)

Inequalities for 24 to 28 are additional inequalities needed for technical issues.

Thus we have defined a mathematical programming model of CmTNSSP. This model is of



integer linear nature with polynomial number of variables and constraints on the size of the

graph. Small sized problem instances can be solved by applying this model as we will see in

Section 5.

4 Grasp Resolution

Given the nature of the problem and its complexity, we will address the resolution thereof by

the GRASP (Greedy Randomize Adaptative Search Procedure) metaheuristic (Feo and Resende,

1995), an iterative process used with success in telecommunications Robledo (2005). GRASP

comprises two phases: Construction and Local Search. In the first phase, a feasible solution

is built applying greediness (intensification) and randomization (diversification) using a RCL

(Restricted Candidate List), which is used to select elements to be added to the solution. In the

second phase this solution is improved exploring neighbor solutions successively. The solution

found by running independently both phases several times is taken as the best solution. A

complete detail of generic GRASP characteristics can be read in Resende (2009).

4.1 Construction phase

Construction Phase is the first milestone to produce a feasible solution. In our problem we

need to build m 2-node-connected components having depot d as common vertex. During the

Construction Phase, components will be iteratively built. We describe below the stages of such

phase of GRASP.

• Step 1. We proceed to locate the first m terminal nodes to be included (one in each com-

ponent). Algorithm 1 considers m random terminals and computes the sum of distances

between them. This procedure is performed n times and the set of m nodes with the

maximum sum of distances between them is choosen.

• Step 2. For each node of the set selected in Step 1, we consider the k node-disjoint

shortest (respect to the routing costs) paths between node under consideration and the

depot, whose total cost is minimal. To obtain these k node-disjoint paths that meet this

condition (minimum total cost) we use the algorithm developed by Bhandari (1997). The

number of paths k, is a parameter of the constructor. (k ≥ 2). From this list of k paths we

choose randomly exactly two, and include them in the solution. This process is repeated

m times, once for each set of k node-disjoint paths.



Algorithm 1 Selection of m initial nodes

1: procedure Far

2: input G, C, T , m, n

3: bestfar← φ

4: maxdistance = 0
5: for i=1 to n do

6: far← φ

7: for i=1 to m do

8: far[i]← ExtractRandomNode(T )

9: end for

10: distance = 0
11: for i=1 to m-1 do

12: for j=i+1 to m do

13: distance = distance + Cfar[i],far[j]

14: end for

15: if distance > maxdistance then

16: bestfar ← far

17: maxdistance = distance

18: end if

19: end for

20: end for

21: return bestfar

• Step 3. We add terminal nodes that still are not part of the solution under construction.

Such terminals will be incorporated into each of the components as follows:

A terminal node which does not belong to the solution under construction is selected ran-

domly, and is connected to the solution, generating a path to some of the m components.

This operation preserves 2-node-connectivity, since adding an independent path between

two nodes to a 2-node-connected graph, generates a new 2-node-connected graph (Fred-

erickson and Ja’Ja’, 1981). We chose the component which connects the node using the

criterion of fewer nodes present in this component. This approach is particularly useful

for balancing the number of nodes in each of the m components without losing feasibility

with respect to the capacity constraint Q. In this process we try to keep a trade-off of

connecting the node to an “inadequate” component as far as costs are concerned.

To do this, we transform the component adding a virtual node v′ connected to all nodes

of such component by zero cost edges, and likewise assigning the value 0 to the edges

present in the component to be treated. Then we define C̄(|V |+1)×(|V |+1) as the matrix of



the transformed component.

v

v′
d

l

3

4

Figure 3: Including node v into a component.

Once we apply the transformation explained above we proceed to get the k node-disjoint

paths with minimum total cost (again using the algorithm of Bhandari) between the ter-

minal node to include v and the virtual node v′ (see Figure 3). Of these k paths we choose

any two randomly, and incorporate them in the solution under construction.

Algorithm 2 that describes the three steps that comprise the construction phase of GRASP,

stops when all terminal nodes are include in some component using the procedure de-

scribed above.

We remark that in construction phase the algorithm tries to build non-cyclical components

using, if it improves costs, Steiner nodes. The pendant nodes are not considered at this

stage and appear in the solution when local search is performed.



Algorithm 2 Construction of feasible solution

1: procedure Construct Greedy Randomize Feasible Solution

2: input G, C, ListSize, m, n, Q, T

3: GSol ← φ

4: component nodes← φ

5: not assigned← T

6: FarNodes← Far(G, C, T , m, n)

7: for i=1 to m do

8: node = ExtractRandomNode(FarNodes)

9: minpaths = Bhandari(G, C, not assigned, ListSize, depot, node)

10: path 1← ExtractRandomPath(minpaths)

11: path 2← ExtractRandomPath(minpaths)

12: GSol ← add path(GSol, path 1)

13: GSol ← add path(GSol, path 2)

14: component nodes[i]← add nodes(component nodes[i], path 1)

15: component nodes[i]← add nodes(component nodes[i], path 2)

16: not assigned← subtract nodes(not assigned, path 1)

17: not assigned← subtract nodes(not assigned, path 2)

18: end for

19: repeat

20: node = ExtractRandomNode(not assigned)

21: comp = CompSelect(GSol)

22: Ḡ = transform (G, C, C̄, GSol, comp, component nodes) // Figure 3

23: minpaths = Bhandari(Ḡ, C̄, not assigned, ListSize, node, virtual)

24: path 1← ExtractRandomPath(minpaths)

25: path 2← ExtractRandomPath(minpaths)

26: GSol ← add path(GSol, path 1)

27: GSol ← add path(GSol, path 2)

28: component nodes[comp]← add nodes(component nodes[comp], path 1)

29: component nodes[comp]← add nodes(component nodes[comp], path 2)

30: not assigned← subtract nodes(not assigned, path 1)

31: not assigned← subtract nodes(not assigned, path 2)

32: until not assigned = φ

33: return GSol



4.2 Local Search Phase

Once we build a feasible solution to the CmTNSSP, this solution must be improved to ap-

proach the global optimal solution. To do this we use a combination of classical local searches,

and others based on exact integer linear programming models. There are different strategies for

combining a process of building a feasible solution and a set of local searches. In this paper for

deploying local searches, we will use a variant of VNS (Variable Neighborhood Search) called

VND (Variable Neighborhood Descendant), whose generic algorithm is detailed in (Mladen-

ovic and Hansen, 1997). We have designed five neighborhoods corresponding to the five local

searches that we develop below. These local searches are referred to as Extract Insert Nodes

(Extract-Insert), Swapping Nodes (Swapping), Components Crossing (Crossing), Best Path

with Rays (Best PWR) and Best 2-Node-Connected Component (Best 2NC) which are applied

successively in this order.

4.2.1 Extract-Insert Nodes

This local search performs the extraction of all terminal nodes in a random order from their

current positions in the solution, and relocate them to another positions (either in the same com-

ponent or other) to improve the overall cost without losing feasibility. The extraction procedure

is simple, we extract a terminal node and we reconnect the adjacents to the extracted node. To

make the insertion of the extracted node we consider the following definition:

Let i ∈ T a node extracted with T the set of terminal nodes of the graph and a neighborhood N

defined as follows:

N(i) =







j ∈ T : j
are the k nodes closer to node i taking into account routing

costs cij defined in original graph G







(29)

The loop for each terminal node i, ends after having considered all possible insertions be-

tween k closest nodes, and selects the movement that produces the lowest total cost. The algo-

rithm repeats the same procedure for all i ∈ T not even considered, by examining N(i) until

finally selecting the movement that produces the lowest total cost.



4.2.2 Swapping Nodes

This local search selects two nodes and makes an exchange (swapping) between them. This

process starts with a random selection of a terminal not pendant node and tests all possible ways

to swap this node with another close node belonging to a 2-node-connected component (the

same or other). To clarify the concept close we define a neighborhood related to the considered

node.

Again we will appeal to the same definition of neighborhood we use in extract-insert local

search, (detailed in 4.2.1), i.e. the neighborhood N of k nodes j ∈ T closest to the node i.

The algorithm begins by taking a random node i and proceeds as follows.

Consider again node j as the nearest node to i. If j is a pendant node, do not perform any

movement and continue with the next node, i.e. take a next j closest to i. Each time a swapping

movement leads to improvement and keeps the feasibility, the current solution is updated, the

possible swapping with other nodes j in descending order of distance are discarded and finally

the algorithm continues with the next non pendant terminal node i.

This local search (Algorithm 3) takes two close nodes (as defined in Section 4.2.2), each

one in different component, eliminates one of their adjacent edges (for each node) and connects

each pair of nodes (in different component) by the edge that generates the best cost.

4.2.3 Best path with pendants

This local search is based on an integer linear programming model. Previously we give a

definition of structures used for this local search, that we will call path with pendant nodes or

shortly path with pendants.

Definition 6. Path with pendant nodes. Given an undirected graph G = (V,E) we say this is

a path with pendant nodes with endpoints a and z ∈ V when exists a path p(a, z) ⊆ G that

connects nodes a and z (that we call main path), and the following conditions are met:

• G is acyclic and connected.

• All nodes that do not belong to p are connected to some node of p through a simple edge.



Algorithm 3 In this algorithm a terminal node, and one of its closest in another component

are selected, adjacent edges of each node are eliminated, and such components are crossed by

adding two new edges.

1: input Ginic, T , k

2: Gbest ← Ginic

3: for (i = 1 to |T |) do

4: if (i is not a pendant node) then

5: Let K be the ordered set of k nodes closest to node i

6: for (u = 1 to k) do

7: Let j = uth node closest to node i

8: remove an edge adjacent to node i

9: remove an edge adjacent to node j

10: Let i′ be the opposite end of the edge incident to i

11: Let j′ be the opposite end of the edge incident to a j

12: state 1=generate edges (i, j′) and (i′, j)
13: state 2=generate edges (i, j) and (i′, j′)
14: select the state that generates feasible solution with improved resulting cost

15: improve = update(Gbest)
16: if (improve) then

17: breakfor

{exit FOR loop, we do not consider next closer nodes}
18: end if

19: end for

20: end if

21: end for

22: return Gbest

Given a feasible solution to the CmTNSSP we should identify all simple cycles that exist in

each component and we should explod them in paths, adding their pendants nodes. For each

path with pendants, exact local search is applied to obtain the best solution with such topology.

This algorithm is based on an integer linear programming model, takes an input graph with two

distinguished nodes a and z and returns the best path with pendants with the same endpoints a

and z as optimal solution.

We consider the following definitions:

Let G = (V,E) a graph where V is the set of vertices and E is the set of edges.

Let T̂ the set of terminal nodes of G.

Let a and z two distinguished terminal nodes such that a ∈ T̂ and z ∈ T̂.

Let T = T̂ \({a} ∪ {z}) the set of terminal nodes without a and z.



We define C = {cij}i,j∈V as the routing costs matrix of the graph, for each edge (i, j which

belongs to the main path p(a, z).

Let us now define D = {dij}i,j∈V as the connection costs matrix of the graph, that is the

cost of the edge (i, j) when one end node is a node of the main path and the other one does not

belong to sucha path.

Let W = V \ T̂ be the set of Steiner nodes. Let us now define the model variables.

Xi =







1 if node i ∈ T̂ belongs to main path

0 otherwise

Yi =







1 if node i ∈ T is a pendant node

0 otherwise

Y ci,j =







1 if i ∈ T̂ and j ∈ V are connected, being i a pendant node and j a main path node

0 otherwise

xi,j =







1 if edge (i, j) is used in the solution

0 otherwise

wi,j =







1 if edge (i, j) is a pendant edge and is used in the solution

0 otherwise

Y
(u,v)
(i,j) =







1 if edge (i, j) is used in path that goes from node u to node v

0 otherwise

The integer linear programming model is defined as follows:

min(
∑

i,j∈V

cij(xij − wij) +
∑

i,j∈V

dijwij) (30)

subject to:

Xi + Yi = 1 ∀i ∈ T (31)

Xi = 1 ∀i ∈ ({a} ∪ {z}) (32)

Y cij ≤ Xj ∀i ∈ T ∀j ∈ Adj(i) (33)

Yi =
∑

j∈Adj(i)

Y cij ∀i ∈ T (34)



∑

j∈V

wi,j ≤ Yi ∀i ∈ T (35)

Y ci,j = wi,j ∀i ∈ T j ∈ Adj(i) (36)

∑

j∈Adj(i)

xi,j ≤M(1− Yi) + 1 ∀i ∈ T M ∈ Z
+, M ≥ max(δi) i = 1 · · · |V | (37)

wi,j ≤ xi,j ∀i ∈ T j ∈ Adj(i) (38)

∑

j∈Ady[u]

y
(u,v)
(u,j) = 1 ∀u, v ∈ T̂, u 6= v, (39)

∑

i∈Ady[v]

y
(u,v)
(i,v) = 1 ∀u, v ∈ T̂, v 6= u, (40)

∑

i∈Ady[p]

y
(u,v)
(i,p) −

∑

i∈Ady[p]

y
(u,v)
(p,i) ≥ 0 ∀u, v ∈ T̂, ∀p ∈ V \ u, v (41)

y
(u,v)
(i,j) + y

(u,v)
(j,i) ≤ xi,j ∀u, v ∈ T̂, u 6= v, ∀(i, j) ∈ E (42)

Yi = 0 ∀i ∈ W (43)

∑

j∈Ady(i)

Y ci,j = 0 ∀i ∈ W (44)

(
∑

i∈Ady[j]

Y ci,j + 2Xj −
∑

i∈Ady[j]

xj,i = 0) ∀j ∈ W (45)

∑

i∈Ady[j]

(Y ci,j + Y cj,i) + 2Xj −
∑

i∈Ady[j]

xj,i = 0 ∀j ∈ T (46)

∑

i∈Ady[j]

(Y ci,j) +Xj −
∑

i∈Ady[j]

xj,i = 0 ∀j ∈ ({a} ∪ {z}) (47)

Algorithm 4 describes local search which involves the replacement of a path with pendants, by

other with the same nodes and endpoints whose total cost is lower (optimal). It begins by taking

as input the graph GSol, feasible solution of CmTNSSP. For each m components of GSol we

count its cycles, which are them identified and stored in the indexed list all cycles (Lines 3 and



Algorithm 4 Improved solution decomposing all cycles of the graph on paths with their respec-

tive pendant nodes, getting the best substitute for each of them.

