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Abstract

Biró, Hujter, and Tuza introduced the concept of H-graphs (1992), intersection
graphs of connected subgraphs of a subdivision of a graph H. They naturally
generalize many important classes of graphs, e.g., interval graphs and circular-arc
graphs. We continue the study of these graph classes by considering coloring, clique,
and isomorphism problems on H-graphs.

We show that for any fixed H containing a certain 3-node, 6-edge multigraph as
a minor that the clique problem is APX-hard on H-graphs and the isomorphism
problem is isomorphism-complete. We also provide positive results on H-graphs.
Namely, when H is a cactus the clique problem can be solved in polynomial time.
Also, when a graph G has a HellyH-representation, the clique problem can be solved
in polynomial time. Finally, we observe that one can use treewidth techniques to
show that both the k-clique and list k-coloring problems are FPT on H-graphs.
These FPT results apply more generally to treewidth-bounded graph classes where
treewidth is bounded by a function of the clique number.
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1 Introduction

An intersection representation of a graph assigns a set to each vertex and uses
intersections of those sets to encode its edges. More formally, an intersection
representation R of a graph G is a collection of sets {Rv}v∈V (G) such that
Ru∩Rv 6= ∅ if and only if uv ∈ E(G). Many important classes of graphs arise
from restricting the sets Rv to geometric objects (e.g., intervals, convex sets).

We study H-graphs, intersection graphs of connected subsets of a fixed
topological pattern given by a graph H , introduced by Biró, Hujter, and
Tuza [1]. We obtain new algorithmic results on clique, coloring, and iso-
morphism problem. In a companion paper [7], we studied recognition and
dominating set problems on H-graphs. We begin with related graph classes.

Interval graphs (INT) form one of the most studied and well-understood
classes of intersection graphs. In an interval representation, each set Rv is a
closed interval of the real line; see Fig. 1a. A primary motivation for studying
interval graphs (and related classes) is the fact that many important computa-
tional problems can be solved in linear time on them; see for example [4,6,17].

A graph is chordal when it does not have an induced cycle of length at
least four. Equivalently, as shown by Gavril [12], a graph is chordal if and
only if it can be represented as an intersection graph of subtrees of some tree;
see Fig. 1b. This immediately implies that INT is a subclass of the chordal
graphs (CHOR). Some important problems (e.g., dominating set [3] and graph
isomorphism [17]) are harder on chordal graphs than on interval graphs.

The split graphs (SPLIT) form an important subclass of chordal graphs.
These are the graphs that can be partitioned into a clique and an independent
set. Note that every split graph is an intersection graph of subtrees of a star
Sd, where Sd is the complete bipartite graph K1,d.

Circular-arc graphs (CARC) generalize interval graphs by having each set
Rv be an arc of a circle. A graph G is a Helly circular-arc graph if the
collection of circular arcs R = {Rv}v∈V (G) satisfies Helly property, i.e., in each
sub-collection of R whose sets pairwise intersect, the common intersection is
non-empty. Interestingly, the coloring problem is NP-hard on Helly CARC [13].
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Fig. 1. (a) An interval graph and one of its interval representation. (b) A chordal
graph and one of its representation as an intersection graph of subtrees of a tree.



H-graphs. Biró, Hujter, and Tuza [1] introduced H-graphs. Let H be a
fixed graph. A graph G is an intersection graph of H if it is an intersection
graph of connected subgraphs of H , i.e., the assigned subgraphs Hv and Hu

of H share a vertex if and only if uv ∈ E(G). A subdivision H ′ of a graph H

is obtained when the edges of H are replaced by internally disjoint paths of
arbitrary lengths. A graph G is a topological intersection graph of H if G is
an intersection graph of a subdivision H ′ of H . We say that G is an H-graph
and the collection {H ′

v : v ∈ V (G)} of connected subgraphs of H ′ is an H-
representation of G. The class of all H-graphs is denoted by H-GRAPH. We
have the following relations: INT = K2-GRAPH, SPLIT (

⋃∞
d=2 Sd-GRAPH,

CARC = K3-GRAPH, and CHOR =
⋃

{Tree} T T -GRAPH. Moreover, for any

pair of (multi-)graphs H1 and H2, if H1 is a minor of H2, then H1-GRAPH ⊆
H2-GRAPH. If H1 is a subdivision of H2, then H1-GRAPH = H2-GRAPH.

