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Chordal graph shelling antimatroids have received little attention with regard to their combinatorial properties and

related optimization problems, as compared to the case of poset shelling antimatroids. Here we consider a special

case of these antimatroids, namely the split graph shelling antimatroids. We show that the feasible sets of such an

antimatroid relate to some poset shelling antimatroids constructed from the graph. We discuss a few applications,

obtaining in particular a simple polynomial-time algorithm to find a maximum weight feasible set. We also provide a

simple description of the circuits and the free sets.
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1 Introduction

The “split graph shelling antimatroids” are particular instances of “chordal graph shelling antimatroids”.

To investigate them, we make use of “poset antimatroids” (all the terms are explained in the next subsec-

tions). Our results shed light on the structure of split graph shelling antimatroids, and yield a polynomial

time algorithm to find an optimal feasible set in a split graph shelling antimatroid whose elements are

weighted.

Antimatroids

Antimatroids arise naturally from various kinds of shellings and searches on combinatorial objects, and

appear in various contexts in mathematics and computer science. Dilworth [6] first examined structures

very close to antimatroids in terms of lattice theory. Later, Edelman [7] and Jamison-Waldner [18] stud-

ied the convex aspects of antimatroids, see also Edelman and Jamison [8]. Korte et al. [21] considered

antimatroids as a subclass of greedoids. Today, the concept of antimatroid appears in many fields of

mathematics such as formal language theory (Boyd and Faigle [3]), choice theory (Koshevoy [22]), game

theory (Algaba et al. [1]) and mathematical psychology (Falmagne and Doignon [13]) among others.

We became recently aware of more works on optimization in antimatroids, in particular Queyranne and

Wolsey [28, 29]. The concept of a convex geometry is dual to the one of an antimatroid.

A set system (V,F), where V is a finite set of elements and F ⊆ 2V , is an antimatroid when

V ∈ F , (AM0)

∀F1, F2 ∈ F : F1 ∪ F2 ∈ F , (AM1)

∀F ∈ F \ {∅}, ∃f ∈ F : F \ {f} ∈ F. (AM2)

ISSN 1365–8050 c© 2017 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://arxiv.org/abs/1512.06073v3
http://dmtcs.episciences.org/
http://dmtcs.episciences.org/1349


2 Jean Cardinal, Jean-Paul Doignon, Keno Merckx

Condition (AM2) is called the accessibility property. The feasible sets of the antimatroid (V,F) are the

members of F . The convex sets are the complements in V of the feasible sets. We have the following

relation (for definitions and proof see Edelman [7]): A finite lattice is join-distributive if and only if it is

isomorphic to the lattice of feasible sets of some antimatroid.

Shellings

Antimatroids also relate to special shelling processes. Given a feasible set F in an antimatroid (V,F), a

shelling of F is an enumeration f1, f2, . . . , f|F | of its elements such that {f1, f2, . . . , fk} is feasible for

any k with 1 ≤ k ≤ |F |. In view of the accessibility property, any feasible set admits at least one shelling.

There is an axiomatization of antimatroids in terms of shellings (see for example Korte et al. [21]). Many

examples of antimatroids arise in a natural way from shelling processes. The next two subsections present

the cases of posets and of chordal graphs. Eppstein [12] calls basic word of an antimatroid (V,F) any

shelling of the whole set V . He uses the notion of basic word to extend the 1/3 − 2/3-conjecture to

antimatroids.

Poset antimatroids

Recall that a poset P is a pair (V,≤) formed of a finite set V and a binary relation ≤ over V which is

reflexive, antisymmetric, and transitive. For a poset (V,≤) a filter F is a subset of V such that for all

elements a in F and b in V , if a ≤ b, then b is also in F . The filters are also known as upper ideals, upset

or ending sets. We denote the family of all filters of P as flt(V,≤).
One particular class of antimatroids comes from shelling processes over posets by removing succes-

sively the maximum elements. Let (V,≤) be a poset, then (V, flt(V,≤)) is a poset (shelling) antimatroid.

Thus the feasible elements are the filters. The class of poset antimatroids is often considered as one of

the most basic, because it arises in many different contexts. Poset antimatroids are the only antimatroids

closed under intersection (Korte et al. [21]). There exist several other characterizations for this class of

antimatroids. Nakamura [24, 25] obtains a characterization of poset antimatroids by single-element ex-

tensions and by excluded minors. Recently, Kempner and Levit [20] introduce the poly-dimension of an

antimatroid, and prove that every antimatroid of poly-dimension 2 is a poset antimatroid. They establish

both graph and geometric characterizations of such antimatroids. Basic words in a poset antimatroid coin-

cide with the linear extensions of the poset (which explains their relationship to the 1/3−2/3-conjecture).

We also note the Representation Theorem due to Birkhoff [2]: When ordered by inclusion, the feasible

sets of a poset antimatroid form a distributive lattice. Conversely, any distributive lattice is isomorphic to

some poset antimatroid.

