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Abstract

Let k and p be positive integers and let Q be a finite point set in general position
in the plane. We say that Q is (k, p)-Ramsey if there is a finite point set P such that
for every k-coloring c of

(P
p

)
there is a subset Q′ of P such that Q′ and Q have the

same order type and
(Q′

p

)
is monochromatic in c. Nešetřil and Valtr proved that for

every k ∈ N, all point sets are (k, 1)-Ramsey. They also proved that for every k ≥ 2
and p ≥ 2, there are point sets that are not (k, p)-Ramsey.

As our main result, we introduce a new family of (k, 2)-Ramsey point sets, ex-
tending a result of Nešetřil and Valtr. We then use this new result to show that for
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every k there is a point set P such that no function Γ that maps ordered pairs of
distinct points from P to a set of size k can satisfy the following “local consistency”
property: if Γ attains the same values on two ordered triples of points from P , then
these triples have the same orientation. Intuitively, this implies that there cannot be
such a function that is defined locally and determines the orientation of point triples.

1 Introduction
In this paper, we study induced Ramsey-type results for point sets and we present an
application of our results to the problem of encoding sets of points with binary functions.

Let k be a positive integer and let X be a set, not necessarily finite. A k-coloring of X
is a function c : X → C where C is a set of size k. We call the elements of C colors and we
say that a subset Y of X is monochromatic in c if all the elements of Y have the same color
in c. Let p be a positive integer. We use

(
X
p

)
to denote the set of all p-element subsets

(equivalently, unordered p-tuples of distinct elements) of X and (X)p to denote the set of
all ordered p-tuples of distinct elements of X. We use [p] to denote the set {1, 2, . . . , p}.

Let P and Q be two finite sets of points in the plane in general position; that is, neither
of these sets contains three points on a common line. The order-type function of P is
the function ∆P : (P )3 → {−1, 1} where ∆P (a, b, c) = 1 if the triple (a, b, c) traced in this
order is oriented counterclockwise and ∆P (a, b, c) = −1 otherwise. By an order type we
mean an equivalence class of point sets under the following notion of isomorphism. We say
that P and Q have the same order type if there is a one-to-one correspondence f : P → Q
such that every ordered triple of points of P has the same orientation (either clockwise
or counterclockwise) as its image via f . A point set is in convex position if its points are
vertices of a convex polygon. For two points u and v in the plane, we use uv to denote the
line determined by u and v directed from u to v. We let x(u) be the x-coordinate of a point
u ∈ R2.

Unless stated otherwise, we assume that every considered set P of points is planar,
finite, in general position, and that the x-coordinates of points from P are distinct.

Let k and p be positive integers and let P and Q be two point sets. We use the standard
arrow notation P → (Q)pk to abbreviate the following statement: for every k-coloring c of(
P
p

)
there is a subset Q′ of P such that Q′ and Q have the same order type and

(
Q′

p

)
is

monochromatic in c. If there is a point set P such that P → (Q)pk, then we say that Q is
(k, p)-Ramsey.

We focus on the problem of characterizing (k, 2)-Ramsey point sets, which is currently
wide open. For p = 1 and p ≥ 3, (k, p)-Ramsey sets have been completely characterized;
see Subsections 1.1 and 8.1.

As our main result, we introduce a new family of (k, 2)-Ramsey point sets. We then
use this result to show that for every k there is a point set P such that no function Γ that
maps ordered pairs of distinct points from P to a set of size k can satisfy the following
“local consistency” property: if Γ attains the same values on two ordered triples of points
from P , then these triples have the same orientation.
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1.1 Induced Ramsey-type results for point sets
The problem of determining which point sets are (k, p)-Ramsey has already been considered
in the literature [15, 16, 17]. Nešetřil and Valtr [16] showed the following result.

Theorem 1 ([16, Theorem 3]). Let Q be a finite set of points in the plane and let k ≥ 2
be an integer. There is a finite set P = P (Q, k) of points in the plane such that for every
k-coloring c of points from P there is a subset Q′ of P with the following three properties:

(i) Q′ is monochromatic in c,

(ii) Q and Q′ have the same order type, and

(iii) the convex hull of Q′ does not contain any points from P \Q′.

Clearly, for all positive integers k and p, every point set is (1, p)-Ramsey and every
set with at most p points is (k, p)-Ramsey. Theorem 1 implies that every point set is
(k, 1)-Ramsey for every integer k ≥ 2. In fact, Theorem 1 is even stronger because of
part (iii).

Nešetřil and Valtr [16, 17] also proved that for all k ≥ 2 and p ≥ 2 there are point sets
that are not (k, p)-Ramsey. In particular, they showed that for every integer p ≥ 2 there
exists a point set Q = Q(p) and a 2-coloring c of

(
R2

p

)
such that no subset R ⊂ R2 with

monochromatic
(
R
p

)
in c has the same order type as Q [16, Theorem 5].

On the other hand, some point sets are (k, 2)-Ramsey for k ≥ 2. Nešetřil and Valtr [16]
showed that every set of four points not in convex position is (k, 2)-Ramsey for every
positive integer k [16, Theorem 6].

The problem of determining whether a point set is (k, 2)-Ramsey has the following
equivalent formulation. For a given point set Q and k ∈ N, is there a point set P = P (Q, k)
such that in every k-coloring of the edges of the complete geometric graph KP on P there
is a monochromatic complete subgraph of KP such that its vertex set has the same order
type as Q?

1.2 Predicates for order types
Let P be the family of all finite planar point sets in general position with distinct
x-coordinates and let Z be some finite set. For t ∈ N, a function Γ: {(P, T ) : P ∈
P , T ∈ (P )t} → Z is a t-ary point-set predicate with codomain Z. For P ∈ P, we let
ΓP : (P )t → Z be the restriction of Γ to P ; more precisely, we define ΓP (T ) as Γ(P, T ). In
the cases t = 2 and t = 3 we just say that Γ is a binary and ternary point-set predicate,
respectively. We sometimes also shorten the term “point-set predicate” to “predicate”.

An example of a ternary point-set predicate is the function ∆ whose restriction to every
P from P is the order-type function ∆P . Note that if Q ⊆ P , then ∆Q = ∆P � (Q)3 and
thus ∆ can be considered as a mapping from (R2)3 to {−1, 1}. However, this might not be
the case for all point-set predicates, since their definition is quite general; see Section 4 for
an example.
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Clearly, the predicate ∆ gives the upper bound 2O(n3) on the number of different order
types of sets with n points. This bound is far from being tight as it is well-known that the
number of different order types of sets with n points is in 2Θ(n logn) [3, 10].

Considering generalized point sets, where each pair of points lies on an x-monotone
curve such that these curves form an arrangement of pseudolines (see [7] for definitions),
one can define the order type of a generalized point set (sometimes called an abstract order
type) analogously as for point sets. We note that order types of generalized point sets are
relabeling classes of uniform acyclic oriented matroids of rank 3. The number of different
order types of generalized point sets with n points is in 2Θ(n2) [8, 12].

These upper bounds suggest the question whether the order type of a point set or
a generalized point set can be encoded by a binary predicate. Let C ⊆ P be a class
of point sets. We say that a t-ary predicate Γ encodes the order types of sets from C
if whenever there is a one-to-one correspondence f : P → Q between two sets from C
such that ΓP (p1, . . . , pt) = ΓQ(f(p1), . . . , f(pt)) for every t-tuple (p1, . . . , pt) ∈ (P )t, then
∆P (a, b, c) = ∆Q(f(a), f(b), f(c)) for every triple (a, b, c) ∈ (P )3.

