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Abstract. In the study of lattice walks there are several examples of enumerative equi-
valences which amount to a trade-off between domain and endpoint constraints. We present
a family of such bijections for simple walks in Weyl chambers which use arc diagrams in
a natural way. One consequence is a set of new bijections for standard Young tableaux
of bounded height. A modification of the argument in two dimensions yields a bijection
between Baxter permutations and walks ending on an axis, answering a recent question of
Burrill et al. (2016). Some of our arguments (and related results) are proved using Schnyder
woods. Our strategy for simple walks extends to any dimension and yields a new bijective
connection between standard Young tableaux of height at most 2k and certain walks with
prescribed endpoints in the k-dimensional Weyl chamber of type D.

Keywords: Lattice paths, excursions, Schnyder woods, Dyck paths, Weyl Chambers,
Young Tableaux.

1. Introduction

In the context of directed 2D lattice paths with unit steps, there is a classic bijection
between meanders and bridges of equal length. This maps lattice walks with steps (1, 1)
and (1,−1) starting at the origin, staying above the x-axis (meanders) to those ending at
height zero (bridges) – see Figure 1. This example illustrates a common trade-off in lattice

Figure 1. An example of the classical bijection between meanders and bridges.
From a Dyck walk D with some marked steps d1, . . . , dk reaching the x-axis, one
gets (bijectively) a meander by turning every marked step into an up-step. To get
(bijectively) a bridge from D, for 1 ≤ i ≤ k we let ui be the up-step matched with
di, and we switch every step between ui and di (included).

walks between domain constraints and endpoint constraints [15, 6]. Note that the natural
bijection shown in Figure 1 proceeds via an intermediate class of walks (Dyck walks) where
both the stronger domain and endpoint restrictions are imposed, and the elements of this
class carry additional “decorations” (here, marked down-steps reaching the x-axis).

This paper introduces a similar but new strategy which can be successfully applied to
several models of Weyl chamber walks. In particular, for two classical step sets (simple walks
and hesitating walks), we have found explicit bijections that exchange a domain constraint
with an endpoint constraint. In the two-dimensional case, these bijections match walks in
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Figure 2. In the first part of our bijections for 2D walks, we map axis-walks in the
octant to open arc diagrams with no 3-crossing; we mark the positions of the open
arcs, and then remove them; then we apply the inverse bijection on the resulting arc
diagram with no open arcs, which yields an excursion with some markings.

the quadrant {x ≥ 0, y ≥ 0} ending at the origin (excursions1), and walks in the octant
{x ≥ y ≥ 0} and ending on the x-axis (axis-walks). For both step sets, these bijections pass
through decorated excursions restricted to the octant. Deciding exactly how to mark the
steps in the decorated intermediary is less obvious than the Dyck walk example. We do this
by using open arc diagrams (corresponding to partial matchings and set partitions) that are
associated to the walks via the robust bijection of Chen et al. [11] — or more precisely, via
its extension to open arc diagrams due to Burrill et al. [8]. In their full generality, these
bijections map open arc diagrams with no (k + 1)-crossing2 to walks in the k-dimensional
Weyl chamber of type C {(x1, . . . , xk) : x1 ≥ · · · ≥ xk ≥ 0} that end on the x1-axis, where
the number of open arcs gives the abscissa of the endpoint. It is at the level of arc diagrams
that the marking of the object is easiest to describe: we map walks that end on the x-axis
to open arc diagrams, mark the location of the open arcs, remove them, and then apply
the inverse bijection to get marked excursions. The schematic outline of our core idea is
illustrated in Figure 2. The advantage of our approach is that it very easily generalizes to
walks in arbitrary dimension.

Once these decorated excursions are obtained, it remains to process the marks. This
processing is handled differently for simple walks and for hesitating walks (where a further
step of transfer of decorations is needed), but in both cases the marks are used to produce
an unmarked walk in a larger domain.

Part of the bijection for simple walks has the nice feature that it extends to higher dimen-
sion, unveiling a new bijective connection with standard Young tableaux of even-bounded
height (which are known to be related to Weyl chamber axis-walks [22, 8, 26]).

1.1. Bijection for 2D simple walks. A lattice model is said to be simple if the step set
consists of all of the elementary vectors and their negatives. In two dimensions, the steps
correspond to the compass directions, that we denote N,E, S,W . Our first main result is
the following Theorem, which is proved in Section 3.

Theorem 1. There exists an explicit bijection (preserving the length) between simple axis-
walks of even length staying in the first octant, and simple excursions staying in the first
quadrant.

As announced in the introduction, our strategy uses open arc diagrams to turn the simple
axis-walk of length 2n into a decorated excursion. This is then transformed to a simple walk

1More generally, we use the term excursion to indicate the set of walks with a prescribed start and end
point. When they are not specified, the prescribed start and end is assumed to be the origin.

2A k-crossing is a set of k mutually crossing arcs.
2



Figure 3. Illustration of the bijective proof of Theorem 1. The top part connects
simple axis-walks in the octant and pairs of Dyck paths, as explained by Theorem 7.
The rest comes from the works of Bernardi [2], where he links pair of Dycks paths
to simple excursions in the quadrant via the so-called tree-rooted planar maps. Note
that this bijection seems to lose track of the statistic "x-coordinate of the endpoint".

of length 2n in the tilted quadrant {(x, y) : x ≥ 0, |y| ≤ x} starting and ending at (1/2, 1/2),
and finally mapped to a pair of Dyck paths of respective lengths 2n + 2 and 2n. These are
known [12, 2] to be in bijection with simple excursions of length 2n in the quadrant. This
chain of bijections is illustrated by Figure 3.