From the optimization point of view, poset antimatroids with weighted elements are easy to study. First,

Picard [27] makes a direct connection between finding a maximum (or minimum) weight feasible set in

a poset antimatroid and some maximum flow problems. Second, Stanley [30] provides a complete linear

description of the convex hull of the characteristic vectors of the feasible sets.

Chordal graph shelling antimatroids

Another particular class of antimatroids comes from shelling processes over chordal graphs, i.e. graphs

in which every induced cycle in the graph has at most three vertices. For a background on chordal graphs,

see Golumbic [16]. Any chordal graph has at least one simplicial vertex, i.e. a vertex such that its

neighbors induce a clique. For any chordal graph G = (V,E), we define an antimatroid (V,F) in which
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a subset F of V is feasible if and only if there is some ordering O = (f1, . . . , f|F |) of the elements of F
such that for all j between 1 and |F |, fj is simplicial in G \ {f1, . . . , fj−1}. The antimatroid resulting

from this construction is called a chordal graph (vertex) shelling antimatroid. The ordering O is called a

simplicial shelling (or sometimes perfect elimination ordering) of F . If applied to some arbitrary graph,

the construction we just described of feasible sets in terms of simplicial vertices gives an antimatroid

exactly if the graph is chordal (any graph which has a perfect elimination ordering of its whole set of

vertices is chordal), see Farber and Jamison [14] for more details.

We recall that a split graph is a graph whose set of vertices can be partitioned into a clique and an

independent set (the empty set is both independent and a clique). Here we assume that for every split

graph, the partition is given and we will denote byK and I the clique and the independent set, respectively.

Split graphs are chordal graphs, and they are the only chordal graphs to be co-chordal (i.e. the complement

of the graph is also chordal), see Golumbic [16]. Here we consider the special case of chordal graph

shelling antimatroids where the graph is a split graph. These antimatroids will be called split graph

(vertex) shelling antimatroids. Split graphs are relatively well known and have a wide range of theoretical

use, see for instance Merris [23], Golumbic [16], Cheng et al. [4].

Structure of the paper

The aim of this work is to provide a better understanding of the split graph shelling antimatroids. In

Section 2, we establish a new characterization of the feasible sets of split graph shelling antimatroids

and discuss the connection with the poset antimatroids. In Section 3 we prove a hardness result about

optimization problems on antimatroids and develop a polynomial time algorithm to find a maximum (or

minimum) weight feasible set in split graph shelling antimatroids. Finally in Section 4 we use the previous

results to list all the circuits and free sets of the split graph shelling antimatroids. This work is a first step

to a better understanding of a more general class: the chordal graph shelling antimatroids.

Notation

Let V denote a set of elements. For S ⊆ V , the complement of S is S∁ = V \ S. The set of all subsets

of V is denoted as 2V and the symbol ⊎ is used for the disjoint union of two sets. Let G = (V,E) be a

simple graph; we write u ∼ v as a shortcut for {u, v} ∈ E, and u ≁ v for {u, v} /∈ E. For V ′ ⊆ V we

denote by N(V ′) the set of vertices adjacent to V ′, i.e. the vertices w in V \V ′ such that w ∼ v for some

v in V ′. We write N(v) for N({v}). We call a vertex isolated if N(v) = ∅.

2 The split graph shelling antimatroids

Characterization of the feasible sets

Here is a useful characterization of the feasible sets in a split graph shelling antimatroid. Example 1

provides an illustration.

Proposition 2.1. Let G = (K ∪ I, E) be a split graph and (V,F) be the split graph vertex shelling

antimatroid defined on G. Then a subset F of vertices is feasible for the antimatroid if and only if N(F )
induces a clique.

Proof: For the necessary condition (Fig. 1), suppose we have a simplicial shelling O = (f1, . . . , f|F |)
of a feasible set F such that N(F ) does not induce a clique in G. Then, for some vertices v1 and v2 in
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N(F ) we have v1 ≁ v2. Hence {v1, v2} 6⊆ K , since K is a clique. Assume without loss of generality

that v1 ∈ I . Let fj be the first element in O such that fj ∼ v1. As v1 ∈ I , by definition of a split graph,

fj ∈ K and fj is adjacent to all other vertices of K . Then fj is not adjacent to v2 because fj must be

simplicial in G\{f1, . . . , fj−1}, so v2 must be in I . Now let ft be the first element of O such that ft ∼ v2
(notice j 6= t). Since v2 ∈ I , by a completely symmetric argument, we have ft ∈ K and ft ≁ v1. Now a

contradiction follows because, if j > t, the vertex ft is not simplicial in G \ {f1, . . . , ft−1}, and if t > j
the vertex fj is not simplicial in G \ {f1, . . . , fj−1}.

F

fj ∈ K ft ∈ K

v1 ∈ I v2 ∈ I

Fig. 1: Illustration of the proof of necessary condition for Proposition 2.1.

Reciprocally, suppose that we have a set of vertices F such that N(F ) induces a clique (Fig. 2). We

will build a simplicial shelling O on F with the help of the following three set partition of F :

V1 = F ∩ I,

V2 = (F ∩K) \N(I \ F ),

V3 = (F ∩K) ∩N(I \ F ).