1: input Gsol, G, C, D, T, MAX PATH LENGTH

2: Gbest ← Gsol

3: q cycles = cycles count(Gsol) {Numbers of cycles of Gsol}
4: all cycles← cycles(Gsol) {Array with cycles of Gsol}
5: for (i = 1 to q cycles) do

6: path long = min (length(all cycles(i)), MAX PATH LENGTH ))

7: begin path = 1
8: end path =length(all cycles(i))
9: while (end path ≤ length(all cycles(i))) do

10: end path = begin path + 3 + (rand() MOD (path long - 2))

11: P = path with rays(Gsol, all cycles(i), begin path, (end path MOD

length(all cycles(i))
12: H ← induced graph path(P, G, T)

13: Pbest = best pwr(Gsol, G P C, D, H)
14: Gbest ← Gbest - P + Pbest

15: begin path = end path

16: end while

17: end for

18: return Gbest

4). Next, each of the cycles identified in the previous steps are treated, running the operations

defined in the scope of for (Lines 5 to 17) until exhaust all cycles. Each cycle is divided into

a certain number of paths of variable length (MAX PATH LENGTH parameter). We set a

start node and an end node of the first path in the cycle (Lines 7 and 8).

Once initialized the path to process, we enter into a repetitive loop determined by scope of

(while) (Lines 9 to 16) which readjust path length in a random way (Line 10).

Each path obtained in the previous step is added with pendant nodes present in GSol (Line 11)

obtaining a path with endpoints begin path, end path and pendant nodes, such we specify in

Definition 6.

In the next step we generate the graph H induced by nodes of the path with pendants P respect

to the original graph G. (Line 12). Graph H thus generated is input of process best pwr that

gives us the best path with pendants with ends begin path, end path (Line 13).

In line 14 we perform the substitution of the path with pendants P by the path with pendants

Pbest obtaining a better solution cost Gbest. Next, we reset the start and the end node in the cycle

we are processing, (Line 15) to generate a new path. After processing all paths within each



cycle, we return the best cost solution Gbest (Line 18).

4.2.4 Best 2-Connected Component

This local search is also based on integer linear programming. Just as in the previous local

search, given a feasible solution to the problem, Algorithm 5 identifies all cycles that exist

in each component. For each cycle we will now apply an exact algorithm getting the best

replacement solution that changes a cycle by 2-node-connected topology.

As we saw in Section 1, the best 2-node-connected solution covering a certain set of nodes is not

necessarily a cycle, so this local search may include such topologies in our solution (see Figure

1). This algorithm takes as input the induced sub-graph of the original graph with nodes of the

cycle and some Steiner nodes, and returns the best 2-connected sub-graph, i.e it can potentially

changes a cycle for a structure that contains a Monma’s graph if such change improves solution

costs.

We use to model this local search a particular case of GSP (General Steiner Problem) where

connectivity of all its terminal nodes is two. We consider th following definitions:

Let G = (V,E) and undirected graph where V is the set of vertices and E the set of edges

of graph G.

Let T̂ set of terminal nodes of graph G.

Define C = {cij}i,j∈V as the routing cost matrix, i.e. costs when edge (i, j) belongs the two-

node-connected structure of the component. Only use this cost matrix as in this local search are

not considered pending nodes that have been generated so far.

Let us define below the model variables.

xi,j =







1 if edge (i, j) is used in the solution

0 otherwise

y
(u,v)
(i,j) =







1 if edge (i, j) is used in a path from node u to v

0 otherwise



Once the variables are specified, the integer linear programming model is defined as follows:

min(
∑

i,j∈V

cijxij)

subject to:

∑

j∈Ady[u]

y
(u,v)
(u,j) = 2 ∀u, v ∈ T̂, u 6= v,

∑

i∈Ady[v]

y
(u,v)
(i,v) = 2 ∀u, v ∈ T̂, v 6= u,

∑

i∈Ady[p]

y
(u,v)
i,p −

∑

i∈Ady[p]

y
(u,v)
(p,i) ≥ 0 ∀u, v ∈ T̂, ∀p ∈ V \ u, v

y
(u,v)
(i,j) + y

(u,v)
(j,i) ≤ xi,j ∀u, v ∈ T̂, u 6= v, ∀(i, j) ∈ E

Algorithm 5 Improving solution changing cycles of the graph for the best 2-node-connected

component.

1: input G, Gsol, C, T

2: Gbest ← Gsol

3: q cycles = cycles count(Gsol) {Number of cycles of Gsol}
4: all cycles← cycles(Gsol) {Array with cycles of Gsol}
5: for (i = 1 to q cycles) do

6: best = best 2nc(Gsol, Gorig, all cycles(i))
7: Gbest ← Gbest - all cycles(i) + best 2nc
8: end for

9: return Gbest

Analogous to Algorithm 4, Algorithm 5 counts and identifies the cycles present in Gsol

(lines 3 and 4). For each of these cycles the process best 2nc (line 6) returns the best 2-node-

connected structure and in the line 7 performs substitution of cycle by the best one.