Compare Theorem 1 to the following result recently proved by Elizalde:

Theorem 2 (Elizalde [15]). There exists an explicit bijection (preserving the length) between
simple walks staying in the first octant and ending on the diagonal, and simple excursions
staying in the first quadrant.

In Section 5 we provide an alternative proof of Theorem 2 using Schnyder woods. Note
that Theorems 1 and 2 together yield a bijection for simple walks of length 2n staying in the
octant, mapping those ending on the x-axis to those ending on the diagonal. This answers
an open question of Bousquet-Mélou and Mishna [6].

Moreover, in Section 6 we give an extension for dimension k ≥ 1 of the aforementioned
bijection between simple axis-walks in the octant and simple walks from (1

2
, 1
2
) to itself in the

tilted quadrant. This yields a new bijective connection between standard Young tableaux of
height at most 2k and simple excursions in the k-dimensional Weyl chamber of type D.

Grabiner and Magyar gave explicit enumeration formulas for excursions in Weyl Chambers,
and hence this bijection permits a straightforward application of their results. In Section 6.2
we use their results to illustrate a new derivation of Gessel’s formulas for standard Young
tableaux of even-bounded height.

1.2. Bijection for 2D hesitating walks. A (2-dimensional) hesitating walk is a sequence
of steps s1, . . . , s2n such that every step of odd index is either in {N,E} (a positive step) or
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is 0 = (0, 0), every step of even index is either in {W,S} (a negative step) or is 0, and for
every i ∈ {1, . . . , n}, s2i−1 and s2i cannot both be zero. It is convenient to not represent the
null step in the drawings, but to group the steps by pairs of the form (s2i−1, s2i) instead. In
Section 4 we show the analogous, although more difficult, result for hesitating walks, which
answers a recent question of Burrill et al. [8]:

Theorem 3. There exists an explicit bijection (preserving the length) between hesitating
axis-walks in the first octant, and hesitating excursions in the first quadrant.

It is then easy to derive a bijection between Baxter permutations of size n + 1 (known
to be in bijection with hesitating excursions of half-length n in the quadrant) and open
matching-diagrams with n points and no enhanced 3-nesting (known to be in bijection with
hesitating axis-walks of half-length n in the octant). This answers a conjecture formulated
by Burrill et al. [9].

In order to show Theorem 3, again the first step is to use the strategterny of Figure 2
to turn the axis-walks into decorated hesitating excursions, where the decoration consists in
marking some W-steps on the x-axis. A further ingredient here is to turn the decoration
into marked steps leaving the diagonal, after which the decorated excursions in the octant
are known [8] to be equivalent to hesitating excursions in the quadrant.

Hesitating excursions of half-length n − 1 in the quadrant are known to be counted by
the Baxter numbers Bn = 2

n(n+1)2

∑n
k=1

(
n+1
k+1

)(
n+1
k

)(
n+1
k−1

)
. Indeed, as shown by Burrill et

al. [8], they are in easy bijection with the classical Baxter family of non-intersecting triples
of directed lattice walks. On the other hand it has been first shown in [31] (and more recently
in [8]) that hesitating axis-walks of half-length n in the octant are also counted by Bn+1.
Both of these proofs involve an equality of generating functions, and neither proof retains
significant combinatorial intuition. Our result is the first bijective proof that these walks are
counted by Bn+1. Such a result is not obvious to find since the family of hesitating axis-walks
in the octant does not seem to be naturally endowed with the classical (bivariate) symmetric
generating tree common to the Baxter families such as Baxter permutations, twin pairs of
binary trees, 2-oriented plane quadrangulations, and plane bipolar orientations [14, 1, 17].
These families share the same generating tree, and hence there exists a “canonical” bijection
relating them [5]. We cannot rely on such a systematic bijective strategy here.

Theorem 3 can be extended to a similar kind of plane walks, namely vacillating walks,
leading to some new enumerative results on such walks.

In the case of simple walks, we saw that both the excursions in the quadrant and the
axis-walks in the octant are in bijection with the simple walks in the octant ending on the
diagonal. Does this hold for hesitating walks? In fact, a computational enumeration (up to
half-length 50) suggests the following conjecture (where the conjectural part is the bijective
link to the third family).

Conjecture 4. The following families are in bijection:
• hesitating excursions of length 2n in the quadrant,
• hesitating axis-walks of length 2n in the octant,
• hesitating walks of length 2n in the octant, ending on the thick diagonal : {(n, n), n ∈
N}
⋃
{(n+ 1, n), n ∈ N}.

If we denote by un (resp. vn) the number of hesitating walks of length 2n in the octant
ending on {x = y} (resp. ending on {x = y + 1}), then Conjecture 4 would imply that
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Figure 4. Left: an open matching-diagram with 4 open arcs. Right: an open
partition-diagram with 2 open arcs.

un + vn equals the Baxter number Bn+1. We have not been able yet to find a computational
proof that un + vn = Bn+1, but have numerically checked that both un and vn seem to be
P-recursive (of order 2). We have not found any natural subfamily of hesitating axis-walks
of length 2n (for instance with a parity constraint on the ending point) that are counted
by un.

2. Open arc diagrams

Arc diagrams are a graphic representation of combinatorial structures such as partitions
or matchings, which enables a convenient visualization of certain patterns, such as crossings.
A partition diagram is defined for a set partition π of {1, . . . , n}: draw n points on a line,
labeled from 1 to n; for each (ordered) block {a1, . . . , ak} of π, we draw an arc from ai to
ai+1 for 1 ≤ i ≤ k− 1. A matching diagram is a partition diagram where the underlying set
partition is a matching (i.e. every block has size 2).

A point of a partition diagram can be an opening point, if it is the first point of a block
of size ≥ 2; a closing point, if it is the last point of a block of size ≥ 2; a transition point, if
it is a non-extremal point in a block of size ≥ 3; or a fixed point, if it is a block of size 1. A
matching diagram only has opening and closing points.