We arbitrarily order the elements in each of the sets V1, V2, V3 and concatenate the orderings in this order

to obtain the sequence O. By the definition of a split graph, it is obvious that the elements of O in V1 ∪V2

fulfill the condition of a simplicial shelling. If V3 = ∅, we are done. Otherwise, N(V3) \ F is a clique

and so it has exactly one element i in I , because N(F ) induces a clique and thus all elements of V3 are

adjacent to this single element of I \ F . Therefore the elements of O in V3 fulfill the conditions of the

simplicial shelling.

Example 1. Figure 3 below shows two split graphs on which we build a split graph shelling antimatroid.

The set F on the left (Fig. 3(a)) is a feasible set and we see that N(F ) defines a clique. On the right

(Fig. 3(b)), we have a clique C and a possible simplicial shelling is proposed for a set of vertices such that

its neighborhood is C.

We recall that a chordless path in a graph is a path for which no two vertices are connected by an edge

that is not in the path. The chordless paths are also called induced paths. In a graph (V,E), a subset C of

V is monophonically convex (m-convex) when C contains all the vertices of all chordless paths joining

any two vertices of C.

Proposition 2.2. Let (V,E) be a graph and F be a subset of V . If N(F ) is a clique, then V \ F is

m-convex.
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K

Ii

F

V1

V2 V3

Fig. 2: Illustration of the proof of the sufficient condition for Proposition 2.1.

K

IF

N(F )

(a) F ∈ F ⇒ N(F ) induces a clique.

K

I

C

4

1 2

3

5

(b) F ∈ F ⇐ N(F ) induces a

clique.

Fig. 3: Examples for Proposition 2.1.

Proof: Assume N(F ) is a clique. Proceeding by contradiction, we take two vertices v, w in V \ F for

which there exists a chordless path v = u0, u1, . . . , uk = w having at least one vertex in F . Now we

select i minimal and j maximal in {1, . . . , k− 1} such that ui and uj are in F . Then necessarily ui−1 and

uj+1 are adjacent, so the path has chord, contradiction.

The converse of the implication in Proposition 2.2 does not hold even if the graph is connected. Even

more: V \ F being m-convex does not imply that the graph N induced on N(F ) is a parallel sum of

cliques (in other words, that N is the complement of a multipartite graph). Figure 4 below shows a

counter-example based on a 2-connected, chordal graph.

For a split graph (V,E), the converse of the implication in Proposition 2.2 also holds (this follows from

Proposition 2.1 and Section 3 of Farber and Jamison [14]).

Corollary 2.1. Let G = (K ∪ I, E) be a split graph and (V,F) be the split graph vertex shelling



6 Jean Cardinal, Jean-Paul Doignon, Keno Merckx

F

Fig. 4: Counter-example for the converse implication in Proposition 2.2.

antimatroid defined on G. For all feasible sets F , there is at most one i ∈ I \ F such that there is

k ∈ K ∩ F with k ∼ i.

Proof: This comes directly from Proposition 2.1 and the fact that the set I is an independent set.

Corollary 2.2. Let G = (K ∪ I, E) be a split graph and (V,F) be the split graph vertex shelling

antimatroid defined on G. Let u and v be distinct elements in V . Then V \ {u, v} ∈ F if and only if

u ∼ v, or at least one of the two vertices is isolated in G.

Proof: This comes directly from Proposition 2.1.

Corollary 2.2 helps us to rebuild the original split graph for a given split graph shelling antimatroid, as

shown in the following proposition.

Proposition 2.3. Let (V,F) be a split graph shelling antimatroid with F 6= 2V , then there is a unique

split graph G such that (V,F) is the split graph shelling antimatroid defined on G.

Proof: Suppose we have obtained a graph G such that (V,F) is the split graph shelling antimatroid

defined on it. Because F 6= 2V and Proposition 2.1, the graph G must have a non-empty subset S of

vertices such that there exist a, b in N(S) with a ≁ b (thus V \ {a, b} /∈ F ).

If we take an element v in V such that V \ {u, v} ∈ F for all u in V \ {v} (so v /∈ {a, b}), then

Corollary 2.2 leaves two options. Either the vertex v is isolated in G or v forms an edge with every non-

isolated vertex in G. Moreover, if this element v is such that {v} ∈ F , then the existence of the subset S
in the graph and Proposition 2.1 imply that v must be an isolated vertex in the graph.

We now build the graph G = (V,E) as follows. First, we identify the isolated vertices as the vertices i
satisfying V \ {i, u} ∈ F for all u in V \ {i} and {i} ∈ F . Next, among all pairs of non-isolated vertices

{v1, v2}, the ones that give an edge in G satisfy V \ {v1, v2} ∈ F . We know that there is no other edge

by Corollary 2.2.