5 Computational results

To the best of our knowledge, it does not exist an exact resolution of the problem CmTNSSP

in the literature, therefore in principle we do not have a reference to compare the effectiveness



of the metaheuristic developed in this work. Considering that the CmTNSSP is a relaxation of

CmRSP and that any solution of CmRSP is also solution of CmTNSSP, we refer to the work on

the CmRSP by Baldacci et al. (2007). In that paper, the vast majority of the problem instances

used are solved to optimality and those that are unresolved have defined lower bounds that will

guide us to measure the results generated by our application. Also, we compare against more

recent results for CmRSP provided by Naji-Azimi et al. (2012).

The exact ILP model was coded in AMPL and ran in CPLEX 12.7. The heuristic was coded

in C, using the callable library of CPLEX. Hardware where algorithms were run, consists of a

computer with Intel I7 processor with 8 Gb. RAM and OS Fedora Core 20.

5.1 Exact resolution

The model has been implemented and executed on several small instances and we have

selected one to describe, e.g. we have defined a graph called nut30 and denoted N = (V,E)

where V = T ∪ W ∪ {d}, where: T = {1 · · · 19} the set of terminal nodes of graph N ,

W = {20 · · · 29} the set of Steiner nodes and d = {0} the depot node, capacity constraint

Q = 2 and the number of components m = 2. Routing cost matrix C and connection costs

matrix D are identicals and values are the euclidean distances between vertices of the graph N .

Figure 4: Initial graph (nut30) for testing ILP model of CmTNSSP.

In order to shorten the computational processing used in executing the solver CPLEX, we have

not considered the complete graph and we have generated only some edges of the graph N ,

hence the set E contains only the edges that can be seen in Figure 4. Still, given the complexity



of the model, the transformation to an integer linear programming for this instance had 721,244

rows, 618,913 columns and 629,149 non-zero values. After running the model we obtain the

exact solution of CmTNSSP for the instance defined above. We can observe the graphical

representation in Figure 5. Note that even though we are solving the CmTNSSP, the optimal

solution is also a solution of CmRSP, i.e. the connected components are exclusively cycles.

Figure 5: Global optimum of CmTNSSP for nut30, found using CPLEX solver.

5.1.1 Resolution by GRASP

We use the test instances proposed by Baldacci et al. (2007), which are divided into two

classes, A and B. In class A routing costs and connection costs match. In class B routing costs

are greater than connection costs. For both classes of instances graphs used are the same, the

only difference is in the cost of its edges according to whether or not incident to a pendant node.

These graphs are eil51, eil76 and eil101 obtained from the TSPLIB, the Traveling Salesman

Problem Library Reinelt (1990). Additionally, a new graph called eil26 is added and it is built

with the first 26 vertices of eil51. Then we set n = {26, 51, 76, 101} as the total of vertices

for each of the graphs defined in the previous paragraph. First node of each of these graphs

is tagged as depot. The remaining 25, 50, 75 and 100 respectively are divided into terminal

and optional nodes according to a parameter α ∈ {0.25, 0.5, 0.75, 1}, where U (set of terminal

nodes) are the first α(n − 1) nodes and W (set of Steiner nodes) the remaining. For each of

these combinations we will generate instances with m ∈ {3, 4, 5} and Q will be calculated for

a use of the components above the 90 % using the following formula:



Q =

⌈

|U |

0.9m

⌉

(48)

With regard to costs for classes of instances A and B these are defined in the following way:

• Class A. Routing and connection costs are equal and correspond to the Euclidean distance

ei,j between nodes (i, j) considered. Thus ci,j = di,j = ei,j

• Class B. Routing costs ci,j = ⌈β ei,j⌉, where β is an integer in the range [6,9]. Connection

costs will be di,j = ⌈(10− β)ei,j⌉. For our Class B instances we use β = 7.

In addition to the definitions specified in the preceding paragraphs, there is another constraint on

connection costs. Each edge connecting node on a 2-node-connected component with a pendant

node cannot have a higher cost to a certain bound:

dmax = 0.2×

∑

(i,j)∈E dij

|E|
(49)

This is in fact an additional problem constraint, which is also present in the studies used as

reference for comparison in this work.

We can see in Table 1 the results of the solutions for Class A instances. The notations corre-

sponding to each column are the following:

|T | is the number of terminal nodes in the specified instance, CN is the number of nodes present

in 2-node-conected structures of components, PN is the number of pendant nodes in the solu-

tion, SN is the number of Steiner nodes used in the solution, Zbest is the optimum value found

by GRASP, Z̄1 is the reference optimum value obtained in Baldacci et al. (2007), Z̄2 is the best

value obtained in recent work by Naji-Azimi et al. (2012) and gap is the percentage difference

of Z̄1 with our calculated solution, and it is calculated as follows:

gap =
Zbest − Z̄1

Z̄



INSTANCE |T | Q CN PN SN Zbest Z̄1 Z̄2 gap % t(s)

A01-n026-m03 12 5 12 0 1 242 242 242 0,000 1.61

A02-n026-m04 12 4 12 0 1 261 261 261 0,000 0.97

A03-n026-m05 12 3 12 0 1 292 292 292 0,000 13.77

A03-n026-m05 12 3 12 0 0 292 292 292 0,000 4.54

A04-n026-m03 18 7 18 0 0 301 301 301 0,000 34.29

A05-n026-m04 18 5 18 0 0 339 339 339 0,000 62.58

A05-n026-m04 18 5 18 0 1 339 339 339 0,000 9.34

A06-n026-m05 18 4 18 0 0 375 375 375 0,000 2.67

A07-n026-m03 25 10 24 1 0 325 325 325 0,000 14.06

A08-n026-m04 25 7 25 0 0 362 362 362 0,000 3.99

A10-n051-m03 12 5 12 0 0 242 242 242 0,000 20.09

A11-n051-m04 12 4 12 0 3 261 261 261 0,000 6.42

A12-n051-m05 12 3 11 1 2 286 286 286 0,000 37.69

A13-n051-m03 25 10 22 3 3 322 322 322 0,000 130.85

A14-n051-m04 25 7 24 1 1 360 360 360 0,000 49.75

A15-n051-m05 25 6 23 2 2 379 379 379 0,000 117.67

A16-n051-m03 37 14 33 4 1 373 373 373 0,000 296.60

A17-n051-m04 37 11 33 4 1 405 405 405 0,000 80.49

A18-n051-m05 37 9 33 4 1 432 432 432 0,000 2720.60

A19-n051-m03 50 19 45 5 0 458 458 458 0,000 1674.86

A20-n051-m04 50 14 48 2 0 490 490 490 0,000 3429.11

A21-n051-m05 50 12 43 7 0 520 520 520 0,000 6338.64

A22-n076-m03 18 7 17 1 5 330 330 330 0,000 36.13

A23-n076-m04 18 5 15 3 7 385 385 385 0,000 112.97

A24-n076-m05 18 4 17 1 4 448 448 448 0,000 109.91

A25-n076-m03 37 14 35 2 2 403 402 402 0,249 3624.35

A26-n076-m04 37 11 36 1 3 456 460 457 -0,870 7200.00

A27-n076-m05 37 9 36 1 4 483 479 479 0,835 7200.00

A28-n076-m03 56 21 48 8 1 474 471 471 0,637 7200.00

A29-n076-m04 56 16 49 7 1 519 523 519 -0,765 7200,00

A30-n076-m05 56 13 50 6 2 547 545 545 0,367 7200.00

A31-n076-m03 75 28 71 4 0 571 564 564 1,241 7200.00

A32-n076-m04 75 21 73 2 0 617 606 602 1,815 7200.00

A33-n076-m05 75 17 68 7 0 651 654 640 -0,459 7200.00

A34-n101-m03 25 10 21 4 7 363 363 363 0,000 199.27

A35-n101-m04 25 7 21 4 9 415 415 415 0,000 1023.84

A36-n101-m05 25 6 22 3 9 448 448 448 0,000 1264.62

A37-n101-m03 50 19 46 4 8 500 500 500 0,000 4020.65

A38-n101-m04 50 14 47 3 6 538 532 528 1,128 7200.00

A39-n101-m05 50 12 46 4 5 573 568 567 0,880 7200.00

A40-n101-m03 75 28 69 6 5 613 595 595 3,025 7200.00

A41-n101-m04 75 21 73 2 1 651 625 623 4,160 7200.00

A42-n101-m04 75 17 70 5 2 677 662 657 2,266 7200.00

A43-n101-m03 100 38 84 16 0 662 646 646 2,477 7200.00

A44-n101-m04 100 28 87 13 0 680 680 679 0,000 7200.00

A45-n101-m05 100 23 84 16 0 713 700 700 1,857 7200.00

Table 1: Best values found for instances Class A.

Finally column t(s) points the maximum processing time of the instance in seconds. We

have defined a limit of 7200 seconds of maximum runtime.

Such Table 1 reports the best Zbest found for CmTNSSP. Values in bold are those where the

proposed GRASP based heuristic improves the solution found by the original work of Bal-

dacci et al. (2007). Note that some of those values where later improved by Naji-Azimi et al.

(2012). In general terms, we can conclude that our proposed algorithm is successful in solv-

ing the CmRSP, a problem closely related to CmTNSSP. Also, some improvements in specific

instances were found.

Similarly in Table 2 we can see the best values generated by our algorithm for Class B in-

stances. We can observe even more improvements with respect to the original work of Baldacci

et al. (2007) and similar relationship with results of Naji-Azimi et al. (2012). The same conclu-



sions already stated for Class A, also hold for Class B instances. Other results about this work

and more detailed procedures with other instances can be read in Bayá (2014).

It is worth mentioning that, due to lack of references for comparison, we are comparing

against results produced by algorithms which were not conceived to solve the problem intro-

duced in this work. Nevertheless, our results are competitive when compared with the ones

produced by the authors who introduced the CmRSP. The comparison against more recent re-

sults gives less chances to succeed in terms of improvements on CmRSP instances, since newer

heuristic solving methods are very much specialized. Actually, the best known results for the

CmRSP have been published very recently by (Zhang, Qin and Lim, 2014), a work which is

contemporary with this one.

INSTANCE |T | Q CN PN SN Zbest Z̄1 Z̄2 gap % t(s)

B01-n026-m03 12 5 11 1 1 1684 1684 1684 0,000 3.09

B02-n026-m04 12 4 12 0 1 1827 1827 1827 0,000 1.09

B03-n026-m05 12 3 11 1 2 2041 2041 2041 0,000 10.68

B04-n026-m03 18 7 17 1 1 2104 2104 2104 0,000 24.90

B05-n026-m04 18 5 17 1 1 2370 2370 2370 0,000 78.21

B06-n026-m05 18 4 17 1 2 2615 2615 2615 0,000 47.01

B07-n026-m03 25 10 24 1 0 2251 2251 2251 0,000 35.13

B08-n026-m04 25 7 24 1 0 2510 2510 2510 0,000 51.65

B09-n026-m05 25 6 25 0 0 2674 2674 2674 0,000 150.31

B10-n051-m03 12 5 10 2 2 1681 1681 1681 0,000 2035.19

B11-n051-m04 12 4 10 2 3 1821 1821 1821 0,000 49.26

B12-n051-m05 12 3 10 2 2 1975 1972 1972 0,152 930.42

B13-n051-m03 25 10 21 4 3 2176 2176 2176 0,000 1724.28

B14-n051-m04 25 7 22 3 3 2470 2470 2470 0,000 626.97

B15-n051-m05 25 6 21 4 4 2579 2579 2579 0,000 92.66

B16-n051-m03 37 14 29 8 2 2490 2490 2490 0,000 3699.45

B17-n051-m04 37 11 29 8 2 2735 2721 2721 0,515 3605.47

B18-n051-m05 37 9 32 5 2 2908 2908 2908 0,000 197.51

B19-n051-m03 50 19 39 11 0 3015 3015 3015 0,000 871.33

B20-n051-m04 50 14 39 11 0 3267 3260 3260 0,215 7200,00

B21-n051-m05 50 12 38 12 0 3404 3404 3404 0,000 3773.22

B22-n076-m03 18 7 15 3 4 2253 2253 2253 0,000 186.10

B23-n076-m04 18 5 13 5 8 2620 2620 2620 0,000 90.78

B24-n076-m05 18 4 15 3 9 3155 3059 3059 3,138 7200,00

B25-n076-m03 37 14 32 5 6 2731 2720 2720 0,404 7200,00

B26-n076-m04 37 11 34 3 4 3134 3138 3100 -0,127 7200.00

B27-n076-m05 37 9 36 1 3 3329 3311 3284 0,544 7217.19

B28-n076-m03 56 21 40 16 4 3044 3088 3044 -1,425 7200.00

B29-n076-m04 56 16 44 12 2 3439 3447 3415 -0,232 7200.00

B30-n076-m05 56 13 44 12 2 3635 3648 3632 -0,356 3797.03

B31-n076-m03 75 28 55 20 0 3724 3740 3652 -0,428 2112.23

B32-n076-m04 75 21 57 18 0 4096 4026 3964 1,739 7200,00

B33-n076-m05 75 17 58 17 0 4489 4288 4217 4,688 7200,00

B34-n101-m04 25 7 19 6 9 2445 2434 2434 0,369 7200,00

B35-n101-m04 25 7 19 6 6 2795 2782 2782 0,467 7200,00

B36-n101-m05 25 6 18 7 4 3009 3009 3009 0,000 597.71

B37-n101-m03 50 19 40 10 8 3331 3332 3322 -0,030 7200,00

B38-n101-m04 50 14 38 12 8 3560 3533 3533 0,764 7200,00

B39-n101-m05 50 12 41 9 8 3873 3872 3834 0,026 7200,00

B40-n101-m03 75 28 68 7 5 3931 3923 3887 0,204 7200,00

B41-n101-m04 75 21 68 7 6 4332 4125 4082 5,018 7200,00

B42-n101-m05 75 17 69 6 6 4494 4458 4358 0,808 7200,00

B43-n101-m03 100 38 96 4 0 4403 4110 4110 7,129 7200,00

B44-n101-m04 100 28 95 5 0 4526 4506 4355 0,444 7200,00

B45-n101-m05 100 23 96 4 0 4639 4632 4565 0,151 7200,00

Table 2: Best values found for instances Class B



5.2 CmTNSSP with non cyclical 2-node-connected components

In results displayed in Tables 1 and 2, despite local search applied inducing the use of non-