It is indeed possible to devise such a predicate: one can show its existence with a
probabilistic argument, using the fact that the number of automorphism-free functions
f : ([n])2 → [2] exceeds the number of order types of n-point sets. Moreover, in Section 4,
we use a result of Felsner [7] to explicitly construct a binary predicate Ψ with codomain
{0, 1} that encodes the order types of all point sets from P . Of course, the predicate Ψ has
a certain drawback. Unlike the predicate ∆, the predicate Ψ does not behave well “locally”.
In particular, we would like to keep the property that if ΨP attains the same values on
two ordered triples of points from P , then these triples have the same orientation. The
predicate Ψ does not fulfill this property.

To capture the demand on local behavior of a binary predicate Γ, we introduce the
following definition. We say that Γ is locally consistent on a set P ∈ P if, for any two distinct
subsets {a1, a2, a3} and {b1, b2, b3} of P , having ΓP (ai, aj) = ΓP (bi, bj) for all distinct i and
j from {1, 2, 3} implies ∆P (a1, a2, a3) = ∆P (b1, b2, b3). If a binary predicate Γ is locally
consistent on all sets from a class C ⊆ P , then we say Γ is locally consistent on C. If C = P ,
then we just say that Γ is locally consistent.

The following question was the main motivation for our research.

Problem 2. Is there a locally consistent binary predicate that encodes order types of all
sets from P?

1.2.1 Known point-set predicates

Several predicates that encode order types of all sets from P are known, but none of them
is binary and locally consistent. The predicate ∆ is the “default” such predicate. Similar
predicates naturally occur in the investigation of combinatorial properties of point sets, and
can be obtained from various combinatorial structures. Several of these predicates have
interesting applications. For example, Felsner [7] shows how to encode the order type in
an n× n {0, 1}-matrix and uses the resulting binary predicate to estimate the number of

4



arrangements of n pseudolines. Here, we give examples of other point-set predicates that
have been studied in the past.

The partial order of the slopes of the lines spanned by all pairs of points of a point
set P determines the order type of P and also the circular sequence of permutations of P ,
which are obtained by projecting P to a line in all possible directions [9]. The order of the
slopes of the lines can be obtained from a 4-ary predicate Ξ with Ξ(a, b, c, d) = 1 if the
supporting line of ab has smaller slope than the one of cd, and Ξ(a, b, c, d) = −1 otherwise.

Goodman and Pollack [9] showed that up to the mirror symmetry, the order type of P
is determined by the family of all intersections of P with halfplanes. A 4-ary predicate with
codomain {−1, 1} indicating whether two points are on the same side of a line defined by
two other points provides this information.

For some known predicates, additional information on the extreme points is required.
There is a predicate similar to but less powerful than the one identifying the semispaces
of P that is implied by the work of Adaricheva and Wild [1] on convex geometries; in our
terminology, given the convex hull of P , knowing whether a point of P is inside the convex
hull of three others determines the order type of P . Aichholzer et al. [2] show that the
radial order in which the points of P \ {p} appear around each point p ∈ P determines
the order type of P if it has at least four extreme points, or if the extreme points are
known. (There are point sets with triangular convex hull and different order types but the
same radial orders at corresponding points.) A 4-ary predicate with codomain {−1, 1} can
provide these radial orders. They are also determined by the set of crossing edge pairs in
the complete geometric graph on P [13], giving yet another 4-ary predicate.

While the reader may easily come up with further ternary or 4-ary predicates that
encode order types of all point sets from P, we are interested in the existence of binary
point-set predicates that are locally consistent and that encode order types of all point sets,
since encoding order types with triple-orientations seems highly inefficient with respect to
the amount of space needed.

2 Our results
For a line uv with x(u) < x(v) and a point w ∈ R2, we say that w is above uv if (u, v, w) is
oriented counterclockwise. Similarly, w is below uv if (u, v, w) is oriented clockwise. Let
A = {a1, . . . , a|A|} and B = {b1, . . . , b|B|} be two point sets with x(a1) < · · · < x(a|A|) and
x(b1) < · · · < x(b|B|). We say that A lies deep below B if every point from B lies above
every line aiaj with i < j and every point from A lies below every line bibj with i < j. If
x(a|A|) < x(b1), then we write x(A) < x(B).

We say that a point set P is decomposable if either |P | = 1 or there is a partition P1∪P2
of P that satisfies the following conditions:

(i) both point sets P1 and P2 are nonempty and x(P1) < x(P2),

(ii) P1 is deep below P2, and
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(iii) both point sets P1 and P2 are decomposable.
The class of decomposable sets includes, for example, sets constructed by Erdős and
Szekeres [6] in their proof of the lower bound in the Erdős–Szekeres Theorem.

If the partition P1 ∪ P2 of P satisfies conditions (i) and (ii) (and not necessarily
condition (iii)), then we say that P1 ∪ P2 is a splitting of P .

First, we extend the result of Nešetřil and Valtr [16, Theorem 6] as follows.
Theorem 3. For every positive integer k, every decomposable set is (k, 2)-Ramsey.

We further show that, for k ≥ 2 and p ≥ 3, (k, p)-Ramsey sets are exactly point sets in
convex position (Proposition 15). We also present a short proof of the fact that for any
positive integer k every point set is (k, 1)-Ramsey (Lemma 8). An interesting problem,
inspired by a question of a reviewer, is whether there is a (2, 2)-Ramsey point set that is
not decomposable.

Our study of (k, p)-Ramsey sets was motivated by questions about binary point-set
predicates. In particular, Problem 2 was our main motivation.

Using a result of Felsner [7], we find a binary point-set predicate Ψ with codomain {0, 1}
that encodes order types of all point sets from P ; see Section 4. As already mentioned, the
predicate Ψ is not locally consistent. In fact, using Theorem 3, we show that no binary
point-set predicate is locally consistent. This gives a negative solution to Problem 2.
Theorem 4. For every finite set Z, there is a point set P = P (|Z|) such that no binary
point-set predicate with codomain Z is locally consistent on P .

No binary predicate is locally consistent on all point sets, but there might be binary
predicates that are locally consistent on more restricted classes of point sets and that encode
order types of point sets from these classes. As a first step in this direction, we find a binary
predicate with codomain of size only 2 that is locally consistent on wheel sets, that is, point
sets P with at least |P | − 1 extremal points.

Wheel sets have been studied, for example, in connection with combinatorially different
simplicial polytopes with n vertices in dimension n− 3. It follows from a result by Perles
(see [11, Chapter 6.3]) that there are Θ(2n/n) different order types of wheel sets of size n.
See [18] for further results on wheel sets and the historical background.
Proposition 5. The order types of wheel sets can be encoded with a binary point-set
predicate Φ with codomain {−1, 1} such that Φ is locally consistent on the class of all wheel
sets.

Since there are only Θ(2n/n) different order types of wheel sets of size n, the binary
predicate from Proposition 5 is “inefficient” in a similar way that the order type function is
inefficient in encoding order types of all point sets.

We also try to estimate the growth rate of the function h : N → N where h(k) is the
largest integer such that there is a binary predicate with codomain of size k that is locally
consistent on all point sets of size h(k) and that encodes their order types.

By Theorem 4, we know that h(k) is finite for every k and thus well-defined. On the
other hand, we show that h(k) ≥ Ω(k3/2).
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Theorem 6. For every positive integer k, there is a binary point-set predicate with codomain
of size k that is locally consistent on all point sets of size at most ck3/2 for some constant
c > 0 and that encodes their order types.