Remark that for the split graph shelling antimatroid (V, 2V ), there exist several split graphs such that

(V, 2V ) is the split graph shelling antimatroid defined on it. For instance the complete graph on V , or the

graph (V,∅).
Testing whether a given antimatroid (V,F) is a split graph shelling antimatroid can be done using

arguments in the proof of Proposition 2.3: First, build a graph G = (V,E) with {v1, v2} ∈ E exactly if

V \ {v1, v2} ∈ F and V \ {v1, u1} /∈ F for some u1 in V \ {v1} and V \ {v2, u2} /∈ F for some u2 in

V \ {v2}. Next check that G is split and F consists of exactly the feasible sets of G.



7

We now distinguish two classes of feasible sets for the split graph shelling antimatroids. A feasible set

F is an i-feasible set if there exists some vertex i in N(F )∩ I (by Corollary 2.1, such an i is unique). On

the other hand, a feasible set F is a ∗-feasible set when N(F ) ⊆ K . Figure 5 below illustrates the two

classes of feasible sets.

K

I

F2

i

(a) F2 is an i-feasible set.

K

I

F1

(b) F1 is a ∗-feasible set.

Fig. 5: Examples of the two classes of feasible sets.

A feasible set of a split graph shelling antimatroid belongs either to the family F∗ of ∗-feasible sets, or

to one family F i of i-feasible sets as shown in the following corollary. The proof is straightforward.

Corollary 2.3. Let G = (K ∪ I, E) be a split graph and (V,F) be the split graph vertex shelling

antimatroid defined on G. If I = {i1, . . . , i|I|}, then F decomposes into

F∗ ⊎ F i1 ⊎ · · · ⊎ F |I|.

Connection between split graph shellings and poset antimatroids

For investigating a split graph (K ∪ I, E), we will make use of two functions from I to 2K∪I , the forced

set function and the unforced set function, respectively:

fs(i) ={k ∈ K : k ≁ i} ∪ {i′ ∈ I : N(i′) 6⊆ N(i)},

uf(i) = fs(i)∁ \ {i} = {k ∈ K : k ∼ i} ∪ {i′ ∈ I : N(i′) ⊆ N(i)} \ {i}.

As shown in the next lemma, the forced set function evaluated at i gives us the vertices which belong in

any i-feasible set. The unforced set function evaluated at i just gives the complement of fs(i), minus i. So

for all i in I the vertex set of the graph is equal to {i}∪ fs(i)∪uf(i). Those two definitions are illustrated

in Figure 6.

Lemma 2.1. Let G = (K∪I, E) be a split graph and (V,F) be the split graph vertex shelling antimatroid

defined on G. Let i be in I , then for any i-feasible set F in F we have fs(i) ⊆ F .

Proof: If F is an i-feasible set, we have i ∈ I ∩ F ∁ and there is a k in K ∩ F with k ∼ i. If a vertex v
in fs(i) is not in F then we have two possibilities. Either v ∈ K and so i ≁ v (by definition of fs(i)), but
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K

I

uf(i2) fs(i2)

k1 k2

k3

i1i2i3

Fig. 6: Illustration of the forced set and unforced set functions.

that contradicts Proposition 2.1 because {i, v} ⊆ N(F ), or v ∈ I and there is k′ ∈ K such that k′ ≁ i
but k′ ∼ v (by definition of fs(i)). We know that k ∼ k′ by definition of K , but that also contradicts

Proposition 2.1 because if k′ /∈ F , then {i, k′} ⊆ N(F ), and if k′ ∈ F then {i, v} ⊆ N(F ) with i ≁ v
by definition of I .

We will now establish the link between split graph shelling antimatroids and poset antimatroids. If we

have a split graph G = (K ∪ I, E), we build a poset on K ∪ I with the binary relation ≺ defined by

u ≺ v if and only if u ∈ K , v ∈ I and u ∼ v in G. The resulting poset (K ∪ I,≺) is of height at most

two (the number of elements in a chain is at most two). Next, we prove that all the structures (V,F∗) and

(uf(i), {F \ fs(i) : F ∈ F i} ∪∅) for i in I are poset antimatroids.

Proposition 2.4. Let G = (K ∪ I, E) be a split graph and (V,F) be the split graph vertex shelling

antimatroid defined on G, then F∗ = flt(K ∪ I,≺).

Proof: First we show that F∗ ⊆ flt(K ∪ I,≺). Take F in F∗, by definition of a ∗-feasible set, if there is

a k ∈ F ∩K , then N(k) ∩ I ⊆ F . Then F is a filter of (K ∪ I,≺).
Next we show that F∗ ⊇ flt(K ∪ I,≺). Suppose that F is a filter of (K ∪ I,≺), then N(F ) ⊆ K by

the definition of ≺, and by Proposition 2.1 we know that F is a feasible set because K is a clique, and

also a ∗-feasible set because N(F ) ∩ I = ∅.

In the following, we use (uf(i),≺) to denote the poset formed on uf(i) with the binary relation ≺
restricted to uf(i).

Proposition 2.5. Let G = (K ∪ I, E) be a split graph and (V,F) be the split graph vertex shelling

antimatroid defined on G, then for all i in I , F i = {fs(i) ∪H : H ∈ flt(uf(i),≺) , H ∩K 6= ∅}.