A 3-crossing pattern in an arc diagram is a set of three mutually crossing arcs, i.e. three
arcs (i1, j1), (i2, j2) and (i3, j3) with i1 < i2 < i3 < j1 < j2 < j3. An enhanced 3-crossing is a
3-crossing where arcs sharing an endpoint are also considered to be crossing. More formally,
three arcs (i1, j1), (i2, j2), (i3, j3) form an enhanced 3-crossing if i1 < i2 < i3 ≤ j1 < j2 < j3.
These definitions are naturally generalized to k-crossings for k ≥ 2.

Arc diagrams can be extended to open arc diagrams, by allowing arcs with only a left
endpoint, and no right endpoint (see Figures 4 for examples). A 3-crossing and an enhanced
3-crossing can now include one open arc but only if this open arc starts as position i3
(informally it is as if j3 = +∞). The two examples of Figure 4 have multiple 2-crossings but
no 3-crossing. For all types of arc diagrams the size is defined as the number of points in
the diagram.

In [11], Chen et al. describe a bijection between arc diagrams with no (k+1)-crossings,
and excursions staying in the k-dimensional Weyl chamber of type C. It was subsequently
extended in [7, 8] by Burrill et al. to map open arc diagrams to axis-walks (see the left part
of Figure 6 for an example).

Theorem 5 (Burrill et al. [8], restricted to 3-crossings). There exists an explicit bijection
between open matching (resp. open partition) diagrams of size n, with m open arcs and no
3-crossing (resp. no enhanced 3-crossing), and simple (resp. hesitating) walks of length n
(resp. of half-length n) staying in the first octant {(x, y), 0 ≤ y ≤ x}, starting at the origin
and ending at (m, 0).

5



We refer the reader to the original paper [8] for a description of the bijection in its complete
form, which is based on the Robinson-Schensted insertion algorithm on tableaux, but can
also conveniently be reformulated in terms of growth diagrams [25, 26].

Here are important properties of this correspondence that we use in our bijections. The
first part is extracted from Proposition 3 of [8], and the second part follows straightforwardly
from the description of the bijection.

Property 6. Let π be a closed matching (resp. partition) diagram of size n with no 3-
crossing (resp. enhanced 3-crossing), and ω the simple (resp. hesitating) walk of length n
corresponding to π via the bijection due to Burrill et al. [8].

Open arcs can be inserted into intervals at positions i1, i2, . . . , ik in π without forming a
3-crossing if and only if for every j ∈ {1, . . . , k} the y-coordinate after ij steps in ω is zero.

Given a partition diagram π, the fixed points of π correspond to the factors EW in ω,
and the closing points of π correspond to the factors {0W,0S} in ω (with 0 denoting the
zero step). In addition, an open arc can be added on a fixed point or a closing point without
creating an enhanced 3-crossing if and only if an open arc could be added into the interval
just to the left of that point without creating a 3-crossing.

3. Proof of Theorem 1: Simple Walks

The first main ingredient lies in the results from [12, 2], where the respective authors
describe a correspondence between simple excursions of length 2n in the quadrant, and pairs
of Dyck paths of lengths 2n and 2n + 2. To have a bijective proof of Theorem 1, we then
need to connect such pairs of Dyck paths to simple axis-walks of even length in the octant.
This is given by the following theorem, with an extension to odd length.

Theorem 7. Let Cn be the set of Dyck paths of length 2n, and let Un be the set of simple
axis-walks of length n in the first octant. There is an explicit bijection for each n ≥ 0 between
U2n and Cn × Cn+1, and between U2n+1 and Cn+1 × Cn+1.

This section provides a bijective proof of this result, as illustrated by Figure 5. Gouyou-
Beauchamps [22] showed that the cardinality of simple axis-walks in the octant is indeed
CatnCatn+1 or Catn+1

2, depending on the parity, where Catn is the nth Catalan number.
However, his proof uses a reflection principle argument of Gessel Viennot which involves
subtractions and cancellations of terms.

As described in the introduction, our strategy relies on the bijection of Theorem 5, which
allows us to turn simple axis-walk into simple excursion with decorations consisting of weights
assigned to each visit to the x-axis.

Lemma 8. Simple axis-walks of length n in the octant ending at (m, 0) are in bijection with
simple excursions of length n − m in the octant, where each visit to the x-axis carries a
non-negative integer weight, such that the sum of the weights is m.

Proof. Using Theorem 5, such an axis-walk is mapped to an open matching diagram of size
n with m open arcs and without 3-crossing. We then remove the open arcs along with their
nodes to obtain a (closed) matching diagram π of size n − m, and we record their former
positions as follows: for each interval of π that contained at least one open arc, we assign
to the interval a positive weight equal to the number of open arcs it formerly contained (see
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(a)

(e)

(d)(c)

(f)

(b)

1 1 2 1 1

2

Figure 5. An example of the bijection of Theorem 7. Successive objects are: (a) a
simple axis-walk in the octant; (b) an open matching diagram with no 3-crossing; (c)
a matching diagram with no 3-crossing and with integer weights at some intervals
to record the positions of the former open arcs; (d) a simple excursion in the octant
where each visit to the x-axis carries a nonnegative integer weight; (e) a simple
excursion in the tilted quadrant; (f) a pair of Dyck paths whose lengths differ by 2.

Figure 5(b) to (c)). The sum of these weights is thus m. Only specific intervals can carry
weights since adding arcs in some intervals might create a 3-crossing.

By Theorem 5 (again), the diagram π is mapped to an excursion in the octant. By
Property 6, we know that the intervals of π where insertion of open arcs is possible exactly
correspond to the visits of the excursion to the x-axis. We then transfer the weights to the
corresponding positions (see Figure 5(c) to (d)). �
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As a final step, we transform the weighted excursions in the octant into pairs of Dyck
paths. To do so, we define an intermediary class of walks in the tilted quadrant

Q̃ = {(x, y) : x ≥ 0, |y| ≤ x} ,
. This domain is constituted of two copies of the octant, a positive one {(x, y) : x ≥ y ≥ 0},
and an upside-down negative one {(x, y) : x ≥ −y ≥ 0}.

Lemma 9. For n,m both even (resp. both odd), the set of simple decorated excursions of
length n − m in the octant with a total weight m on the visits to the x-axis is in bijection
with the set of simple walks of length n in the tilted quadrant Q̃ from (1

2
, 1
2
) to (1

2
, 1
2
) (resp. to

(1
2
,−1

2
)) where exactly m steps change the sign of y in the walk. This set is in bijection with

Cb(n+1)/2c × Cd(n+1)/2e, in such a way that if the two Dyck paths are drawn with respective
starting points ((0, 0), (−1, 0)), they cross exactly m times.

Proof. The idea is illustrated by Figure 5(d)–(f).
First we translate the whole excursion by (1

2
, 1
2
).

A weight on a position at height 1
2
indicates the number of switches that are to be inserted

at this position. The switches partition the path into a certain number of factors. We apply
the transformation (x, y) → (x,−y) to factors of even rank (where the first factor has rank
1); and for each switch, we insert a vertical step crossing the x-axis in order to join the end
of the preceding factor to the beginning of the next one.

Concerning the second bijection, we map any walk (xi, yi)i∈{0,...,n} of Q̃ to the pair P1, P2

of paths (
(xi + yi)i∈{0,...,n}, (xi − yi)i∈{0,...,n}

)
,

i.e., the successive heights of P1 (resp. of P2) are the successive values of xi + yi (resp. of
xi − yi). We easily see that the constraint of staying in Q̃ is mapped to the constraint that
both P1 and P2 remain nonnegative. In addition, for even length 2n the endpoint conditions
ensures that P1 starts and ends at 1, while P2 starts and ends at 0; so Q is a Dyck path of
length 2n and P1 which can be identified with a Dyck path of length 2n+2, upon prepending
an up-step and appending a down-step. For odd length 2n+1, the endpoint conditions ensure
that P starts at 1 and ends at 0, while P2 starts at 0 and ends at 1; hence both P1 and P2

are identified with a Dyck path of length 2n + 2 (upon prepending a down-step to P1 and
appending a down-step to P2). �

We obtain the bijection for Theorem 7 by composing Lemma 8 with Lemma 9.

4. Proof of Theorem 3: Hesitating Walks

We next give the details of the bijection between hesitating axis-walks in the octant, and
hesitating excursions to prove Theorem 3. The initial part is similar to before, and we
provide two variants for the second.

4.1. Transformation into decorated hesitating excursions in the octant. The gen-
eral strategy is the same as for simple walks: turn an axis-walk in the octant into an open
partition diagram, remove the open arcs while marking their locations, and transform the
decorated diagram back to a decorated excursion. In contrast, the second part is different
from the simple walk case, since the marking does not easily induce an excursion in a larger
domain. That is why we need an additional step of decoration transfer.
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Figure 6. An example of the first part of the bijection. From left to right: a
hesitating axis-walk in the octant; an open partition diagram; a decorated partition
diagram; a decorated hesitating excursion in the octant

Lemma 10. Hesitating walks of length 2n staying in the octant and ending at (m, 0) are in
bijection with hesitating excursions of length 2n staying in the octant in which m W-steps
on the x-axis have been marked.

Proof. Using Property 6, it is easy to check that for π a partition-diagram of size n and ω the
corresponding hesitating excursion of length 2n in the octant, the (closing or fixed) points
of π where an open arc can be added exactly correspond to the W -steps of ω on the x-axis.
If we mark m such steps we obtain an open partition diagram of size n with m open arcs
and no enhanced 3-crossing, which itself corresponds (by Theorem 5) to an hesitating walk
of length 2n in the octant that ends at (m, 0). �

It turns out that hesitating excursions in the quadrant (the second family of objects
appearing in Theorem 3) are also in bijection with some decorated hesitating excursions in
the octant, as stated by the following lemma.

Lemma 11. Hesitating (resp. simple) excursions of length 2n in the first quadrant are in
bijection with hesitating (resp. simple) excursions of length 2n in the first octant with marked
steps leaving the diagonal y = x.

As proved in [8], this lemma is a consequence of the reflection principle with respect to
the diagonal.

In terms of hesitating excursions of the quadrant, the number of marked steps corresponds
to a parameter called the switch-multiplicity of the walk, which is roughly speaking the
number of times that the walk crosses the diagonal, or similarly to the number of times the
walk goes over the diagonal.

4.2. Moving the marks around. In view of Lemmas 10 and 11, Theorem 3 holds if there
is an equidistribution for the hesitating excursions of the octant between the parameter
counting the steps leaving the diagonal, and the parameter counting W -steps on the x-axis.
This is true, and furthermore, they are symmetrically distributed.

Proposition 12. There is an explicit involution over the set of hesitating excursions of
length 2n in the octant that exchanges the number of W-steps on the x-axis and the number
of steps leaving the diagonal.

Proof. The proof passes through four main intermediaries. We first map a hesitating walk to
a simple walk, tracking enough information to recover the hesitating walk. We use a classic
mapping of steps to convert a simple excursion to a pair of Dyck paths. Then, we apply an
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involution on pairs of Dyck paths which swaps a key parameter. The final deduction comes
from tracing parameters through these bijections, and back. This gives the stated result.

We now give the details of the individual steps.

