
ar
X

iv
:1

70
4.

08
32

9v
1 

 [
m

at
h.

C
O

] 
 2

6 
A

pr
 2

01
7

A WORD PROPERTY FOR TWISTED INVOLUTIONS IN

COXETER GROUPS

MIKAEL HANSSON AND AXEL HULTMAN

Abstract. Given an involutive automorphism θ of a Coxeter system
(W, S), let I(θ) ⊆ W denote the set of twisted involutions. We provide a
minimal set of moves that can be added to the braid moves, in order to
connect all reduced S-expressions (also known as admissible sequences,
reduced Iθ-expressions, or involution words) for any given w ∈ I(θ).
This can be viewed as an analogue of the well-known word property for
Coxeter groups. It improves upon a result of Hamaker, Marberg, and
Pawlowski, and generalises similar statements valid in certain types due
to Hu, Zhang, Wu, and Marberg.

1. Introduction

A fundamental result in the theory of Coxeter groups is the word property,
due to Matsumoto [14] and Tits [18]. Given a Coxeter system (W,S) and
two generators s, s′ ∈ S such that ss′ has finite order m(s, s′), let αs,s′

denote the word ss′s · · · of length m(s, s′). Operating on words in the free
monoid S∗, call the replacement of αs,s′ by αs′,s a braid move. A word in S∗

representing w ∈W is called a reduced word for w if w cannot be represented
by a product of fewer elements of S.

Theorem 1.1 (Word property [14, 18]). Let (W,S) be a Coxeter system

and let w ∈ W . Then any two reduced words for w can be connected by a

sequence of braid moves.

Given an involutive automorphism θ of (W,S), let

I(θ) = {w ∈W | θ(w) = w−1}

be the set of twisted involutions. Note that I(id) is the set of ordinary
involutions in W . Like W , I(θ) can be described in terms of “words” and
“reduced expressions”. Namely, with the alphabet S = {s | s ∈ S}, every
word in S∗ represents a twisted involution, and conversely, every twisted
involution can be represented in this way; see Section 2 for the details. The
shortest possible representatives of w ∈ I(θ) are called reduced S-expressions

for w; let R̂θ(w) be the set of all such representatives.
In combinatorial approaches to Coxeter group theory, the study of (re-

duced) words is central. Analogously, (reduced) S-expressions form the
combinatorial foundation for I(θ); systematic study of I(θ) was initiated by
Richardson and Springer [15, 16, 17] because of its connections with Borel
orbit decompositions of symmetric varieties. In the former case, Theorem 1.1
is a cornerstone. The goal of this paper is to identify the correct analogue
in the latter setting.
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In the context of S-expressions, a braid move is the replacement of αs,s′ by

αs′,s. It is known that braid moves preserve R̂θ(w) (it follows from [15] when
W is a Weyl group, and from [4] for general W ), but they do not in general

suffice to connect all of R̂θ(w). For example, when W is the symmetric
group S4, si = (i, i+ 1), and θ = id, the reduced S-expressions s2s3s1s2 and
s3s2s1s2 both represent the same (ordinary) involution, namely the longest
group element, but they cannot be connected using only braid moves.

For the purposes of the introduction, a half-braid move amounts to replac-
ing s s′ with s′s (or s s′s with s′s s′) if these are the first letters in a reduced
S-expression, and m(s, s′) = 3 (m(s, s′) = 4). A more general definition is
given in Section 5.

When W is of type A and θ = id, Hu and Zhang [5, Theorem 3.1] proved

that braid moves and half-braid moves suffice to connect R̂θ(w). They ex-
tended this result to types B and D (also with θ = id) in [6] (Theorems 3.10
and 4.8); in either of these types, braid moves, half-braid moves, and one spe-
cial, additional move (involving more than two different letters) are enough.
With Wu [7], they presented a similar assertion for type F4.