Proof: Let i be in I . We first show that F i ⊆ {fs(i) ∪H : H ∈ flt(uf(i),≺) , H ∩K 6= ∅}. Take a F in

F i, then fs(i) ⊆ F by Lemma 2.1. We have directly from the definition of F i that (F \ fs(i)) ∩K 6= ∅,

note also that F \ fs(i) = F ∩ uf(i). Now we just want to show that F ∩ uf(i) is a filter of (uf(i),≺).
This is equivalent to showing that N(k) ∩ I ∩ uf(i) ⊆ F for all k in K ∩ (F ∩ uf(i)). So if we

take a k in K ∩ (F ∩ uf(i)), then k ∼ i, but F is a feasible set, so we must have, by Corollary 2.1,

N(k) ∩ I ∩ uf(i) ⊆ F .
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Secondly, we show that F i ⊇ {fs(i) ∪ H : H ∈ flt(uf(i),≺) , H ∩ K 6= ∅}. Suppose that H is

a filter of (uf(i),≺) such that H ∩ K 6= ∅. We need to show that H ∪ fs(i) is a feasible set. We

use again Proposition 2.1 and check that N(fs(i) ∪ H) induces a clique. We only need to observe that

N(fs(i)) ⊆ N(i) by definition of the function fs, and this implies N(fs(i) ∪H) ⊆ N(i) ∪ {i} which is a

clique. Finally, by construction H ∩N(i) 6= ∅ and i /∈ H , so fs(i) ∪H is an i-feasible set and the proof

is complete.

Corollary 2.4. Let G = (K ∪ I, E) be a split graph and (V,F) be the split graph vertex shelling

antimatroid defined on G, then (V,F∗) and (uf(i), {F \ fs(i) : F ∈ F i} ∪ ∅) for i in I are all poset

antimatroids.

Proof: This follows directly from Propositions 2.4 and 2.5.

Proposition 2.5 shows us that an i-feasible set can be decomposed into fs(i) and a filter of (uf(i),≺).
It is easy to see that this decomposition is unique.

The above definitions of ∗-feasible and i-feasible sets lead to a better understanding of the poset pro-

duced by the feasible sets of a split graph shelling antimatroid. Indeed, for a split graph shelling anti-

matroid (V,F) built on a split graph (K ∪ I, E), we decompose the structure of the poset formed by its

feasible sets into a poset (F∗,⊆) and |I| posets (F i,⊆), for i ∈ I , as illustrated by Figure 7 and detailed

in Example 2.

∅

(F∗,⊆)
fs(i)

fs(i′)(F i,⊆)

(F i′ ,⊆)

Fig. 7: Schematic view of the poset produced by the feasible sets.

Example 2. Figure 8 shows a split graph (K ∪ I, E) and the poset formed by the feasible sets of the split

graph shelling antimatroid built on it. The dashed link between a feasible set F and the union sign means

that above this point, we look at i-feasible sets (for some i ∈ I) and the sets considered must be taken in

union with fs(i).

The path poset of a split graph shelling antimatroid

For an antimatroid, a path is a feasible set that cannot be decomposed into the union of two other (non-

empty) feasible sets. Alternatively, a path is a feasible set containing a unique element whose removal

leaves a feasible set. When ordered by inclusion, the family of paths forms the path poset. The paths

of any antimatroid completely determine the antimatroid. To the contrary, the poset structure of the path

poset does not in general determine the antimatroid. The two following collections of paths, when ordered

by inclusion, form isomorphic posets although they arise from two non-isomorphic antimatroids: {{a},

{b}, {a, c}, {b, c}} and {{d}, {e}, {d, f}, {e, g}}.
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K

I

1

2

3

4 5 6

∅

{4} {5} {6}

{4, 5} {5, 6} {4, 6} {3, 6}

{1, 4, 5} {2, 5, 6} {4, 5, 6} {3, 5, 6} {3, 4, 6}

{1, 4, 5, 6} {2, 4, 5, 6} {3, 4, 5, 6} {2, 3, 5, 6}

{1, 2, 4, 5, 6} {2, 3, 4, 5, 6} {1, 3, 4, 5, 6}

{1, 2, 3, 4, 5, 6}

(F∗,⊆)

∪

{2}

{2, 4}{1, 4}

{1, 2, 4}

(F5,⊆)

∪

{1}

(F4,⊆)

∪

{2} {3}

{2, 3}

(F6,⊆)

Fig. 8: A split graph and the feasible sets posets associeted with its shelling antimatroid.

For a split graph shelling antimatroid (V,F) built on a split graph (K ∪ I, E), the path poset is easy to

obtain in terms of the following sets:

P1 = {{i} : i ∈ I},

P2 = {{{k} ∪ (N(k) ∩ I)} : k ∈ K},

P3 = {fs(i) ∪ {k} ∪ (N(k) ∩ I \ {i}) : i ∈ I, k ∈ N(i)},

P = P1 ∪ P2 ∪ P3.

Proposition 2.6. Given a split graph shelling antimatroid (V,F) built on a split graph (K∪I, E) without

any vertex i in I such that N(i) = K , its set of paths equals P .

In the proposition above, the condition forbidding any i in I such that N(i) = K is not very restrictive

because if such an i exists, then we change the partition K ∪ I into (K ∪ {i}) ∪ (I \ {i}).

Proof: Every set in P is feasible, because of Proposition 2.1. Next we show that every feasible set in

P cannot be decomposed into the union of two proper feasible sets. This is trivial for the sets in P1. So
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suppose that F = {{k}∪ (N(k)∩ I)} in P2 is the union of two proper sets F1 and F2 with k ∈ F1. Then

F1 is not feasible because of Proposition 2.1 and the assumptions which ensures that there is no i in I such

that N(i) = K . Now suppose that F = {fs(i) ∪ {k} ∪ (N(k) ∩ I \ {i}) in P3 is the union of two proper

sets F1 and F2 with k ∈ F1. Then F1 is not feasible because of Proposition 2.1 and N(F ) ∩ I = {i} and

N(F ) ∩K ⊆ N(i).
Second, we show that everyF inF is the union of some sets inP . If F is a ∗-feasible set, we use the sets

fromP1 and P2. If F is an i-feasible set, we use the sets fromP3 of the form {fs(i)∪{k}∪(N(k)∩I\{i})
with k ∈ N(i) and some sets from P1. By Corollary 2.3 we are done.

Figure 9 illustrates Proposition 2.6. Directly from Proposition 2.6, we have the following corollary.

K

I

1

2

3

4 5 6

{4} {5} {6}

{1, 4, 5} {2, 5, 6} {3, 6}

{1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 6} {1, 3, 4, 6}

{1, 2, 3, 5, 6}

P1

P2

P3

Fig. 9: A split graph and the path poset associated with its shelling antimatroid.

Corollary 2.5. Let (V,F) be a split graph shelling antimatroid built on a split graph (K ∪ I, E) without

any vertex i in I such that N(i) = K . The number of paths in (V,F) is equal to the number of vertices

plus the number of edges from K to I .

3 Finding a maximum weight feasible set

Hardness result

Many classical problems in combinatorial optimization have the following form. For a set system (V,F)
and for a function w : V → R, find a set F of F maximizing the value of

w(F ) =
∑

f∈F

w(f).

For instance, the problem is known to be efficiently solvable for the independent sets of matroids (see

Oxley [26]) using the greedy algorithm. Since antimatroids capture a combinatorial abstraction of con-

vexity in the same way as matroids capture linear dependence, we investigate the optimization of linear

objective functions for antimatroids. It is not known whether a general efficient algorithm exists in the

case of antimatroids. Of course, the hardness of finding a maximum weight feasible set depends on the

way we encode the antimatroids (see Eppstein [11] and Enright [9] for more information). If one is given
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all the feasible sets and a real weight for each element, it is trivial to find a maximum weight feasible set

in time polynomial in |F| (in the next section we use a better definition of the size of an antimatroid).

We investigate what happens if we choose a more compact way to encode the information. We use now

the path poset to describe an antimatroid. However, optimization on antimatroids given in this compact

way is hard as Theorem 3.2 shows. We first recall the following theorem due to Håstad [17], initially

stated in terms of a maximum clique.

Theorem 3.1. There can be no polynomial time algorithm that approximates the problem of finding the

maximum size of an independent set in a graph on n vertices to within a factor better than O(n1−ε), for

any ε > 0, unless P = NP .

For antimatroids given in the form of a path poset, there is a NP-completeness reduction from the

maximum independent set problem to the maximum weight feasible set. The reduction given below is an

adaptation of a result due to Eppstein [10].

Theorem 3.2. The problem of finding a maximum weight feasible set in an antimatroid encoded in the

form of its path poset is not approximable in polynomial time within a factor better than O(N
1

2
−ε) for

any ε > 0, where N is the number of elements in the path poset, unless P = NP .

Proof: Given any graph G = (V,E) on which we want to find an independent set of maximum size, we

define an antimatroid (A,F) by letting A = V ⊎ E and defining a feasible set (an element of F ) as any

subset F of A such that {v1, v2} ∈ E ∩ F then v1 ∈ F or v2 ∈ F . Remark that (A,F) is indeed an

antimatroid because it satisfies (AM0), (AM1) and (AM2).

The path poset of this antimatroid is composed of sets {v} for each vertex in V and sets {v, e} for each

edge e ∈ E such that v ∈ e. Let d(v) denote the degree of the vertex v and δ = 0.1. We define a weight

function: w : A → R by setting

w(x) =

{

−d(x) + δ if x ∈ V
1 if x ∈ E

.

We first show that if F is a feasible set with weight w(F ), then we can construct an independent set of

G of size at least w(F )δ−1 in polynomial time. To that end, we define a feasible set F ′ ⊆ F as follows.

