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Abstract

We study the computational complexity and approximability for the problem of
partitioning a vertex-weighted undirected graph into p connected subgraphs with
minimum gap between the largest and the smallest vertex weights.
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1 Introduction

Let G = (V, E) be an undirected connected graph, w, an integer weight co-
efficient defined on each vertex v € V, and p < |V a positive integer num-
ber. Given a vertex subset U C V., we denote by my = min,cy w, and
My = max,cy w, the minimum and maximum weight in U, respectively, and
by gap their difference vy = My —my. The Minimum Gap Graph Partitioning
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Problem (MGGPP) requires to partition G into p vertex-disjoint connected
subgraphs G, = (V,, E,), (r = 1,...,p) with at least two vertices each. Its
min-max and min-sum versions minimize, respectively, the maximum gap
MM and the sum of the gaps f™9 over all subgraphs:
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f = max 7y, = E V.,
r=1,...,p p—

The MGGPP can find applications in agriculture (divide a land into parcels
with limited difference in height [3]), in the location of gate houses along rivers,
and in social network analysis (identify connected clusters of members with
homogeneous features). It falls in the large field of graph partitioning prob-
lems [1,2], but, as far as we know, objective functions related to the differences
between vertex weights in each subgraph have never been considered before.

2 Complexity

Theorem 2.1 The MGGPP admits feasible solutions if and only if graph G
contains a matching of cardinality at least p.

Proof. Any maximum cardinality matching M induces on graph G a span-
ning forest of | M| nondegenerate trees and |V| — 2| M| isolated vertices. Each
isolated vertex v has an incident edge e, which is adjacent to an edge in M.
Adding e, to M for each isolated vertex v, we obtain a spanning forest of ex-
actly |M]| trees. If |M| > p, we consider the edges connecting different trees,
and we add them to M, stopping as soon as we obtain exactly p trees. This
provides a feasible solution of the MGGPP. Vice versa, given a feasible solu-
tion, we can choose an edge from each subgraph (they all contain at least two
vertices): these edges are nonadjacent, and yield a p-cardinality matching. O

Let Wy = {2z € Z : Jv € U with w, = z} be the set of values assumed by
w on a subset of vertices U C V', and ny = |Wy| the number of such values.

Theorem 2.2 The MGGPP with the min-max objective function is strongly
NP-hard even if p =2 and ny = 3.

Proof. The decision version of the problem, obviously in NP, amounts to
verifying the existence of a solution such that the gap of all subgraphs is not
larger than a given threshold. Given a generic instance of SAT, we build the
following auxiliary graph. We introduce for each literal (x; or z;) a vertex (v; or
;) with w,, = wy, = 2, and for each clause C; a vertex ¢; with weight we; = 1;



Fig. 1. Graph construction for the AP-hardness proof of the min-max MGGPP

finally, we introduce two dummy vertices vy and vy with weight wy = wy = 3.
Vertex vy is connected to vy and v;; vertex vy is connected to v, and v,; each
vertex v; (resp. ¥;) is connected to v;41 and v;11 (¢ = 1,...,n — 1) and to all
the clause vertices ¢; such that literal x; (resp. ;) occurs in clause C;. We are
looking for p = 2 connected subgraphs with gaps not larger than 1. Figure 1
shows the graph corresponding to (z1 V x2) A (Z1 Vaa V x3) A (T2 V Z3). If
both subgraphs have gap < 1, vy and vy belong to the same subgraph, and
this connects them through a path entirely made of vertices v; or v;. By
construction, this path contains at least one of v; or v; for each variable x;.
The other subgraph contains all the clause vertices ¢; and connects them
through adjacent vertices v; or v; which identify literals satisfying all clauses.
Such a truth assignment is consistent because the subgraph includes at most
one vertex for each variable x;. Vice versa, any satisfying truth assignment
identifies a partition of the graph into two subgraphs with gap < 1. O

Theorem 2.3 The MGGPP with the min-sum objective function is strongly
NP-hard even if ny = 2.

Proof (Sketch). The proof is by reduction from 3-SAT. O

3 Approximability

Theorem 3.1 The min-max MGGPP cannot be approzimated for any con-
stant o < 2 unless P = N'P.

Proof. Following Theorem 2.2, we can build an instance with optimum equal
to 1 for any YES-instance of SAT and one with optimum equal to 2 for any
NO-instance. By contradiction, a hypothetical a-approximated polynomial
algorithm with o < 2, would find on the former instances solutions with a
value < 2 (by integrality, 1), and therefore solve SAT in polynomial time. O

Theorem 3.2 The MGGPP is 2-approximable for p = 2.



Proof. Let V" and V,° be the unknown subsets of vertices of the optimal
solution. The ranges of the weights in the two subgraphs, [mvl*; MVK] and
[sz*; MV;], are either separate or overlapping. In the former case, all the
vertices in a subgraph have weights strictly smaller than those in the other.
Then, the optimal solution can be found by exhaustively considering all pairs
of intervals [wy,, wr,] and [wn,,,,wx, ] (k =1,...,nv — 1), and building the
subgraphs induced on G by the vertices whose weights fall in the two intervals.
In the latter case, the two ranges overlap, and f*M9 = YWy + 7wy = v, which
implies f*M = max (v},v5) > v /2. Generating any feasible solution with
Theorem 2.1, we obtain fM5 < 24y, < 2f*M5 and fMM < 4y < 2MM O

4 Some special cases

The MGGPP admits some polynomially solvable special cases.
Proposition 4.1 The min-max MGGPP is polynomially solvable if ny = 2.

Proof (Sketch). If there is a vertex whose weight is different from that of
the adjacent vertices, the optimal solution is 7. Otherwise, we merge all
the adjacent vertices of equal weight and consider the resulting vertex set
V', If |[V'| > p, the optimum is 7y ; otherwise, a procedure similar to that of
Theorem 2.1 provides an optimal solution with p subgraphs of zero gap. O

Proposition 4.2 The min-sum and min-max MGGPP are polynomially solv-
able on line graphs.

Proof (Sketch). The proof is based on the computation by dynamic pro-
gramming of the minimum bottleneck path on a suitable graph. O

We are currently investigating the complexity of other special cases and
working on the design of exact and heuristic algorithms.
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