From hesitating walks to simple walks. We call a sailing point a positive step, E or N ,
followed by a negative step, W or S. We transform every hesitating walk into a simple walk
in which some sailing points are marked. To do so, we gather the steps of the hesitating walk
in pairs, discarding the zero-steps, and marking every sailing point induced by the gathering
of two non-zero steps. Thus, every hesitating excursion in the octant is identified with a
simple excursion in the octant where some sailing points are marked.

From simple walks to pairs of Dyck paths. Simple excursions in the octant are mapped
to non-crossing pairs of Dyck paths by to the transformation (xi, yi)→ ((xi + yi), (xi − yi)).
The sailing points of the excursion become the upper peaks, i.e. the peaks of the upper path;
the W-steps on the x-axis become the upper contacts, i.e. down steps occurring at the same
time and the same height for both paths; and the steps leaving the diagonal become the
lower contacts, i.e. up steps leaving the x-axis in the lower path. The proof is now reduced
to the following claim.

Involution for non-crossing pairs of Dyck paths.

Claim 13. There is an explicit involution on pairs of non-crossing Dyck paths of length 2n,
which preserves the number of upper peaks and maps the number of upper contacts to the
number of lower contacts.

Such an involution is given by an article of Elizalde and Rubey [16]. More specifically, their
involution operates on non-crossing pairs of Dyck paths, preserves the upper path (hence
the upper peaks), and exchanges the number of upper and lower contacts.

In the next section, we also give an alternative proof of the previous claim, using Schnyder
woods.

�

4.3. Bonus: Vacillating Walks. In the literature (see [11, 10] for example), there are
commonly three families of walks related to tableaux: the simple and hesitating walks,
which we have already dealt with, and vacillating walks. A (2-dimensional) vacillating walk
is an even sequence of steps such that every step of odd index is W , S or 0 (a negative
or zero step), and every step of even index is N , E or 0 (a positive or zero step). Unlike
hesitating walks, vacillating walks can have successive zero steps.

It turns out that an analogue of Theorems 1 and 3 for vacillating walks can be seen as a
corollary of Theorem 3.

Corollary 14. For every integer n ≥ 1, the number of vacillating axis-walks of half-length n
in the first octant is twice the number of vacillating excursions of half-length n in the first
quadrant. The latter number is equal to

∑n−1
k=0

(
n−1
k

)
Bk+1, where Bk is the kth Baxter number.

Proof. First, we claim that the vacillating axis-walks of half-length n in the quadrant (resp.
in the octant) are in bijection with the triples (hw, P, laststep) where:

10



• hw is a hesitating axis-walk of half-length k ≤ n − 1 in the quadrant (resp. in the
octant);
• P is a multiset of size n− 1− k and with elements in {0, . . . , k};
• laststep is either E or 0.

Indeed, removing the first step and the last step from a vacillating walk w of half-length n
induces a hesitating walk of half-length n − 1 where we allow some consecutive steps s2i−1
and s2i to be zero. Thus, to obtain a valid hesitating walk hw, we have to remove the
consecutive double-zero steps, and store them in a multiset P , which describes the positions
where we have to insert back the double-zero steps to recover the original vacillating walk.
To recover the original vacillating walk we also have to put back the first step, which has
to be 0, because a walk starting at the origin cannot begin by a negative step, and the last
step, which can be E or 0, but not N because the walk ends on the axis.

If we restrict the axis-walk to be an excursion, then under the previous bijection, hw is
also an excursion, and laststep is necessarily 0 (hence the factor 2).

We now use the bijection of Theorem 3, which matches the hesitating axis-walks in the first
octant and the hesitating excursions in the first quadrant. Translated in terms of vacillating
walks via the above bijection, it means that the vacillating axis-walks of the first octant are
in bijection with the pairs formed by a vacillating excursion in the first quadrant, and a step
in {E,0}.

As for the counting formula for vacillating excursions of half-length n in the first quadrant,
it directly follows from the fact that hesitating excursions of half-length k in the first quadrant
are counted by Bk+1. �

5. Alternative Proofs Using Schnyder Woods

In this section, we propose some alternative proofs of Theorem 2 and Claim 13 by using
as an intermediate step a famous combinatorial family: the Schnyder woods.

5.1. Schnyder woods and pairs of non-crossing Dyck paths. A rooted triangulation
is the embedding of a simple planar graph in the plane such that all faces are triangles, with
a distinguished external face and a distinguished root vertex on the external face. We are
interested in a particular kind of edge-coloring and orientation of triangulations, known as
Schnyder woods. One of them is depicted by Figure 7(d). Schnyder woods were introduced
by Schnyder in [28] and [29] for triangulations and were later extended to different families
of maps. There are several applications of these colorings, ranging from graph drawing to
map encoding.

We describe a Schnyder wood using some conventions of the triangulation. The size of a
triangulation is the number of vertices minus 3 (we do not count the vertices of the external
face). The root vertex is labeled v0, and the two other vertices in counterclockwise order
around the external face are labeled v1 and v2. The vertices that are not incident to the
external face and edges that do not bound the external face are called internal.

A Schnyder wood of a simple triangulation is an edge-coloring into 3 colors, along with an
orientation of all internal edges, such that the following properties are satisfied:

• for each i ∈ {0, 1, 2}, the set of i-colored edges forms a spanning tree Ti, rooted and
oriented towards vi;
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• if, for i ∈ {0, 1, 2}, an i-tail (resp. i-head) with respect to a vertex denotes an edge
colored by i oriented away from (resp. toward) this vertex, then in clockwise order
around any internal vertex, there are: one 0-tail, some 1-heads, one 2-tail, some
0-heads, one 1-tail, some 2-heads.