If V ∩ F corresponds to an independent set of vertices in the graph G, then F ′ = F . If it is not the case,

we select a pair {u, v} ⊆ F such that u ∼ v in the graph, and remove the element u from F . If there is

an element {u, a} ∈ F ∩ E, with a /∈ F , we also remove {u, a} from F (to maintain the feasibility of

the set). We repeat this operation until the remaining vertices in the set F ′ form an independent set in the

graph. The remaining elements then form the set F ′. It is easy to check that F ′ is always feasible. By the

definition of the function w, we have the following inequalities,

w(F ) ≤ w(F ′) ≤
∑

v∈V ∩F ′

(−d(v) + δ) +
∑

e∈E∩F ′

1

≤
∑

v∈V ∩F ′

(−d(v) + δ) +
∑

v∈V ∩F ′

d(v) = δ|V ∩ F ′|.

So we have an independent set V ∩ F ′ that we can construct in polynomial time with size greater than

w(F )δ−1.
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Now, let N be the number of paths of (A,F), and suppose we have a f(N)-approximation algorithm

to find a maximum weight feasible set, i.e. we have an algorithm that returns a feasible set with weight

at least f(N)−1 times the weight of a maximum weight feasible set. Assume that f(N) ≤ O(N
1

2
−ε) for

some 0 < ε < 1. We know that N = |V |+ 2|E|, so

f(N) ≤ O((|V |+ 2|E|)
1

2
−ε) ≤ O((|V |+ |V |2)

1

2
−ε) ≤ O(|V |1−ε′),

for a ε′ ∈]0, 1[. So we have
1

f(N)
≥

1

O(n1−ε′)
,

and we obtain a feasible set with weight at least 1
O(n1−ε

′ )
times the weight w∗ of a maximum weight

feasible set. By the previous statement, we build an independent set with size at least (w∗/O(n1−ε′))δ−1,

so at least 1/O(n1−ε′) the size of a maximum independent set, and this contradicts Theorem 3.1. So

f(N) ≤ O(N
1

2
−ε′) is impossible unless P = NP .

Moreover, the above theorem remains true also for a subclass of antimatroids (those built in the proof).

3.1 Optimization on split graph shelling antimatroids

We will now prove that for a weighted split graph shelling antimatroid, the problem of finding a maximum

weight feasible set can be done in polynomial time in the size of the input even if the form of the input

considered is a more compact representation than the path poset. We use the split graph itself to encode

all the information about the feasible sets.

In the case of the poset antimatroids, the optimization problem is solved using the solution to the

maximum closure problem:

Problem 1. Given a poset (V,≤) and a weight function w : V → R, find a filter F that maximizes

w(F ) =
∑

f∈F

w(f).

Picard [27] designs a polynomial algorithm to solve Problem 1, which calls as a subroutine a maximum

flow algorithm (e.g. Goldberg and Tarjan [15]). Picard’s algorithm runs in O(mn log(n
2

m
)) time, where n

is the number of vertices in V and m the number of cover relations in the poset. Taking advantage of this

result, we have the following theorem.

Theorem 3.3. Giving a split graph G (as a list of vertices and a list of edges), the problem of find-

ing a maximum weight feasible set in the split graph shelling antimatroid defined on G can be done in

polynomial time.

Proof: We recall that for every split graph shelling antimatroid we introduce a unique poset with rela-

tion ≺ (see just before Proposition 2.4) . The construction of this poset combined to Corollary 2.3 and

Propositions 2.4 and 2.5 allows us to decompose the problem of finding a maximum feasible set in a split

graph antimatroid into several maximum closure problems. Indeed, we first solve the maximum closure

problem for (V,≺), yielding a ∗-feasible set with maximum weight among all the ∗-feasible sets. Then for

each i in I , we solve the maximum closure problem for (uf(i),≺), yielding a set S such that S ∪ fs(i) is
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an i-feasible set that have maximum weight among all i-feasible sets. The algorithm outputs the feasible

set found with maximum weight.

So suppose that we have a procedure to find a filter in a poset (V,≤) of maximum weight (given by

a function w) called MaxClo(V,≤, w). In a split graph (K ∪ I, E), we look at the element i in I that

maximizes the weight of fs(i) ∪ MaxClo(uf(i),≺, w), we then compare the result with the weight of

MaxClo(K ∪ I,≺, w) and keep the maximum. The time complexity of the algorithm is O((|I|(|E||K|+

|E||I|) log( (|K|+|I|)2

|E| )) due to the complexity of MaxClo(V,≤, w). Note that if we use a procedure to

find a filter in a poset (V,≤) of minimum weight (given by a function w), with very little modifications,

our algorithm can be used to return a feasible set of minimum weight.

4 Free sets and circuits of the split graph shelling antimatroids

In this last section, the term “path” takes only its graph-theoretical meaning, while “circuit” refers to the

antimatroidal concept. Our aim is to characterize in simple terms the “circuits” and “free sets” of a split

graph shelling antimatroid. Let us first recall some definitions, for a given antimatroid (V,F). The trace

of (V,F) on a subset X of V is

Tr(F , X) = {F ∩X : F ∈ F}.

A subset X of V is free if Tr(F , X) = 2X . A circuit is a minimal non free subset of V . An equivalent

characterization reads (for a proof, see for instance Korte et al. [21]): a subset C of V is a circuit if and

only if Tr(F , C) = 2C \ {{r}} for some r in C (this element r is unique) . The element r is then the

root of C, and the pair (C \ {r}, r) is a rooted circuit. Dietrich [5] shows that the collection of all rooted

circuits determines the initial antimatroid, but the collection of circuits themselves does not always share

this property. She even shows that the collection of ‘critical’ rooted circuits determines the antimatroid,

where a rooted circuit (C \ {r}, r) is critical when there is no rooted circuit (D \ {r}, r) with the same

root r such that the largest feasible set disjoint from D strictly includes the largest feasible set disjoint

from C. For a recent reference, see Kashiwabara and Nakamura [19].

Let G = (V,E) be a chordal graph. It is known that the rooted circuits of its vertex shelling antimatroid

admit the following simple description: a pair (C, r) is a rooted circuit if C consists of two distinct vertices

u, v such that r is an internal vertex on some chordless path joining u and v (this follows immediately

from Corollary 3.4 in Farber and Jamison [14]). Moreover, the circuit (C, r) is critical if and only if

the path has exactly three vertices. For the particular case of split graphs we now provide more efficient

characterizations of (critical) circuits, and then of free sets.

Proposition 4.1. Let (V,F) be the vertex shelling antimatroid of the split graph (K ∪ I, E). Set

C1 ={({i, j}, k) : k ∈ K, i, j ∈ N(k) ∩ I};

C2 ={({i, l}, k) : k ∈ K, i ∈ N(k) ∩ I, l ∈ (N(k) ∩K) \N(i)};

C3 ={({i, j}, k) : k ∈ K, i ∈ N(k) ∩ I, j ∈ I \N(k) and

∃m ∈ K with i 6∼ m, j ∼ m}.

Then the collection of rooted circuits of (V,F) equals C1 ∪ C2 ∪ C3. Moreover, the collection of critical

rooted circuits equals C1 ∪ C2.
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Proof: Notice that any chordless path in a split graph (K ∪ I, E) has at most four vertices. Moreover, if

it has three vertices, the internal vertex is in K and at least one extremity is in I . If it has four vertices,

the internal vertices are in K and the extremities in I . The result then follows from the characterization

of the circuits of the shelling antimatroid of a chordal graph (which we recall just before the statement):

the rooted circuits forming C1 and C2 come from paths with three vertices, those forming C3 come from

paths with four vertices.

Proposition 4.2. Let G = (K ∪ I, E) be a split graph with L and J (possibly empty) subsets of respec-

tively K and I . Then L ∪ J is free in the vertex shelling antimatroid of G if and only if either there is no

edge betweenL and J , or there exists some vertex h in J such that L ⊆ N(h) andN(J\{h}) ⊆ N(h)\L.

Proof: Assuming first that X is a free set in (V,F), we let L = X ∩ K and J = X ∩ I (we may have

L and/or J empty). If no edge of V has an extremity in L and the other one in J , then L ∪ J is as in

the first case of the statement. If there is some edge {l, h} with l ∈ L and h ∈ J , we show that L and

J are as in the second case of the statement. First, there holds L ⊆ N(h) because otherwise for any

vertex u in L \N(h), we would find the circuit {h, l, u} in X (but a free set cannot contain any circuit).

Second, we prove N(J \{h}) ⊆ N(h)\L again by contradiction. Thus assume some vertex v belongs to

N(J \ {h})\ (N(h)\L). Then v is adjacent to some i in J \ {h}, and v belongs to either L or K \N(h).
In the first eventuality, X contains the circuit {h, v, i}. In the second eventuality, whether l ∼ i or l 6∼ i,
the circuit {h, l, i} is in X . In both eventualities we reach a contradiction. Thus X = L ∪ J is as in the

second case of the statement.

Conversely, assume L and J are as in the statement and let us prove that X = L ∪ J contains no

circuit, and so that X is free. If a rooted circuit ({i, j}, k) from C1 (as in Proposition 4.1) is in X , our

assumption imposes i = h = j, a contradiction. If a rooted circuit ({i, l}, k) from C2 is in X , then our

assumption implies first i = h because l ∈ N(i) ∩ L, and then k /∈ L in contradiction with k ∈ X .

Finally, if a rooted circuit ({i, j}, k) from C3 is in X with m as in C3, our assumption implies i = h, but

then m ∈ N(k) \N(h) is a contradiction with the assumption.

5 Further work

We studied the structure of split graph shelling antimatroids and described an algorithm to solve the max-

imum weight feasible set problem in polynomial time. The antimatroids considered form a very special

class, but it seems that in general not much is known about the structure of chordal graph shelling antima-

troids. We hope our paper will pave the way for further research on chordal graph shelling antimatroids.

In particular, the complexity of finding maximum weight feasible sets on chordal graphs shelling antima-

troids is an interesting problem.
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