H-graphs were introduced in the context of the (p, k) pre-coloring extension
problem. Here, one is given a graph G together with a p-coloring ofW ⊆ V (G),
and the goal is to find a proper k-coloring of G extending this pre-coloring.
PrColExt(k, k) has an XP algorithm (in k and ‖H‖) for H-GRAPH.

Coloring H-graphs. From the above discussion, we note a dichotomy re-
garding computing a minimum coloring on H-GRAPH. Namely, if H contains
a cycle, then computing a minimum coloring in H-GRAPH is already NP-hard
even for Helly H-GRAPH. Additionally, when H is acyclic, a minimum color-
ing can be computed in linear time since H-GRAPH is a subclass of CHOR.

Our Results. We prove that for any fixed H containing a double triangle
(depicted in Fig. 2) as a minor, the clique problem is APX-hard on H-graphs
and the isomorphism problem is isomorphism-complete (see Section 3). We
also provide positive results on H-graphs in Sections 2 and 4. Namely, when
a graph G has a Helly H-representation, the clique problem can be solved
in polynomial time (see Theorem 2.2). Also, when H is a cactus the clique
problem can be solved in polynomial time (see Theorem 2.4). Finally, we
use treewidth techniques to show that both the k-clique and list k-coloring
problems are FPT on H-graphs (see Propositions 4.3 and 4.2 respectively).
These FPT results extend to treewidth-bounded graph classes.

2 Finding Cliques in H-graphs

This section concerns cases where the clique problem can be solved efficiently
on H-GRAPH, for a fixed graph H . First, we consider a case where we have a
“nice” representation but H is arbitrary. Second, we restrict H to be a cactus.



Helly H-graphs. A Helly H-graph G has an H-representation {H ′
v : v ∈

V (G)} such that the collection S = {V (H ′
v) : v ∈ V (G)} satisfies the Helly

property, i.e., for each sub-collection of S whose sets pairwise intersect, their
common intersection is non-empty. Notice that, when H is a tree, every H-
representation satisfies the Helly property. Furthermore, when a graph G has
a Helly H-representation, we obtain the following relationship between the
size of H and the number of maximal cliques in G.

Lemma 2.1 Each Helly H-graph G has at most |V (H)| + |E(H)| · |V (G)|
maximal cliques.

Proof. LetH ′ be a subdivision ofH such that G has a HellyH-representation
{H ′

v : v ∈ V (G)}. Note that, for each maximal clique C of G,
⋂

v∈C H ′
v 6= ∅,

i.e., C corresponds to a node xC of H ′. For every edge xy ∈ E(H), we consider
the corresponding path P = (x, x1, . . . , xk, y) in H ′. Let Gxy be the subgraph
of G formed by maximal cliques of G which “occur” on P . The graph Gxy is
a Helly cicular-arc graph. Now, since Helly circular arc graphs have at most
linearly many maximal cliques [11], G has at most |V (H)| + |E(H)| · |V (G)|
maximal cliques. ✷

We can now use Lemma 2.1 to find the largest clique in G in polynomial
time. In fact, we can do this without needing to compute a representation
of G. In particular, the maximal cliques of a graph can be enumerated with
polynomial delay [18]. Thus, since G has at most linearly many maximal
cliques, we can simply list them all in polynomial time and report the largest,
i.e., if the enumeration process produces too many maximal cliques, we know
that G has no Helly H-representation. This provides the following theorem.

Theorem 2.2 The clique problem is polytime solvable on Helly H-graphs.

Note that some co-bipartite circular arc graphs have have exponentially
many maximal cliques and as such are not contained in Helly H-graphs for
any fixed H . However, the clique problem is polytime solvable on CARC [15].

Cactus-graphs. The clique problem is efficiently solvable on chordal graphs [14]
and circular arc graphs [15]. In particular, when H is either a tree or a
cycle, the clique problem can be solved in polynomial time independent of
the size of H . In Theorem 2.4, we observe that these results easily gener-
alize to the case when G is in H-GRAPH for some cactus H . With this in
mind, we say that such a graph G belongs to the class cactus-GRAPH, where
cactus-GRAPH =

⋃
{H-GRAPH : H is a cactus.}.

To prove the result we will use the clique-cutset decomposition – which



is defined as follows. A clique-cutset of a graph G is a clique K in G such
that G \ K has more connected components than G. An atom is a graph
without a clique-cutset. An atom of a graph G is an induced subgraph A of
G which is an atom. A clique-cutset decomposition of G is a set {A1, . . . , Ak}
of atoms of G such that G =

⋃k

i=1Ai and for every i, j, V (Ai) ∩ V (Aj) is
either empty or induces a clique in G. Algorithmic aspects of clique-cutset
decompositions were studied by Whitesides [22] and Tarjan [21]. In particular,
if k ≤ n, then for any graph G a clique-cutset decomposition {A1, . . . , Ak} of
G can be computed in O(n · (n + m)) [21]. Additionally, to solve the clique
problem on a graph G it suffices to solve it for each atom of G from a clique-
cutset decomposition [22,21]. Theorem 2.4 now follows from the following easy
lemma and the fact that the clique problem can be solved in polynomial time
on circular arc graphs [15].

Lemma 2.3 If G ∈ cactus-GRAPH, then each atom A of G is in CARC.

Proof. Consider an H-representation {Hv : v ∈ V (G)} of G where H is a
cactus. Now let H|A =

⋃
v∈V (A)Hv. Clearly, if H|A is a path or a cycle, then

we are done. Otherwise, H|A must contain a cut-node x. Let C1, . . . , Ct be the
components of H|A \{x}, and let S be the vertices of A whose representations
contain x. Note that S is a clique in A. Moreover, since A is an atom, S is not
a clique-cutset. Thus, there is a component Cj such that the subgraph H ′ of
H induced by V (Cj)∪{x} provides a representation of A. In particular, if H ′

is either a cycle or a path we are again done. Moreover, when H ′ is neither a
path nor a cycle, repeating this argument on H ′ provides a smaller subgraph
of H on which A can be represented, i.e., this eventually produces either a
path or cycle. ✷

Theorem 2.4 The clique problem can be solved in polynomial time on the
class cactus-GRAPH.

3 Clique and Isomorphism Hardness Results

To obtain our hardness results we show that there are graphs H such that
the complement of a 2-subdivision of every graph is an H-graph. The 2-
subdivision of a graph G is the result of subdividing every edge of G twice.
The complement of a graph G is denoted by G. We use SUBD2 to denote the
class of all 2-subdivisions of graphs and SUBD2 to denote their complements.

This seemingly esoteric family of graphs is interesting for two reasons. The
first is that graph isomorphism is closed under k-subdivision and complement
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Fig. 2. (a) The double triangle graph. (b) A graph G. (c) The 2-subdivision G∗ of
G. A three-clique cover of G∗ is indicated by colors. (d) The 4-wheel graph (which
contains the double triangle as a minor) and a sketch of our H-representation of G∗.
For example, the edges between the green clique and the blue clique are represented
where the green and blue regions intersect.

operations. Thus, isomorphism testing in SUBD2 is as hard as it is for general
graphs, i.e., the class SUBD2 is isomorphism-complete. The second is that
the clique problem is APX-hard on SUBD2. More specifically, Chleb́ık and
Chleb́ıková [8] proved that the maximum independent set problem is APX-hard
on the class of 2k-subdivisions of 3-regular graphs for any fixed integer k ≥ 0;
in particular, for 2-subdivisions. Thus, showing that SUBD2 ⊆ H-GRAPH for a
fixed H , implies that the maximum clique problem is APX-hard on H-GRAPH

and that H-GRAPH is isomorphism-complete.

Theorem 3.1 If H contains the graph in Fig. 2a as a minor, then SUBD2 ⊆
H-GRAPH.

Proof. Since H contains the graph in Fig. 2 as a minor, it can be partitioned
into three connected subgraphs H1, H2, H3 such that there are at least two
edges connecting Hi and Hj for each i 6= j. For every graph G, we show that
the complement of its 2-subdivision has and H-representation.

The construction proceeds similarly to the constructions used by Francis
et al. [10], and we borrow their convenient notation. Let G be a graph with
vertex set {v1, . . . , vn} and edge set {e1, . . . , em}. If ek ∈ E(G) and ek = vivj
where i < j, we define l(k) = i and r(k) = j (as if vi and vj were respectively
the left and right ends of ek). In the 2-subdivision G∗ of G, the edge ek of G
is replaced by the path (vl(k), ak, bk, vr(k)); see Fig. 2a and Fig. 2b.