cyclical 2-node-connected components if these are optimal (see Section 4.2.4), we didn’t find

such structures for tested instances. To verify that the proposed algorithm finds such solutions

we generate an additional test case. We are given graph G = (V,E) complete, with |V | = 36

and nodes distributed in the following way:

d = {0}, T = {1 · · · 27}, W = {28 · · · 35}

The set of vertices V are located on a planar coordinate system (x, y) with the following

values:

0 (11,9) 6 (5,9) 12 (14,12) 18 (20,6) 24 (25,9) 30 (3,10)

1 (9,13) 7 (3,7) 13 (14,6) 19 (21,17) 25 (28,12) 31 (16,5)

2 (7,11) 8 (8,8) 14 (16,9) 20 (21,12) 26 (28,6) 32 (21,10)

3 (6,13) 9 (7,6) 15 (18,12) 21 (22,9) 27 (30,9) 33 (22,14)

4 (3,12) 10 (4,4) 16 (19,9) 22 (24,6) 28 (7,9) 34 (25,5)

5 (1,9) 11 (13,15) 17 (17,6) 23 (25,12) 29 (9,4) 35 (28,9)

Cost matrices C = {cij}i,j∈V y D = {dij}i,j∈V are both defined by Euclidian distances be-

tween vertices i, j multiplied by a factor 10, except for a set of edges E ′ ⊆ E to which is

assigned the following costs:

c0,11 = c11,0 = d0,11 = d11,0 = 1

c12,15 = c15,12 = d12,15 = d15,12 = 5

c0,14 = c14,0 = d0,14 = d14,0 = 1

c16,14 = c14,16 = d16,14 = d14,16 = 1

c0,13 = c13,0 = d0,12 = d12,0 = 1

c0,13 = c13,0 = d0,13 = d13,0 = 1

c0=15,20 = c20,15 = d15,20 = d20,15 = 1

c22,26 = c26,22 = d22,26 = d26,22 = 1

c20,23 = c23,20 = d20,23 = d23,20 = 1

c18,22 = c22,18 = d18,22 = d22,18 = 1

c14,17 = c17,14 = d14,17 = d17,14 = 80

c18,17 = c17,18 = d18,17 = d17,18 = 1

c24,27 = c27,24 = d24,27 = d27,24 = 5

Constructor parameters are the following:

m = 2; Q = 18; ListSize = 4



k = 7; p = 11; MAX PATH LENGTH = 4

For values specified above, GRASP-VND algorithm found optimal (local to our knowledge)

feasible solution with a non-cyclical structure in one of its components (Figure 6)

Figure 6: Topology of non-cyclical 2-node-connected component found.

These results show that designed GRASP-VND metaheuristic is able to obtain the best solution

(local optimum) with non-cyclical structures.



6 Conclusions and future works

The Capacitated m Two-Node Survivable Star Problem (CmTNSSP) has been introduced.

As far as we know, it has not been studied in prior literature. The need for redundancy and

cheaper costs in network deployment is remarkable. Inspired in predictions from Clyde Monma

and the previous CmRSP, we propose an alternative problem, where rings are replaced by arbi-

trary two-node connected components. Both problems are computationally intractable. There-

fore, heuristics are suitable for large case scenarios. The CmTNSSP has been modeled by an

ILP formulation and heuristically addressed following a GRASP metaheuristic enriched with

a variable neighborhood descend (VND) and exact local searches. Numerical results validated

both the exact formulation and the heuristic approach. Results from the literature concerning

CmRSP were taken as reference for comparison. In all cases, the components obtained were

cycles instead of other two-connected topologies. We found that a particular cost structure lead

to non-cyclical solutions. Further research is needed in order to understand the nature of prob-

lem instances which influence these results.

In this paper we have seen the CmTNSSP as a slight variation of CmRSP. However delay-

sensitive applications can increase the relevance of CmTNSSP with respect to CmRSP. To

achieve this goal, diameter constraints should be introduced to ensure connectivity of any pair

of nodes by a limited number of hops. Obviously there will be a trade-off when this constraint

is added to the problem. Two-node-connected components (not purely cycles) can meet this

objetive from a topological point of view. Adding diameter constraints become CmTNSSP in

a more sophisticated problem, covering other network requirements such as quality of service

(QoS). Authors are actually researching this line of work. As a future work, we also wish to

apply these techniques to the design of real-life networks.
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