Recently, Marberg [13, Theorem 1.4] generalised these results to all finite
and affine Coxeter groups, for arbitrary θ. Aided by a computer, he identified
moves that are necessary and sufficient in such groups. He also presented
several conjectures about the general situation.

Before [13], Hamaker, Marberg, and Pawlowski [4, Theorem 7.9] provided
an answer for general W and θ. Under certain circumstances, they allow
replacing s s′s · · · with s′s s′ · · · even if the number of letters is less than
m(s, s′). The set of all such involution braid relations is always sufficient for

connecting R̂θ(w).
As noted in [4], in type A, [4, Theorem 7.9] requires the addition of

many more moves to the braid moves than just the half-braid moves, so it
reduces to a weaker statement than [5, Theorem 3.1]. The same is true in
types B and D: the set of all involution braid relations is much larger than
necessary for connecting R̂θ(w). Our main result provides, for any Coxeter
system (W,S) with any involutive automorphism θ, a minimal set of moves

that must be added to the braid moves in order to connect R̂θ(w). In fact,
we show that Marberg’s moves from [13] suffice in arbitrary Coxeter systems
with arbitrary θ. In particular, we confirm his aforementioned conjectures.
Our approach is different from Marberg’s, and thus provides an independent
road to his results as a special case.

An initial move is the replacement of one element in R̂θ(v) (for some
v ∈ I(θ)) by another, in the beginning of a reduced S-expression for some
w ∈ I(θ). Both half-braid moves and the two special Hu-Zhang moves in
types B and D are initial moves. In the former case, v is the longest element
of a dihedral parabolic subgroup (I2(3) in types A and D, and I2(3) or I2(4)
in type B), and in the latter case, v is the longest element of a parabolic
subgroup of type B3 or D4, respectively.

The following is the main result of the present paper. It describes precisely
the initial moves that are necessary and sufficient to add to the braid moves,
in order to connect all of R̂θ(w). As such, it can be viewed as an analogue
of Theorem 1.1 for I(θ).
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If J ⊆ S generates a finite parabolic subgroup WJ of W , let w0(J) denote
its longest element. When θ(J) = J , θJ is the restriction of θ to WJ .

Theorem 1.2. Let (W,S) be a Coxeter system with an involutive automor-

phism θ, and let w ∈ I(θ). Then any two reduced S-expressions for w can

be connected by a sequence of braid moves and initial moves that replace x
with y if x, y ∈ R̂θ(w0(J)) for some θ-stable J ⊆ S. The following WJ and

θJ are necessary and sufficient:

• WJ of type A3 with θJ 6= id;

• WJ of type B3;

• WJ of type D4 with θJ = id;

• WJ of type H3;

• WJ of type I2(m), 3 ≤ m <∞, with θJ = id;

• WJ of type I2(m), 2 ≤ m <∞, with θJ 6= id.

Remarks. It should be observed that the listed WJ (apart from I2(2)) are
precisely the finite types for which the complement of the Coxeter graph is
disconnected. This fact is explained in the proof of Lemma 3.9.

Note that there is no need to specify θJ in types B3 and H3 since they
admit no non-trivial Coxeter system automorphism. Also, observe that the
reducible dihedral group I2(2) does not appear in the list when θJ = id. The
corresponding move is allowed, but it is a braid move in this case.

We conclude this section with an outline of the paper. In Section 2, the
necessary definitions and previous results are recalled. Then, in Section 3,
we prove Theorem 1.2. It follows from the proof that, in fact, only one move
of each type is needed, if x and y are appropriately chosen. An explanation
is given in Section 4, where a list of such x and y is also provided. This
clarifies how the results from [5, 6, 7, 13] are recovered from ours. Finally, in
Section 5, consequences of Theorem 1.2 in some special cases are discussed.