Note that G∗ can be covered by three cliques, i.e., Cv = {v1, . . . , vn},
Ca = {a1, . . . , am}, and Cb = {b1, . . . , bm}. We now describe a subdivision H ′

of H which admits an H-representation {H ′
v : v ∈ V (G∗)} of G∗. We obtain

H ′ by subdividing the six edges connecting H1, H2, and H3. Specifically:

• we n-subdivide the two edges connecting H1 to H2 to obtain two paths
P12 = (α0, α1, . . . , αn, αn+1), Q12 = (β0, β1, . . . , βn, βn+1) where α0, β0 ∈ H1

and αn+1, βn+1 ∈ H2, and



• we n-subdivide the two edges connecting H1 to H3 to obtain two paths
P13 = (γ0, γ1, . . . , γn, γn+1), Q13 = (η0, η1, . . . , ηn, ηn+1) where γ0, η0 ∈ H1

and γn+1, ηn+1 ∈ H2.

• m-subdivide the two edges connecting H2 and H3 to obtain two paths P23 =
(µ0, µ1, . . . , µm, µm+1), Q23 = (ν0, ν1, . . . , νm, νm+1) where µ0, ν0 ∈ H2 and
µm+1, ηm+1 ∈ H2.

We now describe each Hvi, Haj and Hbj . The idea is that H ′
vi
will contain

H1 and extend from the “start” of P12 up to the position i, and from the “start”
of Q12 up to position (n − i). From the other side, each H ′

aj
will contain H2

and extend from the “end” of P12 down to position (l(j)+1), and from the end
of Q12 down to position (n − l(j) + 1); an example is sketched in Fig. 2d. In
this way, we ensure that H ′

aj
does not intersect H ′

vl(j)
while H ′

aj
does intersect

every H ′
vi
for i 6= l(j). The other pairs proceed similarly, and we describe the

subgraphs Hvi , Haj , Hbj for each i ∈ {1, . . . , n} and j ∈ {1, . . . , m} as follows:

• H ′
vi
= H1 ∪ {α1, . . . , αi} ∪ {β1, . . . , βn−i} ∪ {γ1, . . . , γi} ∪ {η1, . . . , ηn−i}.

• H ′
aj

= H2∪{αn, . . . , αl(j)+1}∪{βn, . . . , βn−l(j)+1}∪{µ1, . . . , µj}∪{ν1, . . . , νm−j}.

• H ′
bj
= H3∪{γn, . . . , γr(j)+1}∪{ηn, . . . , ηn−r(j)+1}∪{µm, . . . , µj+1}∪{νm, . . . , νm−j+1}.

✷

Recall that, Theorem 2.4 states that the clique problem can be solved
in polynomial time on cactus-graphs. Thus, the open cases which remain
are when H is not a cactus (i.e., H contains a diamond as a minor), but H

does not satisfy the conditions of Theorem 3.1. On the other hand, while the
isomorphism problem can be solved in linear time on interval graphs and Helly
circular-arc graphs [20], it is isomorphism-complete on split graphs [17]. Many
questions remain open for the complexity status of the isomorphism problem
on H-GRAPH, even for the simplest non-chordal case, circular-arc graphs [20].

4 FPT Results via Treewidth-bounded Graph Classes

In this section we discuss the concept of treewidth-bounded graph classes. We
will use the fact that the class H-GRAPH has “well-behaved” treewidth (see
Lemma 4.1) together with some observations about more general treewidth-
bounded graph classes to study optimization problems on H-GRAPH.

Treewidth was introduced by Robertson and Seymour [19]. A tree de-
composition of a graph G = (V,E) is a pair (X, T ), where T is a tree and
X = {Xi | i ∈ V (T )} is a family of subsets of V , called bags, such that (1) for
all v ∈ V , the set of nodes Tv = {i ∈ V (T ) | v ∈ Xi} induces a non-empty



connected subtree of T , and (2) for each edge e = {u, v} ∈ E(G) there ex-
ists i ∈ V (T ) such that both u and v are in Xi. The maximum of |Xi| − 1,
i ∈ V (T ), is called the width of the tree decomposition. The treewidth, tw(G),
of a graph G is the minimum width over all tree decompositions of G.

An easy lower bound on the treewidth of a graph G is the size of the
largest clique in G, i.e., its clique number ω(G). This follows from the fact
that each edge of G belongs to some bag of T and that a collection of pairwise
intersecting subtrees of a tree must have a common intersection (i.e., they
satisfy the Helly property). With this in mind, we say that a graph class G is
treewidth-bounded if there is a function f : N → N such that for every G ∈ G,
tw(G) ≤ f(ω(G)). This concept generalizes the idea of G being χ-bounded,
namely, that the chromatic number χ(G) of every graph G ∈ G is bounded by
a function of the clique number of G. In particular, the chromatic number of
a graph G is bounded by its treewidth since a tree decomposition G is a tree
representation of a chordal supergraph G′ of G where ω(G′) = tw(G) + 1, i.e.,
χ(G′) = tw(G) + 1 since chordal graphs are perfect. It was recently shown
that the graphs which do not contain even holes (i.e., cycles of length 2k for
any k ≥ 2) and pans (i.e., cycles with a single pendent vertex attached) as
induced subgraphs are treewidth bounded by f(ω) = 3

2
ω − 1 [5].

For a function f : N → N, we use Gf to denote the class of graphs G where
tw(G) ≤ f(ω(G)). Each class H-GRAPH is known to be a subclass of Gf for
certain linear functions f , as in the following lemma of Biro et al [1].

Lemma 4.1 [1] For every G ∈ H-GRAPH, tw(G) ≤ (tw(H) + 1) · ω(G)− 1,
i.e., H-GRAPH ⊆ GfH where fH(ω) = (tw(H) + 1) · ω − 1.

We now apply the existing literature to describe the computational com-
plexity of k-coloring problems as well as the k-clique problem on treewidth-
bounded graph classes, and, in particular, the H-GRAPH classes.

For each fixed k ≥ 3, it is also known that testing for a (k, k)-pre-colouring
extension in the class H-GRAPH can be done in XP time [1]. They use
Lemma 4.1 together with a simple argument to obtain their result. We use
a similar argument together with a more recent result regarding bounded
treewidth graphs to observe that an even more general problem, list k-coloring
(where each list is a subset of {1, . . . , k}), is FPT on any treewidth-bounded
graph class, and as such also on H-GRAPH, i.e., Proposition 4.3. We first
show that the k-clique problem is FPT on any treewidth-bounded graph class.

Proposition 4.2 For any computable function f : N → N, the k-clique prob-
lem can be solved in O((5 · f(k))5·f(k) · n) time on Gf . Thus, for H-GRAPH,
the k-clique problem can be solved in O((5 · tw(H) · k)5·tw(H)·k · n) time.



Proof. To test if G contains a k-clique, we first try to generate a tree decom-
position of G with width roughly f(k) via a recent algorithm [2] which, for
any given graph G and number t, provides a tree decomposition of width at
most 5 · t or states that the treewidth of G is larger than t – this algorithm
runs in 2O(t) · n time. If this algorithm provides tree decomposition, we use
it to test whether G has a k-clique in O((5 · f(k))5·f(k) · n) time via a known
algorithm [9]. If not, then G must contain a k-clique, and we are done. ✷

Proposition 4.3 For any function f : N → N, the list-k-coloring prob-
lem can be solved in O(((5 · f(k))5·f(k) + k5·f(k)+2) · n) time on Gf . Thus,
for H-GRAPH, the list-k-coloring problem can be solved in O(((5 · tw(H) ·
k)5·tw(H)·k + k(5·tw(H)·k)+2) · n) time.

Proof. For fixed k, clearly, if G contains a clique of size k + 1 then G has no
k-coloring, i.e., no list-k-COL regardless of the lists. We use Proposition 4.2
to test for such a clique, and reject if one is found. Otherwise, we have a
5 · f(k) width tree decomposition, and this time use it to solve the list-k-COL
problem via the known O(n · kt+2) time algorithm when given a width t tree
decomposition [16], i.e., list-k-COL can be solved in O(n ·k5·k·tw(H)+2)-time on
H-GRAPH. ✷
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