We prove Theorem 3 in Section 3. In Section 4, we give an example of a binary predicate
that encodes order types of all point sets. In Section 6 we prove Proposition 5 and also show
that wheel sets are the only point sets with a locally consistent “antisymmetric” predicate
with codomain {−1, 1}. Theorems 4 and 6 are proved in Sections 5 and 7, respectively.
Finally, in Section 8, we discuss some open problems and possible directions for future
research.

3 Proof of Theorem 3
Here we show that decomposable sets are (k, 2)-Ramsey for every positive integer k. That
is, if Q is a decomposable set, then there is a point set P = P (Q, k) such that P → (Q)2

k.
We say that point sets P and Q have the same signature if there is a one-to-one

correspondence f : P → Q that preserves the triple-orientations and the total order of the
x-coordinates of the points. Clearly, if P and Q have the same signature, then they have
the same order type. The converse is not true already for sets of three points, which have
just one possible order type but two possible signatures.

Let k be a positive integer and let Q1, . . . , Qk be point sets. For a point set P and a
positive integer p, we write P x−→ (Q1, . . . , Qk)p to denote the following statement: for every
k-coloring c of

(
P
p

)
there is an i ∈ [k] and a subset Q′i of P that has the same signature

as Qi and such that all p-tuples of points from Q′i have color i in c. If Qi and Q have the
same signature for every i ∈ [k], then we write P x−→ (Q)pk. Observe that if P x−→ (Q)pk, then
P → (Q)pk. If there is a point set P such that P x−→ (Q)pk, then we say that Q is ordered
(k, p)-Ramsey.

The following result implies that decomposable sets are ordered (k, 2)-Ramsey.

Theorem 7. Let k be a positive integer and let Q1, . . . , Qk be decomposable point sets.
Then there is a point set P = P (Q1, . . . , Qk) such that P x−→ (Q1, . . . , Qk)2.

Theorem 7 immediately implies Theorem 3 by choosing Qi = Q for every i ∈ [k]. In the
proof of Theorem 7, we need to use the following fact, which says that all point sets are
ordered (k, 1)-Ramsey.

Lemma 8. Let k be a positive integer and let Q1, . . . , Qk be point sets. Then there is a
point set P = P (Q1, . . . , Qk) such that P x−→ (Q1, . . . , Qk)1.

Proof. For point sets A and B we let A ◦ B be a point set that is constructed as follows.
We replace every point a from A by a small neighborhood Na and we place a small scaled
and translated copy of B into each such neighborhood. The neighborhoods are chosen to
be small enough so that x(Na) < x(Na′) for all a, a′ from A with x(a) < x(a′) and so that
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no line intersects three of these neighborhoods. It is easy to see that the operation ◦ is
associative if we do not distinguish point sets with the same signatures.

We show by induction on k that Q1 ◦ · · · ◦Qk
x−→ (Q1, . . . , Qk)1. The statement is trivial

for k = 1, so we assume that k ≥ 2. Let c be a k-coloring of the points of Q1 ◦ · · · ◦Qk. If
there is a point of color 1 in every neighborhood Nq for q ∈ Q1, then we have Q′ such that
Q′ and Q1 have the same signature and all points from Q′ have color 1 in c. So we assume
that there is a neighborhood Nq for some q ∈ Q1 such that no point from Q1 ◦ · · · ◦Qk ∩Nq

has color 1 in c. Then the set (Q1 ◦ · · · ◦Qk)∩Nq is colored with colors 2, 3, . . . , k and, since
signatures are preserved by any scaling and translation, it has the same signature as the
set Q2 ◦ · · · ◦Qk. Thus, by the induction hypothesis, (Q1 ◦ · · · ◦Qk) ∩Nq

x−→ (Q2, . . . , Qk)1,
which finishes the proof.

We also use the following result, which is similar to Lemma 10 in [16].

Lemma 9. Let S be a point set and let S1 ∪ S2 be a splitting of S. Let k be a positive
integer. There is a point set R = R(S, k) with a splitting R = R1 ∪ R2 that satisfies the
following two properties:

(i) R is in general position,

(ii) for every k-coloring c of R1 × R2 there exists a subset S ′ of R such that (S ′ ∩ Ri)
and Si have the same signature for both i ∈ {1, 2}, and (S ′ ∩ R1) × (S ′ ∩ R2) is
monochromatic in c.

Proof. Let R1 and R2 be sets such that R1
x−→ (S1)1

k and R2
x−→ (S2)1

k|R1| . The sets R1 and
R2 exist by Lemma 8. We construct R by translating R1 and R2 so that R1 ∪ R2 is a
splitting of R. Alternatively, we may first affinely transform R1 and R2 to make them
sufficiently flat.

Let c be a k-coloring of R1 × R2. Let z1 < · · · < z|R1| be the ordering of the points
of R1 according to their increasing x-coordinates. We assign a vector v(x) ∈ [k]|R1| to each
x ∈ R2, where the ith coordinate of v(x) is the color of the pair (zi, x) ∈ R1×R2 in c. Note
that the number of distinct vectors v(x) is at most k|R1|. Let c′ be the k|R1|-coloring of the
points from R2 obtained by coloring each point x ∈ R2 with v(x). It follows from the choice
of R2 that there is a subset S ′2 of R2 such that S ′2 and S2 have the same signature and all
points of S ′2 have the same color in c′.

Now, for every point z from R1, all pairs (z, x) with x ∈ S ′2 have the same color iz
from [k]. Let c′′ be the k-coloring of the points of R1 where every point z ∈ R1 has the
color iz. By the choice of R1 there is a subset S ′1 of R1 such that S ′1 and S1 have the same
signature and S ′1 is monochromatic in c′′. It follows from the choice of c′′ that S ′1 × S ′2 is
monochromatic in c.

We are now ready to prove Theorem 7.

Proof of Theorem 7. Let k be a positive integer and let Q1, . . . , Qk be decomposable point
sets. We proceed by induction on |Q1| + · · · + |Qk| and we find a point set P with
P

x−→ (Q1, . . . , Qk)2. We assume that k ≥ 2, as otherwise we can choose P = Q1.

8



If there is an i ∈ [k] with |Qi| = 1, then any non-empty point set P satisfies P x−→
(Q1, . . . , Qk)2. This constitutes the base case.

For the induction step, we thus assume |Q1|, . . . , |Qk| ≥ 2. For every i ∈ [k], let Q1
i and

Q2
i be two nonempty disjoint subsets of Qi such that Q1

i ∪Q2
i is a splitting of Qi and Q1

i

and Q2
i are both decomposable. The parts Q1

i and Q2
i exist, since Qi is decomposable and

|Qi| ≥ 2.
For every i ∈ [k], we let Ti be a point set such that

Ti
x−→ (Q1, . . . , Qi−1, Q

1
i , Qi+1, . . . , Qk)2.

The sets Ti exist by the induction hypothesis, since

|Q1|+ · · ·+ |Qi−1|+ |Q1
i |+ |Qi+1|+ · · ·+ |Qk| < |Q1|+ · · ·+ |Qk|

and all the sets Q1, . . . , Qi−1, Q
1
i , Qi+1, . . . , Qk are decomposable. Similarly, for every i ∈ [k],

we let Ui be a point set such that

Ui
x−→ (Q1, . . . , Qi−1, Q

2
i , Qi+1, . . . , Qk)2.

Again, the sets Ui exist by the induction hypothesis.
Let S1 be a disjoint union T1 ∪ · · · ∪ Tk and S2 be a disjoint union U1 ∪ · · · ∪ Uk such

that S1 and S2 are both in general position. Let S be a point set obtained by translating
and scaling S1 and S2 so that S1 ∪S2 is a splitting of S. We apply Lemma 9 to S = S1 ∪S2
and obtain a point set P = P (S, k) with a splitting P = R1 ∪R2 such that
(i) P is in general position,

(ii) for every k-coloring c of R1 × R2 there exists a subset S ′ of P such that (S ′ ∩ Ri)
and Si have the same signature for both i ∈ {1, 2} and (S ′ ∩ R1) × (S ′ ∩ R2) is
monochromatic in c.

