Partitioning a graph into minimum gap components

Maurizio Bruglieri ¹

Dipartimento di Design, Politecnico di Milano, Milano, Italy

Roberto Cordone²

Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy

Abstract

We study the computational complexity and approximability for the problem of partitioning a vertex-weighted undirected graph into p connected subgraphs with minimum gap between the largest and the smallest vertex weights.

Keywords: Graph partitioning, computational complexity, approximability

1 Introduction

Let G = (V, E) be an undirected connected graph, w_v an integer weight coefficient defined on each vertex $v \in V$, and $p \leq |V|$ a positive integer number. Given a vertex subset $U \subseteq V$, we denote by $m_U = \min_{u \in U} w_u$ and $M_U = \max_{u \in U} w_u$ the minimum and maximum weight in U, respectively, and by gap their difference $\gamma_U = M_U - m_U$. The Minimum Gap Graph Partitioning

Temail: maurizio.bruglieri@polimi.it

² Email: roberto.cordone@unimi.it

Problem (MGGPP) requires to partition G into p vertex-disjoint connected subgraphs $G_r = (V_r, E_r)$, (r = 1, ..., p) with at least two vertices each. Its min-max and min-sum versions minimize, respectively, the maximum gap f^{MM} and the sum of the gaps f^{MS} over all subgraphs:

$$f^{MM} = \max_{r=1,\dots,p} \gamma_{V_r} \qquad f^{MS} = \sum_{r=1}^p \gamma_{V_r}$$

The MGGPP can find applications in agriculture (divide a land into parcels with limited difference in height [3]), in the location of gate houses along rivers, and in social network analysis (identify connected clusters of members with homogeneous features). It falls in the large field of graph partitioning problems [1,2], but, as far as we know, objective functions related to the differences between vertex weights in each subgraph have never been considered before.

2 Complexity

Theorem 2.1 The MGGPP admits feasible solutions if and only if graph G contains a matching of cardinality at least p.

Proof. Any maximum cardinality matching M induces on graph G a spanning forest of |M| nondegenerate trees and |V|-2|M| isolated vertices. Each isolated vertex v has an incident edge e_v which is adjacent to an edge in M. Adding e_v to M for each isolated vertex v, we obtain a spanning forest of exactly |M| trees. If |M| > p, we consider the edges connecting different trees, and we add them to M, stopping as soon as we obtain exactly p trees. This provides a feasible solution of the MGGPP. Vice versa, given a feasible solution, we can choose an edge from each subgraph (they all contain at least two vertices): these edges are nonadjacent, and yield a p-cardinality matching. \square

Let $W_U = \{z \in \mathbb{Z} : \exists v \in U \text{ with } w_v = z\}$ be the set of values assumed by w on a subset of vertices $U \subseteq V$, and $\eta_U = |W_U|$ the number of such values.

Theorem 2.2 The MGGPP with the min-max objective function is strongly \mathcal{NP} -hard even if p=2 and $\eta_V=3$.

Proof. The decision version of the problem, obviously in \mathcal{NP} , amounts to verifying the existence of a solution such that the gap of all subgraphs is not larger than a given threshold. Given a generic instance of SAT, we build the following auxiliary graph. We introduce for each literal $(x_i \text{ or } \bar{x}_i)$ a vertex $(v_i \text{ or } \bar{v}_i)$ with $w_{v_i} = w_{\bar{v}_i} = 2$, and for each clause C_j a vertex c_j with weight $w_{c_j} = 1$;

Fig. 1. Graph construction for the \mathcal{NP} -hardness proof of the min-max MGGPP