2. Notation and preliminaries

As general references on Coxeter group theory, the reader could consult [1]
or [11]. We assume familiarity with the basics but reiterate some of it here
in order to agree on notation. Some useful tools for dealing with twisted
involutions are also reviewed. For finite Coxeter groups, they appear in
Richardson and Springer [15]. In the general case, everything can be found
in [9, 10] from which our notation is taken.

Let (W,S) be a Coxeter system. In the sequel, we shall often find it
important to distinguish notationally between words in the monoid S∗ and
the elements of W they represent. From now on, a sequence of generators
inside square brackets indicates an element of S∗, whereas a sequence with-
out brackets is an element of W . Thus, if si ∈ S, then [s1 · · · sk] ∈ S∗ and
s1 · · · sk ∈W .

For w ∈ W , its length ℓ(w) is the smallest integer k such that w =
s1 · · · sk for some si ∈ S; [s1 · · · sk] is then called a reduced word (or a reduced

expression) for w.
Let θ be an involutive automorphism of (W,S). Recall the set of twisted

involutions I(θ) defined in the introduction. Like W , I(θ) can be described
using words, this time in the monoid S∗.
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Definition 2.1. The free monoid S∗ acts from the right on the set W by

ws =

{

ws if θ(s)ws = w,

θ(s)ws otherwise,

and ws1 · · · sk = (· · · ((ws1)s2) · · · )sk. Observe that ws s = w for all w ∈W
and all s ∈ S. We write s1 · · · sk for es1 · · · sk, where e ∈ W is the identity
element.

The orbit of e under this action is precisely I(θ):

Lemma 2.2 ([9, Proposition 3.5]). We have

I(θ) = {s1 · · · sk | s1, . . . , sk ∈ S, k ∈ N}.

Again, we shall henceforth use square brackets to indicate that a sequence
of letters should be interpreted as an element of the monoid. If w = s1 · · · sk

for some si ∈ S, we call [s1 · · · sk] ∈ S∗ an S-expression for w. It is reduced

if no S-expression for w consists of fewer than k elements of S. In this case,
ρ(w) = k is the rank of w.

Given an S-expression ǫ ∈ S∗, ord(ǫ) denotes the element of S∗ obtained
by expanding ǫ according to Definition 2.1.

Example 2.3. Let W = S4 with si = (i, i+ 1). If θ = id, ord([s1s2s3s2]) =
[s3s2s1s2s3s2], which is a reduced expression for the longest element w0 ∈W .
On the other hand, if θ 6= id (i.e., θ(si) = s5−i), we have ord([s1s2s3s2]) =
[s2s2s3s1s2s3s2], which is not reduced.

Some remarks about the terminology are in order. We follow the notation
used in [9, 10]. What we call an S-expression is the right handed version
of an “I∗-expression” [5, 6, 7, 12]. Reduced S-expressions are the same as
(again, right handed versions of) “admissible sequences” [15] and “involution
words” [4, 13]. One should furthermore note that Richardson and Springer
mostly use a monoid action, denoted by ∗ in [15], which is different from
that defined in Definition 2.1 above although they coincide on reduced S-
expressions (i.e., admissible sequences).

Definition 2.4. Let [s1 · · · sk] be a reduced S-expression for w ∈ I(θ). Then
the twisted absolute length of w, denoted ℓθ(w), is the number of indices
i ∈ [k] such that s1 · · · si−1si = s1 · · · si−1si.

It follows from [10, Proposition 2.5] that this definition of ℓθ(w) is inde-
pendent of the choice of reduced S-expression for w. When θ = id, ℓθ(w)
coincides with the absolute length of w, i.e., the smallest number of reflec-
tions whose product is w, see [8].

Given w ∈ W , let DR(w) = {s ∈ S | ℓ(ws) < ℓ(w)} and DL(w) = {s ∈
S | ℓ(sw) < ℓ(w)} be the sets of right descents and left descents, respectively.
Observe that DR(w) = DL(θ(w)) if w ∈ I(θ).

Lemma 2.5 ([9]). If w ