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Extremal graph theory and finite forcibility

Andrzej Grzesik*  Daniel Kral'm  Lészlé Miklés Lovész!

Abstract

We study the uniqueness of optimal solutions to extremal graph theory
problems. Our main result is a counterexample to the following conjecture
of Lovasz, which is often referred to as saying that “every extremal graph
theory problem has a finitely forcible optimum?”: every finite feasible set of
subgraph density constraints can be extended further by a finite set of den-
sity constraints such that the resulting set is satisfied by an asymptotically
unique graph.

1 Introduction

Many problems in extremal graph theory do not have asymptotically unique
solutions. As an example, we consider the problem of minimizing the sum of the
induced subgraph densities of K3 and its complement. It can be shown that this
sum is minimized by any n-vertex graph where all vertices have degrees close to
n/2. For example, the complete bipartite graph £, /2, /2, the union of two (n/2)-
vertex complete graphs, or (with high probability) an Erdés-Rényi random graph
Gn,1/2 all minimize the sum. However, the structure of an optimal solution can be
made unique by adding additional density constraints. In our example, setting
the triangle density to be zero forces the structure to be that of the complete
bipartite graph with parts of equal sizes. Alternatively, fixing the density of
cycles of length four forces the structure to be that of a quasirandom graph.
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Lovész conjectured (Conjecture 1 below) that this is a general phenomenon for
a large class of problems in extremal graph theory. We disprove this conjecture.

We treat Conjecture 1 in the language of the theory of graph limits. This
theory has offered analytic tools to represent and analyze large graphs, and led to
new tools and views on various problems in mathematics and computer science. It
is also closely related to the flag algebra method of Razborov [14], which changed
the landscape of extremal combinatorics [15]. We refer the reader to a monograph
by Lovész [10] for a detailed introduction to this theory.

We now introduce several concepts from the theory of graph limits, so that we
may state Conjecture 1 in that language. The density of a k-vertex graph H in G,
denoted by d(H, GG), is the probability that k£ randomly chosen vertices of G induce
a subgraph isomorphic to H; if G has less than k vertices, we set d(H,G) = 0. A
sequence of graphs (G,,)nen is convergent if the sequence (d(H, G,,))nen converges
for every graph H. In this paper, we only consider convergent sequences of graphs
where the number of vertices tends to infinity.

A convergent sequence (G, )nen Of graphs is finitely forcible if there exist
graphs Hy, ..., Hy with the following property: if (G’,)nen is another convergent
sequence of graphs such that

lim d(H;, G,) = lim d(H;,G")

n—o0 n—oo

for every i = 1,...,¢, then

lim d(H,G,) = lim d(H,G.)

n—oo n—oo
for every graph H. For example, a classical result on quasirandom graphs [2,16,17]
is equivalent to saying that the sequence of Erdés-Rényi random graphs is finitely
forcible (by densities of 4-vertex subgraphs) with probability one. Lovasz and
S6s [11] generalized this result to graph limits corresponding to stochastic block
models (which are represented by so-called step graphons). Additional examples
can be found, e.g., in [12].

Our main result (Theorem 3) implies that the following conjecture of Lovasz,
which is often referred to as saying “Every extremal problem has a finitely forcible
optimum.”, is false. The conjecture has appeared, e.g., in [8, Conjecture 3], [9,
Conjecture 9.12], [10, Conjecture 16.45], and [12, Conjecture 7).

Conjecture 1. Let Hy,..., Hy be graphs and 01, ...,0, reals. If there exists a
convergent sequence of graphs with the limit density of H; equal to 6;,1=1,... k,
then there exists such a finitely forcible sequence.

2 Main result

In this section, we state our main result and present the main ideas behind its
proof. To do so, we first recall an analytic object used to represent a convergent

2



sequence of graphs. A graphon is a symmetric measurable function W : [0, 1]* —
0, 1], where symmetric means that W(z,y) = W (y,x) for all z,y € [0, 1]. Given
a graphon W, a W-random graph with n vertices is a graph obtained by sampling
n points vy, vg, . .., v, € [0, 1] independently and uniformly at random and joining
vertices v; and v; by an edge with probability W (v;,v;) for all 4,5 € [n]. The
density of an n-vertex graph H in a graphon W, denoted by d(H,W), is the
probability that a W-random graph with n vertices is isomorphic to H. A graphon
W is a limit of a convergent sequence (G,)nen if

nlggo d(H,G,)=d(H,W)

for every graph H. It is not hard to show that a sequence of W-random graphs
with increasing number of vertices is convergent with probability one and the
graphon W is its limit. Lovdsz and Szegedy [13] showed that every convergent
sequence of graphs has a limiting graphon. This graphon need not be unique,
but it is unique up to a certain type of measure preserving transformation [1],
which in some sense corresponds to permutations of the vertices of a graph; two
graphons equivalent in this sense are called weakly isomorphic. See [1,10] for
more details.

A graphon is finitely forcible if it is a limit of a finitely forcible convergent
sequence of graphs; such graphons are determined by finitely many densities (up
to weak isomorphism). It was believed that every finitely forcible graphon has
a simple structure [12, Conjectures 9 and 10]. However, this is not the case in
quite a strong sense [5], also see [4,6,7].

Theorem 1. For every graphon Wg, there exists a finitely forcible graphon W
such that W is a subgraphon of W, and the subgraphon is formed by a 1/13
fraction of the vertices of W.

An equivalent characterization of finitely forcible graphons is the following.

Proposition 2. A graphon W is finitely forcible if and only if there exist graphs
Hy,...,Hy and reals oy, ..., a4 such that the graphon W is the unique (up to
weak isomorphism) minimizer of the sum

k

> d(H;, W)

i=1

Proposition 2 says that finitely forcible graphons are unique optimal solutions
to a certain kind of extremal graph theory problem, and Conjecture 1 can be
understood as saying that the converse is also true.

Our main result is the following theorem, which implies that Conjecture 1 is
false.
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Figure 1: The structure of the graphon Wp(z1, 29, ...). The parts of the graphon
corresponding to the graphon W from Theorem 1 are framed by a black box.

Theorem 3. There exist a family of graphons Wp(z1, 22, ...) parametrized by
2 €10,1],i €N, aset Z C [0,1)N, and finitely many graphs Hy, ..., Hy with reals
d1, ..., 0k such that a graphon W is weakly isomorphic to a graphon Wp(zy, za, .. .)
for some (z1, z2,...) € Z if and only if d(H,W) = 6; for everyi=1,... k.

In addition, there exists a bijection f : [0,1]N — Z such that if v = (x1, 19, ..)
and x’ = (24,2, ...) agree on the first m coordinates, then the graphons Wp(f(x))
and Wp(f(z")) have the same density of all graphs up to m vertices.

We now show that Theorem 3 indeed implies that Conjecture 1 is false. Con-
sider the graphs Hi,..., Hy and their densities dq,...,d; from Theorem 3, and
assume that there exists a finitely forcible graphon W such that d(H;, W) = ¢;
for all + = 1,...,k. Further, let m be the maximum number of vertices of a
graph in a set that witnesses the finite forcibility of W. By Theorem 3, there
exist z;, i € N, such that W and Wp(zy, 2, ...) are weakly isomorphic. Further,
let = f~'(21,29,...) where f is the bijection from Theorem 3. Choose any
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2’ € [0,1]N such that x # 2’ but z and 2’ agree on the first m coordinates; set
W' = Wp(f(«')). By Theorem 3, the graphon W and W’ are not weakly isomor-
phic (since x # ') but they have the same density of all graphs up to m vertices.
This contradicts the assumption that there is a set of graphs with at most m
vertices that witnesses the finite forcibility of W.

We finish with giving a high level overview of the proof of Theorem 3. The
proof uses the method of decorated constraints developed in [6,7]. We start by
describing the structure of Wp(z1, 22, ...), which is also visualized in Figure 1.
The structure of Wp(z1, 2, .. .) depends on the parameters z; € [0,1], ¢ € N, and
a countable set P of polynomials, each in a finite set of z;’s. Each graphon Wp
has several parts, and each part has vertices with the same degree; this degree
uniquely determines the part. Each parameter z; is represented by the density of
a square in the part C' x C'. The parts Dy, ..., Dg of the graphon Wp induce a
part of the graphon W from Theorem 1, which allows embedding any graphon in
the part Dg x D¢g. The particular graphon that is embedded in the part Dg X Dg
is a graphon that contains an encoding of the coefficients of the polynomials from
P; this encoding also appears in the part C' x Dg. The values of the polynomials
in P appear as widths of rectangles in the part C' x E and are used to force that
p(z1, 29,...) > 0 for every p € P.

The particular set P of polynomials such that Wp(z1, 2o, .. .) satisfies Theo-
rem 3 is constructed iteratively. We fix an enumeration Hy, Ho, ... of all graphs.
In the k-th step, we find an integer my > my_1, a subset Z, C [0, 1]™ with
positive measure and numbers b;, ¢ > my, such that the density of H,, ¢ < k,
in the graphon Wp(z1, ..., Zm, , bkt1, bk+2, - . .) is independent of the values of the
variables 2,41, ..., 2m,. The values of b; change only by a small amount in each
step. We approximate the characteristic function of Z; by a polynomial p in
21y, %, and add the polynomial p — 1 to P, getting a set P’ such that the
cut norm between Wp and Wps is very small (for the same values of z;). We
eventually set Z to be the intersection of Z; x [0,1]N over all k € N. The ex-
istence of the subsets Z follows from an application of the Implicit Function
Theorem. During the proof, we need to prevent the intersection of Z; x [0, 1]N
from becoming degenerate (to guarantee the existence of the bijective function f
in Theorem 3).
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