Let c be a k-coloring of
(
P
2

)
. By the definition of S1 and S2, there is a color j ∈ [k] and

sets T ′i ⊆ R1 and U ′i ⊆ R2, for each i ∈ [k], such that T ′i and Ti have the same signature,
U ′i and Ui have the same signature, and all pairs from T ′i × U ′i have color j in c.

For every i ∈ [k], the definition of Ti implies that there is an ai ∈ [k] and a subset Ai of
T ′i such that Ai has the same signature as Qai

if ai 6= i and as Q1
ai

if ai = i and, moreover,
all pairs of points from Ai have color ai in c. Similarly, the definition of Ui implies that
there is bi ∈ [k] and a subset Bi of U ′i such that Bi has the same signature as Qbi

if bi 6= i
and as Q2

bi
if bi = i and, moreover, all pairs of points from Bi have color bi in c. We may

assume that ai = i = bi for every i ∈ [k], as otherwise we have some l ∈ [k] and a subset of
P with the same signature as Ql and with all pairs of points of color l in c and we are done.

Thus, for every i ∈ [k], we have a set Q′i ⊆ T ′i with the same signature as Q1
i and a set

Q′′i ⊆ U ′i with the same signature as Q2
i such that all pairs of points from Q′i and all pairs

of points from Q′′i have color i in c. Since all pairs from T ′i × U ′i have color j in c for every
i ∈ [k], the sets Q′j and Q′′j together give a set Q′ with all pairs from

(
Q′

2

)
of color j in c.

Since Q′j ∪Q′′j is a splitting of Q′, the set Q′ has the same signature as Qj . This finishes
the proof.
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In the proof of Theorem 7 we use the following important property: if A∪B is a splitting
and A′ ⊆ A, B′ ⊆ B, then A′ ∪B′ is also a splitting. Thus, decomposable point sets form
a maximal class of point sets such that all their subsets with at least two points have a
nontrivial splitting. Therefore, generalizing Theorem 7 to a larger class of point sets seems
to require new ideas.

4 A binary point-set predicate encoding all order ty-
pes

Here, using a result of Felsner [7], we construct a binary predicate that encodes order types
of all sets from P. We note that such a predicate can also be obtained by a probabilistic
argument. This follows from the well-known fact that the number of automorphism-free
graphs on n vertices is 2Θ(n2) while the number of different order types of sets with n points
is only 2Θ(n logn) [3, 10]. However, we give a specific example of such a binary predicate Ψ
to also provide an example of a “non-standard” point set predicate. Additionally, Ψ can be
used to encode order types of all generalized point sets, for which the probabilistic argument
becomes slightly more complicated, as their number is also in 2Θ(n2) [8, 12].

First, we need some definitions. An arrangement of lines is simple if no three lines from
this arrangement intersect in a common point and no two lines are parallel. An arrangement
of lines partitions the plane into faces of dimensions 0, 1, and 2. Incidences between faces
of different dimensions naturally determine a partially ordered set, which is called the face
lattice of the arrangement. It is well-known that sets of points in general position have a
simple dual line arrangement, and that the face lattice of the arrangement determines the
order type of the primal point set. Hence, by reconstructing the dual line arrangement of a
point set, we reconstruct its order type.

Let A be a simple arrangement of nonvertical lines l1, . . . , ln labeled according to
their decreasing slopes and oriented from left to right. We define the following mapping
ψA : A× [n− 1]→ {0, 1} for A. For every i ∈ [n] and j ∈ [n− 1], let ψA(li, j) = 1 if the
jth crossing along the line li is a crossing with a line lk such that k > i. Otherwise let
ψA(li, j) = 0.

Let P be a set from P with |P | = n. We use δ to denote the duality transform that
maps a point (a, b) ∈ R2 to the line y = ax− b. Let A(P ) be the dual line arrangement of
P obtained by δ. Since P is in general position and no two points from P have the same
x-coordinate, the arrangement A(P ) is simple.

We use the function ψA(P ) to define a function ΨP : (P )2 → {0, 1}. The functions ΨP ,
P ∈ P, will determine the predicate Ψ by setting Ψ(P, (p, q)) = ΨP (p, q). Let ι : P → [n]
be the mapping such that ι(p) = i if δ(p) = li. Note that ι is a one-to-one correspondence.
For distinct points p and q from P , we set

ΨP (p, q) =

ψA(P )(δ(p), ι(q)) if ι(p) > ι(q),
ψA(P )(δ(p), ι(q)− 1) if ι(p) < ι(q).
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We show that Ψ encodes the order type of P . Let p be a point from P and let
li be the line from A(P ) such that δ(p) = li. The number of crossings of li with lj,
j > i, is exactly n − i = n − ι(p). Since the number of such crossings also equals∑n−1
j=1 ψA(P )(δ(p), j) = ∑

q∈P\{p}ΨP (p, q), the value ι(p) is exactly n − ∑q∈P\{p}ΨP (p, q).
Thus we can find the one-to-one correspondence ι using ΨP . With ι we can easily recover
the function ψA(P ) from ΨP . The rest follows from Felsner’s algorithm [7], which finds the
face lattice of the line arrangement A(P ) that is encoded by ψA(P ).

However, the predicate Ψ is not locally consistent. This is because the second parameter
q in ΨP (p, q) is not really related to the point q, since the ι(q)th (or (ι(q)−1)st if ι(p) < ι(q))
crossing on δ(p) might not be with the line δ(q) = Lι(q). The parameter ι(q) serves merely
as an index of some crossing on the line δ(p).

5 Proof of Theorem 4
In this section we show that there are point sets on which no binary point-set predicate is
locally consistent.

Let G = (V,E) be a graph. We say that G is partially oriented if each edge e = {u, v}
from E either has no orientation or e is oriented from u to v or from v to u. For a positive
integer k, a k-edge-coloring of G is a k-coloring of E.

The proof of Theorem 4 proceeds as follows. If Γ is a binary point-set predicate with
codomain of size k and P ∈ P, we represent the function ΓP by a partially oriented
graph G(P,Γ), which is obtained by orienting some edges of GP = (P,

(
P
2

)
), and by a

certain K-edge-coloring c(P,Γ) of GP , where K =
(
k+1

2

)
. Then we show that if Γ is locally

consistent on P , then every subgraph of G(P,Γ) that is monochromatic in c(P,Γ) avoids
certain partially oriented subgraphs induced by four points in nonconvex position. We
find a decomposable set S such that if S induces a monochromatic subgraph of G(P,Γ)
in c(P,Γ), then it contains some of the forbidden partially oriented subgraphs. Finally,
using Theorem 3, we choose P to be a point set such that P → (S)2

K , so that there is a
monochromatic copy of S in every K-edge-coloring of GP .

Let k be a fixed positive integer and let Z be a set of size k. Let ≺ be an arbitrary total
order on Z. Let Γ be a binary predicate with codomain Z and let P be a set from P of
size n.

The function ΓP can be represented by a K-edge-coloring of a partially oriented graph
in the following way. Every edge e = {u, v} of GP is oriented from u to v in G(P,Γ)
if ΓP (u, v) ≺ ΓP (v, u), and it is not oriented if ΓP (u, v) = ΓP (v, u). Let c(P,Γ) be the
K-edge-coloring of GP that assigns the color {ΓP (u, v),ΓP (v, u)} to every edge of GP with
vertices u and v.

Clearly, given the partially oriented graph G(P,Γ) and the edge-coloring c(P,Γ), we
can recover the function ΓP .

Let H be a partially oriented graph with vertex set {v0, . . . , vn−1}. A vertex v of H is
called a source in H if all edges of H containing v are oriented from v. Similarly, a vertex
u of H is called a sink in H if all edges of H containing u are oriented towards u. We
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say that H is an oriented cycle with orientation (v0, . . . , vn−1) if H is a cycle with edges
{vi, vi+1} for every i ∈ {0, . . . , n− 1} (indices taken modulo n) and every edge {vi, vi+1} is
oriented from vi to vi+1.

The following lemma captures a crucial property of the graph G(P,Γ) and the coloring
c(P,Γ).

Lemma 10. Let H be an induced partially oriented subgraph of G(P,Γ) that is monochro-
matic in c(P,Γ). If H contains triangles T1 and T2 with distinct vertex sets {a1, a2, a3}
and {b1, b2, b3}, respectively, such that ∆P (a1, a2, a3) 6= ∆P (b1, b2, b3), then the following
conditions are satisfied.

(i) If no edge of H is oriented, then Γ is not locally consistent on P .

(ii) If T1 and T2 are oriented cycles with orientations (a1, a2, a3) and (b1, b2, b3), respec-
tively, then Γ is not locally consistent on P .

(iii) If a1 is a source in T1, a3 is a sink in T1, b1 is a source in T2, and b3 is a sink in T2,
then Γ is not locally consistent on P .

Proof. Since H is monochromatic in c(P,Γ), it follows from the choice of c(P,Γ) and G(P,Γ)
that either all the edges of H are oriented or none of them is. In the latter case, there is an
element z ∈ Z such that ΓP (ai, aj) = z = ΓP (bi, bj) for all distinct i and j from {1, 2, 3}.
Since ∆P (a1, a2, a3) 6= ∆P (b1, b2, b3), we see that Γ is not locally consistent on P . This
establishes part (i).

We thus assume that all the edges in H are oriented. If T1 and T2 are oriented cycles
with orientations (a1, a2, a3) and (b1, b2, b3), respectively, then it follows that there are two
elements z1 and z2 from Z such that z1 ≺ z2 and

ΓP (a1, a2) = ΓP (a2, a3) = ΓP (a3, a1) = z1 = ΓP (b1, b2) = ΓP (b2, b3) = ΓP (b3, b1)

and

ΓP (a2, a1) = ΓP (a3, a2) = ΓP (a1, a3) = z2 = ΓP (b2, b1) = ΓP (b3, b2) = ΓP (b1, b3).

Again, since ∆P (a1, a2, a3) 6= ∆P (b1, b2, b3), we see that Γ is not locally consistent on P and
part (ii) follows.

Finally, we assume that the assumptions in part(iii) are met. The choice of c(P,Γ) and
G(P,Γ) then implies that there are z1, and z2 from Z such that z1 ≺ z2 and

ΓP (a1, a2) = ΓP (a2, a3) = ΓP (a1, a3) = z1 = ΓP (b1, b2) = ΓP (b2, b3) = ΓP (b1, b3)

and

ΓP (a2, a1) = ΓP (a3, a2) = ΓP (a3, a1) = z2 = ΓP (b2, b1) = ΓP (b3, b2) = ΓP (b3, b1).

Thus the predicate Γ is not locally consistent on P , as ∆P (a1, a2, a3) 6= ∆P (b1, b2, b3).
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Figure 1: Orientations of the graph H showing that Γ is not locally consistent on P .

The following lemma says that if Γ is locally consistent on P then every 4-tuple of
points that is not in convex position and that induces a monochromatic subgraph of GP

in c(P,Γ) admits only four specific orientations in G(P,Γ). We will use this to reduce the
cases to be considered for a monochromatic subgraph induced by five points.
Lemma 11. Let Q be a subset of P such that Q = {q1, q2, q3, q4} and Q has exactly three
extremal points q1, q2, and q3. Let H be the partially oriented subgraph of G(P,Γ) induced
by Q. If Γ is locally consistent on P and H is monochromatic in c(P,Γ), then the set
{q1, q2, q3} induces an oriented triangle in H and q4 is either a source or a sink in H.

Proof. Assume that Γ is locally consistent on P . Since H is monochromatic in c(P,Γ),
part (i) of Lemma 10 implies that all the edges of H are oriented.

If the set {q1, q2, q3} induces an oriented triangle T in H, then q4 is either a source
or a sink in H. Otherwise, we assume without loss of generality that the triangle T has
orientation (q1, q2, q3), the edge {q1, q4} is oriented from q1 to q4, and {q2, q4} from q4 to
q2. Now, if the edge {q3, q4} is oriented from q4 to q3, then part (iii) of Lemma 10 applied
to the triples (q1, q4, q2) and (q4, q2, q3) implies that Γ is not locally consistent on P ; see
part (a) of Figure 1. On the other hand, if the edge {q3, q4} is oriented from q3 to q4, then
part (iii) of Lemma 10 applied to the triples (q1, q4, q2) and (q3, q1, q4) again implies that Γ
is not locally consistent on P ; see part (b) of Figure 1.

Now we show that if the set {q1, q2, q3} does not induce an oriented triangle in H, then
Γ is not locally consistent on P . Without loss of generality, we assume that q1 is a source
and q2 is a sink in the subgraph of H induced by {q1, q2, q3}.

First, suppose that the edge {q2, q4} is oriented from q4 to q2. The edge {q1, q4} is
oriented from q1 to q4 by part (iii) of Lemma 10 applied to the triples (q1, q3, q2) and
(q4, q1, q2). Part (iii) of Lemma 10 applied to the triples (q1, q3, q2) and (q3, q4, q2) implies
that the edge {q3, q4} is oriented from q4 to q3; see part (c) of Figure 1. However, then
part (iii) of Lemma 10 applied to the triples (q1, q3, q2) and (q1, q4, q3) shows that Γ is not
locally consistent on P .

It remains to consider the case when {q2, q4} is oriented from q2 to q4. The edge {q1, q4}
is oriented from q4 to q1 by part (iii) of Lemma 10 applied to the triples (q1, q3, q2) and
(q1, q2, q4). In particular, {q1, q2, q4} induces an oriented triangle with orientation (q1, q2, q4).
By part (ii) of Lemma 10 applied to the triples (q1, q2, q4) and (q1, q3, q4), the edge {q3, q4}
is oriented from q4 to q3; see part (d) of Figure 1. Then, however, part (ii) of Lemma 10
applied to the triples (q1, q2, q4) and (q4, q3, q2) implies that Γ is not locally consistent on P .
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Figure 2: A decomposable point set of size 5 with three extremal points. The parts of the
splitting are distinguished by black and white in every step.

r1

r3 r4

r2

r5(a) (b)

r1

r3 r4

r2

r5

Figure 3: Orientations of the graph F showing that Γ is not locally consistent on P .

Altogether, we see that H admits only the following four orientations: the set {q1, q2, q3}
induces an oriented triangle in H and q4 is either a source or a sink in H.
Observation 12. There is a 5-tuple S of points that has three extremal points and that is
decomposable.

Proof. It suffices to find a recursive decomposition of some 5-tuple of points with three
extremal points such that the decomposition satisfies the conditions in the definition of
decomposable sets. Such a set and the first two steps of this decomposition are illustrated
in Figure 2.

We are now ready to prove Theorem 4. Let S be a decomposable set of five points with
three extremal points and let P be a point set such that P → (S)2

K . The sets S and P
exist by Observation 12 and Theorem 3.

Suppose that Γ is a binary predicate with a codomain of size k. By the choice of P , there
is a subset R of P such that R and S have the same order type and

(
R
2

)
is monochromatic

in c(P,Γ). Let r1, r2, r3, r4, r5 be the points in R such that r3 and r4 are in the interior of
the convex hull of R, the line r3r4 separates r5 from r1 and r2, and the line r1r3 separates
r5 from r2 and r4; see Figure 3. For i ∈ {1, 2, 3, 4}, let Qi = R \ {ri} and note that each Qi

has the same order type as the set Q from Lemma 11.
Consider the partially oriented subgraph F of G(P,Γ) induced by R and, for every

i ∈ {1, 2, 3, 4}, let Hi be the partially oriented subgraph of F induced by Qi. We show that
at least one of the graphs Hi has none of the allowed orientations.

By Lemma 11 applied to H4, the point r3 is either a source or a sink in H4. But then
the set {r2, r3, r5} does not induce an oriented triangle in H1, so by Lemma 11 applied
to H1, the predicate Γ is not locally consistent on P ; see Figure 3.

This finishes the proof of Theorem 4.

14



6 Proof of Proposition 5
We construct a binary predicate Φ with codomain {−1, 1} that is locally consistent on the
class W of all wheel sets and that encodes their order types.

For a wheel set P , let wP be the leftmost point of P if the set P is in convex position
and let wP be the unique point of P in the interior of the convex hull of P otherwise. We
define the predicate Φ by setting

ΦP (p, q) =


−1 if p = wP ,

1 if q = wP ,

∆P (p, q, wP ) otherwise.

for every P ∈ W and every pair (p, q) ∈ (P )2.
We first show that Φ encodes order types of all sets from W . Let P = {p1, . . . , pn} and

Q = {q1, . . . , qn} be two wheel sets and let f : P → Q be a one-to-one correspondence such
that ΦP (pi, pj) = ΦQ(f(pi), f(pj)) for all distinct i and j from ([n])2. For a point p ∈ P ,
we have ΦP (p, q) = −1 and ΦP (q, p) = 1 for every q ∈ P \ {p} if and only if p = wP . An
analogous statement is true for wQ and ΦQ. Thus we have f(wP ) = f(wQ). Let (pi, pj, pk)
be a triple from (P )3. Assume first that wP ∈ {pi, pj, pk}. Without loss of generality, we
assume wP = pk, as otherwise we proceed analogously. Then ∆P (pi, pj, pk) = ΦP (pi, pj) =
ΦQ(f(pi), f(pj)) = ∆Q(f(pi), f(pj), f(pk)) and the triples (pi, pj, pk) and (f(pi), f(pj), f(pk))
have the same orientation.

Assume wP /∈ {pi, pj, pk}. Observe that ∆P (pi, pj, pk) = 1 if and only if ΦP (pi, pj) +
ΦP (pj, pk) + ΦP (pk, pi) ≥ 1. In particular, if ΦP (pi, pj) + ΦP (pj, pk) + ΦP (pk, pi) = 3, then
wP is in the interior of the triangle pipjpk and if ΦP (pi, pj) + ΦP (pj, pk) + ΦP (pk, pi) = 1,
then {pi, pj, pk, wP} is in convex position. Similarly, ∆P (pi, pj, pk) = −1 if and only if
ΦP (pi, pj) + ΦP (pj, pk) + ΦP (pk, pi) ≤ −1. Analogous statements are true for ΦQ and
∆Q. The assumption ΦP (pr, ps) = ΦQ(f(pr), f(ps)) for all distinct r and s from ([n])2
thus implies that the triples (pi, pj, pk) and (f(pi), f(pj), f(pk)) have the same orientation.
Consequently, the point sets P and Q have the same order type and Φ encodes order types
of all sets from W .

We now show that Φ is locally consistent onW . Let P be a wheel set and let {a1, a2, a3}
and {b1, b2, b3} be two triples of points from P with ΦP (ai, aj) = ΦP (bi, bj) for all distinct
i, j from {1, 2, 3}. Assume that wP = ak for some k ∈ {1, 2, 3} and wP ∈ {b1, b2, b3}.
Then wP = bk, because bk is the only point from {b1, b2, b3} with ΦP (b, bk) = −1 for every
b ∈ {b1, b2, b3}\{bk}. We let i and j be integers such that {i, j} = {1, 2, 3}\{k} and i < j. It
follows from the definition of Φ that ∆P (ai, aj, ak) = ΦP (ai, aj) = ΦP (bi, bj) = ∆P (bi, bj, bk).
Consequently, ∆P (a1, a2, a3) = ∆P (b1, b2, b3).

Assume that wP = ak for some k ∈ {1, 2, 3} and wP /∈ {b1, b2, b3}. Let i and j be
integers such that {i, j} = {1, 2, 3} \ {k} and i < j. Then ∆P (ai, aj, ak) = ΦP (ai, aj) =
ΦP (bi, bj) and it suffices to show that ΦP (bi, bj) = ∆P (bi, bj, bk). Since 1 = ΦP (ai, ak) =
ΦP (bi, bk) = ∆P (bi, bk, wP ) and 1 = ΦP (aj, ak) = ΦP (bj, bk) = ∆P (bj, bk, wP ), the points
bi and bj lie on the same side of the line bkwP . If ΦP (bi, bj) 6= ∆P (bi, bj, bk), then, since
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ΦP (bi, bj) = ∆P (bi, bj, wP ), the points bk and wP lie in opposite halfplanes determined
by bibj. However, then bi or bj lies in the interior of the convex hull of {bj, bk, wP} or
{bi, bk, wP}, respectively, which is impossible as wP is the only interior point of P (if
there is any) and wP /∈ {bi, bj, bk}. Therefore ΦP (bi, bj) = ∆P (bi, bj, bk), which implies
∆P (a1, a2, a3) = ∆P (b1, b2, b3). By symmetry, if wP ∈ {b1, b2, b3} and wP /∈ {a1, a2, a3},
then ∆P (a1, a2, a3) = ∆P (b1, b2, b3).

It remains to deal with the case wP /∈ {a1, a2, a3} and wP /∈ {b1, b2, b3}. Then we have
∆P (ai, aj, wP ) = ΦP (ai, aj) = ΦP (bi, bj) = ∆P (bi, bj, wP ) for all distinct i, j from {1, 2, 3}.
Again, we have ∆P (a1, a2, a3) = 1 if and only if ΦP (a1, a2)+ΦP (a2, a3)+ΦP (a3, a1) ≥ 1 and,
similarly, ∆P (a1, a2, a3) = −1 if and only if ΦP (a1, a2)+ΦP (a2, a3)+ΦP (a3, a1) ≤ −1. Since
analogous claims hold also for ∆P (b1, b2, b3), it follows that ∆P (a1, a2, a3) = ∆P (b1, b2, b3).
Thus Φ is locally consistent on P , which finishes the proof.

6.1 Predicates assigning tournaments to order types
Observe that the predicate Φ from Proposition 5 satisfies ΦP (a, b) = −ΦP (b, a) for every
wheel set P and every pair (a, b) ∈ (P )2. Hence, Φ defines a tournament on P ; that is, an
orientation of the complete graph on P . We show that wheel sets are the only point sets
with a locally consistent predicate of this form.

Proposition 13. Let P be a point set and let Γ be a binary point-set predicate with codomain
{−1, 1} such that Γ is locally consistent on P and such that ΓP (a, b) = −ΓP (b, a) for every
pair (a, b) ∈ (P )2. Then P is a wheel set.

Proof. Suppose for contrary that P is a point set with at least two interior points p, q.
Then, using the notation from Section 5, the graph G(P,Γ) is a tournament on P and the
coloring c(P,Γ) uses only a single color {−1, 1}. In the proof of Theorem 4 it has been
shown that P cannot contain a five-point set with triangular convex hull. Therefore, no
triangle determined by extremal points of P contains the points p and q in its interior. In
particular, the line determined by the points p and q crosses two disjoint edges ab and
cd of the convex hull of P . Then p and q lie in the convex hull of {a, b, c, d}. Without
loss of generality, let p be inside the triangle (a, b, c), q be inside the triangle (c, d, a), and
∆P (a, b, c) = ∆P (c, d, a). By Lemma 11, both (a, b, c) and (c, d, a) are oriented triangles.
Since the triangles intersect at the edge ac, they have opposite orientations. This contradicts
the local consistency of Γ.

7 Proof of Theorem 6
Here we show that for every positive integer k, there is a binary predicate with codomain
of size k that is locally consistent on all point sets of size at most ck3/2 for some constant
c > 0 and that encodes their order types.

For an integer n ≥ 4, let k = dc′n2/3e for some sufficiently large constant c′ and let F
be the set of functions f : ([n])2 → [k]. Clearly, |F | = kn(n−1). We say that two functions f1
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and f2 from F are equivalent, written f1 ∼ f2, if there is a permutation π : [n]→ [n] such
that f1(i, j) = f2(π(i), π(j)) for every pair (i, j) ∈ ([n])2. Note that there are at most n!
functions in each equivalence class of ∼.

We recall that the number of different order types of sets with n points is at most
2c′′n logn for some constant c′′ [3, 10]. We show that there is a subset F ′ of F of size at least
2c′′n logn such that no two functions from F ′ are equivalent and every function f from F ′

satisfies the following condition: there are no two distinct subsets {a1, a2, a3} and {b1, b2, b3}
of [n] with f(ai, aj) = f(bi, bj) for all distinct i and j from {1, 2, 3}.

Since |F ′| ≥ 2c′′n logn, we can assign distinct functions from F ′ to distinct order types of
point sets of size n. For each order type O, we choose a point set RO with the order type O
as a representative of O and we let RO = {r1, . . . , rn} be an arbitrary labeling of RO. For
every point set P with the order type O there is a one-to-one correspondence lP : P → RO

such that ∆P (a, b, c) = ∆RO
(lP (a), lP (b), lP (c)) for every triple (a, b, c) ∈ (P )3. Let f be

the function from F ′ that has been assigned to O. We then let ΓP (p, p′) = f(i, j) for every
pair (p, p′) ∈ (P )2 such that lP (p) = ri and lP (p′) = rj.

We show that the resulting binary point-set predicate Γ is locally consistent on point sets
of size n and encodes their order types. The local consistency is ensured by the condition on
functions from F ′, which says that no function from F ′ attains the same values on distinct
triples from

(
[n]
3

)
.

To show that Γ encodes the order types of all point sets of size n, we use the fact
that the functions from F ′ are pairwise nonequivalent and that each function from F ′ is
“rigid” in the sense that it has no nontrivial automorphism acting on [n]. Let P and Q
be two point sets of size n with ΓP (p, p′) = ΓQ(g(p), g(p′)) for every pair (p, p′) ∈ (P )2
and some one-to-one correspondence g : P → Q. Let fP and fQ be the functions from F ′

used in the definitions of ΓP and ΓQ, respectively. It follows from the definition of ΓP
and ΓQ that fP (i, j) = fQ(π(i), π(j)) for every pair (i, j) ∈ ([n])2 and some permutation
π on [n]. Since no two functions from F ′ are equivalent, we have fP = f = fQ for some
f ∈ F ′ and, in particular, P and Q have the same order type O. Since f does not attain
the same values on distinct triples from

(
[n]
3

)
and n ≥ 4, the permutation π is the identity

on [n]. Consequently, the function g is determined uniquely and maps every p ∈ P with
lP (p) = ri to q ∈ Q with lQ(q) = ri, where lP : P → RO and lQ : Q→ RO are the one-to-one
correspondences that preserve orientations of triples and that were used in the definitions
of ΓP and ΓQ, respectively. Thus lP (p) = lQ(g(p)) for every p ∈ P . Therefore ∆P (a, b, c) =
∆RO

(lP (a), lP (b), lP (c)) = ∆RO
(lQ(g(a)), lQ(g(b)), lQ(g(c))) = ∆Q(g(a), g(b), g(c)) for every

triple (a, b, c) ∈ (P )3 and Γ encodes the order types of point sets of size n.
Thus it remains to prove the existence of the set F ′. We use a probabilistic approach

based on the Lovász local lemma [4].

Lemma 14 (The Lovász local lemma [4, Lemma 5.1.1]). Let A1, . . . , Am be events in
an arbitrary probability space. Let D = ([m], E) be a directed graph such that for each i,
1 ≤ i ≤ m, the event Ai is mutually independent of all the events Aj with (i, j) /∈ E. Suppose
that there are real numbers x1, . . . , xm such that 0 ≤ xi < 1 and P[Ai] ≤ xi

∏
(i,j)∈E(1− xj)
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for every i with 1 ≤ i ≤ m. Then

P
[
m⋂
i=1

Ai

]
≥

m∏
i=1

(1− xi) .

Let f be a function from F chosen uniformly independently at random and let {a1, a2, a3}
and {b1, b2, b3} be two distinct subsets of [n]. Let A = A{(a1,a2,a3),(b1,b2,b3)} be the event that
f(ai, aj) = f(bi, bj) for all distinct i and j from {1, 2, 3}. We say that A has type 1 if
|{a1, a2, a3} ∩ {b1, b2, b3}| ≤ 1 and type 2 if |{a1, a2, a3} ∩ {b1, b2, b3}| = 2. If A has type 1,
then P[A] = 1/k6. Otherwise A has type 2 and P[A] ≤ 1/k4.

Let NA be the set of events A{(a′
1,a

′
2,a

′
3),(b′

1,b
′
2,b

′
3)} such that A is mutually independent

of all the events from the complement of NA and let N ′A and N ′′A be the subsets of NA

formed by events of type 1 and 2, respectively. Observe that |N ′A| ≤ 6 · 12 · n4 = 72n4 and
|N ′′A| ≤ 6 · 12 · n2 = 72n2.

Let xA = 1/(72n4) if A has type 1 and xA = 1/(72n2) if A has type 2. Then

xA
∏

A′∈NA

(1− xA′) = xA

(
1− 1

72n4

)|N ′
A| (

1− 1
72n2

)|N ′′
A|

≥ xA

(
1− 1

72n4

)72n4 (
1− 1

72n2

)72n2

.

Since (1− 1/x)x > 1/(2e) for every x ≥ 2, the above expression is at least xA/(4e2). If A
has type 1, then the condition from Lemma 14 is satisfied for k ≥ e1/32881/6n2/3, as then
P[A] = 1/k6 ≤ 1/(288e2n4) = xA/(4e2). If A has type 2, then the condition is satisfied
even for k ≥ e1/22881/4n1/2, as P[A] ≤ 1/k4 ≤ 1/(288e2n2) = xA/(4e2).

Let E1 and E2 be the sets of events A{(a1,a2,a3),(b1,b2,b3)} of types 1 and 2, respectively.
By Lemma 14, the probability that none of the events A{(a1,a2,a3),(b1,b2,b3)} occurs is at least

∏
A∈E1∪E2

(1− xA) =
(

1− 1
72n4

)|E1| (
1− 1

72n2

)|E2|

≥ (1/2e)|E1|/(72n4)+|E2|/(72n2).

We have |E1| ≤ n6 and |E2| ≤ n3 ·3 ·6 ·n ≤ 18n4 and thus the probability is at least (1/2e)n2 .
Using this estimate together with the fact that there are at most n! functions from F in
each equivalence class of ∼, we obtain a set F ′ of at least |F |/(n! · (2e)n2) functions from
F that satisfy the following two conditions: no two functions from F ′ are equivalent and
for every function f from F ′ there are no two distinct subsets {a1, a2, a3} and {b1, b2, b3} of
[n] with f(ai, aj) = f(bi, bj) for all distinct i and j from {1, 2, 3}. Since |F | = kn(n−1) and
k ≥ c′n2/3, we also have |F ′| ≥ 2c′′n logn if c′ is sufficiently large.

8 Final remarks
In this section, we present several new open problems and discuss possible directions for
future research.
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8.1 Induced Ramsey-type results for order types
Nešetřil and Valtr [16] showed that for all integers k, p ≥ 2 there are point sets that are
not (k, p)-Ramsey. We have shown that for every positive integer k all decomposable point
sets are (k, 2)-Ramsey. In fact, it is not difficult to characterize sets that are (k, p)-Ramsey
for k ≥ 2 and p ≥ 3; see Proposition 15. Given these facts, it might be interesting to see
which other point sets are (k, 2)-Ramsey and whether there is a simple characterization of
(k, 2)-Ramsey sets.

Proposition 15. For all integers k ≥ 2 and p ≥ 3, a point set Q with |Q| > p is
(k, p)-Ramsey if and only if Q is in convex position.

Proof. It suffices to show that if Q is (2, p)-Ramsey, then it is in convex position. Assume
that Q is (2, p)-Ramsey and let P be a point set with P → (Q)p2. Let l be the lexicographic
ordering on R2. In this proof we use only the property that l is linear. For every i ∈ [p−2],
we construct a 2-coloring ci of

(
P
p

)
by coloring every p-tuple a1 l · · ·l ap of points from P

according to the orientation of (ai, ai+1, ai+2).
Let R be a subset of P with |R| > p and with

(
R
p

)
monochromatic in ci. It follows

from the definition of ci that for every (p + 1)-tuple r1 l · · · l rp+1 of points from R
the orientations of the triples (ri, ri+1, ri+2) and (ri+1, ri+2, ri+3) are the same. Since
Q is (2, p)-Ramsey, the coloring ci contains a monochromatic copy of Q for every i ∈
[p − 2]. Consequently, if q1, . . . , qp+1 ∈ Q such that q1 l · · · l qp+1, then all the p − 1
triples (q1, q2, q3), . . . , (qp−1, qp, qp+1) have the same orientation. This implies that all triple
orientations in Q are the same and therefore Q is in convex position.

On the other hand, let Q be a set of n points in convex position and let k ≥ 2 and
p ≥ 3. Let R be a set of r points in convex position for some sufficiently large integer
r = r(k, n, p). Let c be a coloring of p-tuples of points from R. If r is sufficiently large,
then Ramsey’s theorem [19] implies that R contains a subset Q′ of size n such that

(
Q′

p

)
is

monochromatic in c. The sets Q′ and Q have the same order type, since they are both in
convex position.

A slight modification of the proof of Proposition 15 gives the following statement. For
all integers k ≥ 2 and p ≥ 3, a point set Q = {q1, . . . , qn}, with x(q1) < · · · < x(qn), is
ordered (k, p)-Ramsey if and only if all triples (qi, qj, qk) with 1 ≤ i < j < k ≤ n have the
same orientation. Such sets are also often called cups and caps [6].

8.2 Induced Ramsey-type results with orderings
Another direction for future research might be to extend the problem of determining whether
a point set is ordered (2, p)-Ramsey to more general configurations. Consider the following
natural hypergraph variant of this problem, which can be obtained by representing a point
set P = {p1, . . . , pn}, with x(p1) < · · · < x(pn), by a 3-uniform hypergraph on P where
{pi, pj, pk}, with i < j < k, is an edge if and only if ∆P (pi, pj, pk) = 1.
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Let p be a positive integer. A hypergraph is ordered if its vertex set is ordered according
to some total order. We say that an ordered 3-uniform hypergraph H is ordered (2, p)-
Ramsey if there is an ordered 3-uniform hypergraph G such that in every 2-coloring c of
p-tuples of vertices of G there is an induced ordered sub-hypergraph H ′ in G such that H
and H ′ are order-isomorphic and all p-tuples of vertices of H ′ have the same color in c. The
following statement follows from a result of Nešetřil and Rödl [14, Theorem A] and from
a modification of the proof of Proposition 15. It gives a full characterization of ordered
(2, p)-Ramsey hypergraphs.

Corollary 16. Let p be a positive integer and let H be an ordered 3-uniform hypergraph.
If p ≤ 2, then H is ordered (2, p)-Ramsey. If p ≥ 3, then H is ordered (2, p)-Ramsey if and
only if H is complete or empty.

A generalized point set Q is a finite set of points together with a set of x-monotone
curves, each pair from

(
Q
2

)
contained in one such curve, so that these curves form an

arrangement of pseudolines; see [7] for more detailed definitions. Analogously as for point
sets, one can define a signature for every generalized point set [5, Section 3.2]. We then say
that a generalized point set Q is ordered (2, p)-Ramsey if there is a generalized point set P
such that in every 2-coloring c of

(
P
p

)
there is a subset Q′ of P such that Q and Q′ have

the same signature and
(
Q′

p

)
is monochromatic in c.

If p 6= 2, then one can use similar methods as for point sets and characterize generalized
point sets that are ordered (2, p)-Ramsey. However, the case of p = 2 is wide open.

Problem 17. Is there a generalized point set that is not ordered (2, 2)-Ramsey?

Unlike in the case of hypergraphs, there are point sets that are not ordered (2, 2)-
Ramsey [16], but the proof of this fact relies on the notion of Euclidean distance, which
is not present in the case of generalized point sets. Note that there might be a point set
that is (2, 2)-Ramsey as a generalized point set, but is not (2, 2)-Ramsey as a point set. It
is also possible to use signatures to represent generalized point sets by ordered 3-uniform
hypergraphs in an analogous way as for point sets. It can be shown that the obtained
hypergraphs are characterized by a list of 8 forbidden induced ordered sub-hypergraphs on
4 vertices [5, Theorem 3.2]. Nešetřil and Rödl [14] provided a sufficient condition for classes
of hypergraphs with forbidden ordered sub-hypergraphs to be (2, 2)-Ramsey. However, this
condition does not apply in our case, since we forbid induced ordered sub-hypergraphs.

8.3 Binary predicates for order types
We have seen that there are binary predicates with codomain {−1, 1} that are locally
consistent on wheel sets and that encode order types of wheel sets. On the other hand,
there is no locally consistent binary point-set predicate. It might be interesting to find
some other classes C of point sets for which there are binary predicates that are locally
consistent on C and that encode order types of all sets from C. We have seen that to this
end, the corresponding graph must contain both directed and undirected edges.
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The growth rate of the function h defined in Section 1.1 is also unknown. We recall that
h(k) is finite for every positive integer k by Theorem 4 and h(k) ≥ Ω(k3/2) by Theorem 6.
We suspect that the lower bound on h(k) can be improved, as the only geometric argument
that we use in the proof of Theorem 6 is the upper bound on the number of different order
types.

Acknowledgment We would like to thank to the referee for valuable comments.
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