Schnyder woods are in bijective correspondence with several combinatorial families. A
pair P,Q of Dyck paths of length 2n (both starting at (0, 0) and ending at (2n, 0)) is called
non-crossing if for each 0 ≤ i ≤ 2n, the height of Q after i steps is at most the height of P
after i steps.

Theorem 15 (Bonichon [4]). Non-crossing pairs of Dyck paths of length 2n are in bijection
with Schnyder woods of size n.

Theorem 15 was first proved by Bonichon in [4]. Bernardi and Bonichon improved the
description of this bijection a few years later [3]. It is the latter form that we use here. We
give a quick description of the map Ψ from Schnyder woods to pairs of non-crossing Dyck
paths – see (c) and (d) from Figure 7 for an example of the bijection. First, remember the
classical bijection Ω between plane trees and Dyck paths: take a plane tree, turn around it
clockwise, starting and ending at the root; the first time an edge is visited, write an up-step,
the second time, write a down step. From a Schnyder wood, we now generate a pair (P,Q) of
non-crossing Dyck paths. The bottom path Q = UDα1 . . . UDαn , where U stands for up-step
and D stands for down-step, is the path representing the tree T0 of color 0: Q = Ω(T0). The
tour around T0 induces an order on the internal vertices, that we subsequently call u1, ..., un
(the first vertex visited by the tour is v0). Let βi be the number of 1-heads incident to ui
and let βn+1 be the number of 1-heads incident to v1. Note that β1 has to be 0. The upper
path is now defined as P = UDβ2 ...UDβn+1 . We refer the reader to Bernardi and Bonichon’s
paper [3] for a proof that P is positive and does not cross Q, a description of the reverse
map Φ, and a proof that Ψ and Φ are reciprocal bijections.

For our own purpose, we need to review how certain parameters are transformed by Ψ,
as shown in Table 1 where the first column corresponds to Schnyder woods, and the second
column corresponds to pairs of Dyck paths. The bijections Ψ and Φ map each parameter
to its counterpart on the same row. In the proof of Proposition 12, we defined the upper
contacts as common down-steps. Similarly, reversed upper contacts are common up-steps.
Upper (resp. lower) peaks are peaks of the upper (resp. lower) path.

Lemma 16. The bijection Φ satisfies the correspondence of parameters given by Table 1.

Proof. This proof uses references and notation from Bernardi and Bonichon’s paper [3].
Row 1 is trivial, and Rows 2 and 4 are well-known properties on the bijection between Dyck
paths and trees. Row 5 is a direct consequence of the construction of the bijection, and
Row 3 is a direct consequence of the fact that an upper peak is a descent i of positive length
βi > 0, which corresponds to an internal node of T1.

Row 6 is less straight-forward. It corresponds to the tight case in [3] when proving that
the pair of walks is non-crossing; we sketch the main arguments. Let ui be an internal vertex
of T (for 1 ≤ i ≤ n), and let hi be the tail of color 2 at ui. Then one can check that
ui is a neighbor of v2 in T2 if and only if hi is not below a 1-arc (an arc of color 1), i.e.,
there is no 1-arc e such that hi is inside the (unique) cycle formed by e and T0. In such a
situation, hi comes after the tail of e and before the head of e during a clockwise tour around
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Schnyder wood pair of non-crossing Dyck paths
1 size half-length

2 number of leaves of T0 number of lower peaks

3 number of internal nodes of T1 number of upper peaks

4 degree of v0 in T0 number of lower contacts

5 degree of v1 in T1 length of the last upper descent

6 degree of v2 in T2 number of reversed upper contacts

Table 1. The correspondence of parameters through the bijections Ψ and Φ.

T0. The number of 1-tails before hi in such a tour is
∑

j<i αj, while the number of 1-heads
before hi is

∑
j≤i βj. Consequently, given that a 1-tail always comes in the tour before its

corresponding 1-head, ui is a neighbor of v2 in T2 if and only if the previous numbers coincide,
i.e.,

∑
j<i αj =

∑
j≤i βj. Finally, we remark that −i +

∑
j<i αj (resp. −i +

∑
j≤i βj) gives

the height of the ith up-step of the lower (resp. upper) Dyck path; hence the two numbers
match if and only if the ith up-steps of the lower and upper Dyck paths form a reversed
upper contact. �

5.2. Consequences. From Lemma 16, we can prove several non-trivial properties on non-
crossing pairs of Dyck paths, and subsequently on excursions in the octant. Schnyder woods
have more evident symmetries than pairs of Dyck paths, and the very expression of these
symmetries gives involutions that are not easily phrased in terms of pairs of Dyck paths.

We give an alternative proof of Theorem 2 (see Figure 7 for an outline of the bijection).

Proof of Theorem 2. We are going to describe the bijection from excursions to walks ending
at the diagonal.

First, we use Lemma 11 to map an excursion in the quadrant to an excursion in the
octant with k marked steps leaving the diagonal. This excursion is then mapped to a pair
of non-crossing Dyck paths with k marked lower contacts.

We apply Φ, move the root from v0 to v1 and change the orientation (meaning that
“clockwise” becomes “counterclockwise”). Moving the root and changing the orientation
amounts to exchanging the roles of T0 and T1. Hence, according to Lemma 16 (rows 4 and
5), when we then apply Ψ to get back to a pair of non-crossing Dyck paths, we get k marked
steps on the descent of the upper path.

We reverse these k steps, and the upper path now ends at height 2k. We map the pair of
paths back to a walk in octant that ends at coordinates (k, k). �

A similar strategy can be applied to prove the next theorem, which is a stronger version
of Claim 13 (that was used to complete the proof of Theorem 3), but still weaker than the
result from [16], which preserves the upper path.

Theorem 17. There is an explicit involution on pairs of non-crossing Dyck paths of length
2n, which preserves the number of upper peaks and exchanges the number of upper contacts
and the number of lower contacts.
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v0

v1v2

(a) (b)

(c)

(d)

(f)

(g)

(e)

(h)

v1

v0
v2

Figure 7. Illustration of the bijective proof of Theorem 2 using Schnyder woods.
Successive objects are: (a) a simple walk ending on the diagonal and staying in the
octant; a non-crossing pair formed by a Dyck path and a non-negative walk starting
at (0, 0); (c) a non-crossing pair of Dyck paths where some steps on the last descent
of the upper path are marked; (d) and (e) two Schnyder woods (the roles of T0 and
T1 have been swapped thanks to a vertical reflection); (f) a non-crossing pair of Dyck
paths where some up-steps of the lower path that leave the x-axis are marked; (g) a
simple excursion in the quadrant where some steps leaving the diagonal are marked;
(h) a simple excursion staying in the quadrant.
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Figure 8. A minimal counterexample to the conjectural identity N(n, p1, ...pk) =
N(n, n−pk+1, ...n−p1+1) (which holds for k ∈ {1, 2}). We have 3 = N(4, 2, 3, 2) 6=
N(4, 3, 2, 3) = 2.

Proof. We take a pair (P,Q) of non-crossing Dyck paths, reverse them to transform upper
contacts into reversed upper contacts, while keeping the same number of peaks and lower
contacts, and apply Φ to get a Schnyder wood.

Then we move the root of the map from v0 to v2, and flip the orientation of the plane.
This has the effect of exchanging the roles played by T0 and T2.

Finally we apply Ψ to get back to a pair of non-crossing Dyck paths, and reverse again
the two paths. Lemma 16 (rows 3, 4 and 6) is enough to conclude the proof. �

5.3. An extension of the Narayana symmetry. The Narayana number N(n, p) is defined
as the number of Dyck paths of length 2n with p peaks. These numbers refine the Catalan
numbers Catn, in the sense that

∑n
p=1 N(n, p) = Catn. The following statement is well-

known.

Property 18. The Narayana numbers satisfy the following symmetry property

N(n, p) = N(n, n− p+ 1).

The symmetry can be obtained from a classical bijection between Dyck paths of length 2n
and rooted binary trees with n+ 1 leaves: the number of peaks of the Dyck path is mapped
to the number of left leaves, and the symmetry follows by applying a reflexion to the tree.

The Narayana numbers can be extended to any k-tuple of non-crossing Dyck paths in
the following way: N(n, p1, ..., pk) is the number of non-crossing k-tuples D1, . . . , Dk of Dyck
paths (ordered from bottom to top) such that Di has pi peaks.

Theorem 19. For k = 2, the extended Narayana numbers satisfy the symmetry property

N(n, p, q) = N(n, n− q + 1, n− p+ 1).

Proof. The method we use is similar both to the case of classical Narayana numbers and
to the previous subsection. Starting from a non-intersecting pair of Dyck paths, we apply
Φ, move the root from v0 to v1, change the orientation (similarly as before, this amounts
to exchanging the roles of T0 and T1), and apply Ψ back to a pair of paths. This yields
an involution on non-crossing pairs of Dyck paths that has the desired peak-parameter
correspondence, according to Lemma 16 (rows 2 and 3). �

However, a similar symmetry does not seem to hold for higher values of k. For example,
one could expect that N(n, p1, . . . , pk) = N(n, n − pk + 1, . . . , n − p1 + 1), but we present a
minimal counterexample to that in Figure 8.

6. A new bijection for Young tableaux of even-bounded height

As we have seen in Section 3, the main step in the proof of Theorem 1 is an explicit
bijection between simple axis-walks of length n staying in the octant {x ≥ y ≥ 0}, and
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simple walks of length n from (1
2
, 1
2
) to (1

2
, (−1)

n

2
) staying in the tilted quadrant. As it turns

out, this bijection can be easily generalized to any dimension, and infers new connections
with standard Young tableaux with even-bounded height.

6.1. Walks in higher dimensional Weyl Chambers. For k ≥ 1, we define the k-
dimensional Weyl chamber3 of type C as

WC(k) := {(x1, x2, . . . , xk) | x1 ≥ x2 ≥ · · · ≥ xk ≥ 0} ,
and the k-dimensional Weyl chamber of type D as

WD(k) := {(x1, x2, . . . , xk) | x1 ≥ x2 ≥ · · · ≥ xk−1 ≥ |xk|} .
In this context, an axis-walk is any walk starting at the origin and ending on the x1-axis.
With these definitions, the generalization of Theorem 1 reads as follows.

Theorem 20. For k ≥ 1 and n ≥ 0, there is an explicit bijection between simple axis-walks
of length n staying in WC(k) and simple excursions of length n staying in WD(k), starting
from (1

2
, . . . , 1

2
, 1
2
), and ending at (1

2
, . . . , 1

2
, (−1)

n

2
). The ending x1-coordinate of a walk from

WC(k) corresponds to the number of steps that change the sign of xk in its bijective image.

Note that the case k = 1 is precisely our introductory example, and the case k = 2 is
the first part of Lemma 9. The arguments to show Theorem 20 are very similar to those
in the proofs of Lemma 8 and the first part of Lemma 9. They use the general formulation
of Theorem 5 (specifically, the bijection between open matching diagrams without (k + 1)-
crossing and simple axis-walks in WC(k)), and the property that the intervals where an open
arc can be added (without creating a (k + 1)-crossing) correspond to the visits of the walk
to the hyperplane defined by xk = 0.

Moreover, it has been recently shown [8, 26] that the set of standard Young tableaux of
size n with height at most 2k is in bijection with simple axis-walks of length n in WC(k),
with the ending x1-coordinate mapped to the number of columns of odd length. Composing
this bijection with Theorem 20 infers the following result.