finally, we introduce two dummy vertices v_0 and v_f with weight $w_0 = w_f = 3$. Vertex v_0 is connected to v_1 and \bar{v}_1 ; vertex v_f is connected to v_n and \bar{v}_n ; each vertex v_i (resp. \bar{v}_i) is connected to v_{i+1} and \bar{v}_{i+1} ($i=1,\ldots,n-1$) and to all the clause vertices c_j such that literal x_i (resp. \bar{x}_i) occurs in clause C_j . We are looking for p=2 connected subgraphs with gaps not larger than 1. Figure 1 shows the graph corresponding to $(x_1 \vee x_2) \wedge (\bar{x}_1 \vee x_2 \vee x_3) \wedge (\bar{x}_2 \vee \bar{x}_3)$. If both subgraphs have gap ≤ 1 , v_0 and v_f belong to the same subgraph, and this connects them through a path entirely made of vertices v_i or \bar{v}_i . By construction, this path contains at least one of v_i or \bar{v}_i for each variable x_i . The other subgraph contains all the clause vertices c_j and connects them through adjacent vertices v_i or \bar{v}_i which identify literals satisfying all clauses. Such a truth assignment is consistent because the subgraph includes at most one vertex for each variable x_i . Vice versa, any satisfying truth assignment identifies a partition of the graph into two subgraphs with gap ≤ 1 .

Theorem 2.3 The MGGPP with the min-sum objective function is strongly \mathcal{NP} -hard even if $\eta_V = 2$.

Proof (Sketch). The proof is by reduction from 3-SAT.

3 Approximability

Theorem 3.1 The min-max MGGPP cannot be approximated for any constant $\alpha < 2$ unless $\mathcal{P} = \mathcal{NP}$.

Proof. Following Theorem 2.2, we can build an instance with optimum equal to 1 for any YES-instance of SAT and one with optimum equal to 2 for any NO-instance. By contradiction, a hypothetical α -approximated polynomial algorithm with $\alpha < 2$, would find on the former instances solutions with a value < 2 (by integrality, 1), and therefore solve SAT in polynomial time. \square

Theorem 3.2 The MGGPP is 2-approximable for p = 2.

Proof. Let V_1^* and V_2^* be the unknown subsets of vertices of the optimal solution. The ranges of the weights in the two subgraphs, $\left[m_{V_1^*}; M_{V_1^*}\right]$ and $\left[m_{V_2^*}; M_{V_2^*}\right]$, are either separate or overlapping. In the former case, all the vertices in a subgraph have weights strictly smaller than those in the other. Then, the optimal solution can be found by exhaustively considering all pairs of intervals $\left[w_{\pi_1}, w_{\pi_k}\right]$ and $\left[w_{\pi_{k+1}}, w_{\pi_\eta}\right]$ $(k=1,\ldots,\eta_V-1)$, and building the subgraphs induced on G by the vertices whose weights fall in the two intervals. In the latter case, the two ranges overlap, and $f^{*MS} = \gamma_{V_1^*} + \gamma_{V_2^*} \geq \gamma_V$, which implies $f^{*MM} = \max\left(\gamma_1^*, \gamma_2^*\right) \geq \gamma_V/2$. Generating any feasible solution with Theorem 2.1, we obtain $f^{MS} \leq 2\gamma_V \leq 2f^{*MS}$ and $f^{MM} \leq \gamma_V \leq 2f^{*MM}$.

4 Some special cases

The MGGPP admits some polynomially solvable special cases.

Proposition 4.1 The min-max MGGPP is polynomially solvable if $\eta_V = 2$.

Proof (Sketch). If there is a vertex whose weight is different from that of the adjacent vertices, the optimal solution is γ_V . Otherwise, we merge all the adjacent vertices of equal weight and consider the resulting vertex set V'. If |V'| > p, the optimum is γ_V ; otherwise, a procedure similar to that of Theorem 2.1 provides an optimal solution with p subgraphs of zero gap. \square

Proposition 4.2 The min-sum and min-max MGGPP are polynomially solvable on line graphs.

Proof (Sketch). The proof is based on the computation by dynamic programming of the minimum bottleneck path on a suitable graph. \Box

We are currently investigating the complexity of other special cases and working on the design of exact and heuristic algorithms.

References

- [1] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, eds. *Graph Partitioning and Graph Clustering*, v. 588 of *Contemporary Mathematics*. AMS, 2013.
- [2] C.-E. Bichot and P. Siarry, editors. Graph Partitioning. Wiley-ISTE, 2013.
- [3] Li Xiao, Li Hongpeng, Niu Dongling, Wang Yan, and Liu Gang. Optimization of GNSS-controlled land leveling system and related experiments. *Transactions of the Chinese Society of Agricultural Engineering*, 31(3):48–55, 2015.