Corollary 21. For n, k ≥ 1, there is an explicit bijection between the standard Young
tableaux of size n with height at most 2k, and the simple walks of length n staying in WD(k),
starting from (1

2
, . . . , 1

2
, 1
2
), and ending at (1

2
, . . . , 1

2
, (−1)

n

2
). The number of odd columns cor-

responds to the number of steps that change the sign of xk.

6.2. Recovering Gessel’s formula. Thanks to the lattice path enumeration techniques of
Grabiner and Magyar [23], the previous corollary has an interesting consequence: a combina-
torial interpretation of the determinant expression of Gessel [20] for the generating function
of standard Young tableaux of even-bounded height.

Proposition 22 (Gessel [20]). Let Yd[n] be the number of Young tableaux of size n with at
most d rows, and Yd(x) =

∑
n≥0

1
n!
Yd[n]xn the associated generating function. Then for each

k ≥ 1,

(1) Y2k(x) = det
(
Ii−j(2x) + Ii+j−1(2x)

)
1≤i,j≤k,

where (for m ∈ Z) Im(2x) =
∑

i≥0
1

(m+i)!i!
xm+2i.

3For convenience we define the chambers using non-strict inequalities, our bijective statements can equiva-
lently be given under strict inequalities, upon applying the coordinate shift x̃i = xi + k + 1− i.
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Let us now explain how we can recover this result from Corollary 21. First, it proves to
be convenient to take here the Weyl chamber of type D under the form

ŴD(k) := {|x1| < x2 < · · · < xk}.
For each point λ = (λ1, . . . , λk) (in Rk) we denote by λ′ the point (−λ1, λ2, . . . , λk). Let
ρ = (1/2, 3/2, . . . , k − 1/2). Then Corollary 21 states that for n even (resp. odd), Y2k[n] is
the number of walks of length n in ŴD(k) from ρ to ρ (resp. to ρ′).

For every points λ = (λ1, . . . , λk) and µ = (µ1, . . . , µk) both in ŴD(k), let Nλ,µ[n] be
the number of simple walks of length n from λ to µ staying in ŴD(k), and let Nλ,µ(x) :=∑

n≥0
1
n!
Nλ,µ[n]xn be the associated generating function.

Lemma 23 (Grabiner and Magyar [23]). For every points λ = (λ1, . . . , λk) and µ =

(µ1, . . . , µk) in ŴD(k) such that λi and µi belong to 1/2 + Z for i ∈ {1, . . . , k}, we have

Nλ,µ(x) +Nλ,µ′(x) = det
(
Iλi−µj(2x) + Iλi+µj(2x)

)
1≤i,j≤k,

where, for m ∈ Z, Im(2x) is defined as Im(2x) =
∑

i≥0
1

(m+i)!i!
xm+2i.

The proof techniques in [23] rely on a general reflexion principle (see [21, Theorem 1]) for
Weyl chamber walks, which results in determinant expressions for the relevant generating
functions (the determinant is naturally expressed in terms of Im(2x), which is the exponential
generating function of simple 1d walks that start at 0 and end at m).

By Corollary 21 we have
Y2k(x) = Nρ,ρ(x) +Nρ,ρ′(x),

where Nρ,ρ(x) gathers the coefficients of even power and Nρ,ρ′(x) gathers the coefficients of
odd power. Hence, applying Lemma 23 to λ = µ = ρ, we recover Proposition 22.

6.3. Related formulas. For odd d, the expression for the generating function Yd(x) found
in Gessel’s paper [20] is

Y2k+1(x) = ex det
(
Ii−j(2x)− Ii+j(2x)

)
1≤i,j≤k.

In that case the combinatorial derivation is easier. Indeed, a Young tableau with at most
2k + 1 rows is identified (via the Robinson-Schensted correspondence) to an involutive per-
mutation without (2k + 2)-decreasing subsequence, which itself maps to a partial matching
diagram without (k+ 1)-nesting (partial here means that there can be isolated points along
the line). This implies that ∑

n≥0

1

n!
Y2k+1(n)xn = exMk(x),

where Mk(x) is the exponential generating function for matching diagrams without (k + 1)-
nesting. By the Chen et al. bijection [11], the series Mk(x) is the exponential generating
function of simple walks in the Weyl chamber of type C starting and ending at the origin;
and it is shown by Grabiner and Magyar [23, Section 6.2] that this generating function is
det
(
Ii−j(2x)− Ii+j(2x)

)
1≤i,j≤k.

Similarly, a determinant formula is known for the enumeration of pairs of Young tableaux
of bounded height. More precisely, let ud[n] be the number of pairs of Young tableaux of
the same shape with at most d rows (also by the Robinson-Schensted correspondence, the
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number of permutations in Sn with no (d + 1)-increasing subsequence). Then for every
d ≥ 1, we have as shown by Gessel [20] (note that this time the expression is uniform in d,
with no dependence on the parity)∑

n≥0

ud[n]

n!2
x2n = det

(
Ii−j(2x)

)
1≤i,j≤k.

A combinatorial proof of this expression has been given in [19] via simple walks ending at
so-called Toeplitz points, see also [30] for a combinatorial derivation based on arc diagrams.

Regarding asymptotic enumeration, it should in principle be possible to use recent results
by Denisov and Wachtel for the asymptotic enumeration of walks in cones [13, Theo. 6] in
order to recover from Theorem 21 the expression found by Regev [27] for the asymptotic
number of Young tableaux of size n with at most 2k rows, which is, for each fixed k ≥ 1,

Y2k[n] ∼n→∞ (2/π)k/2(2k)n(k/n)k(k−1/2)
k−1∏
i=0

(2i)!.

(The relevant constants for the Weyl chamber of type D can be computed from [24] and from
Selberg integrals [18, Eq. 1.20].)
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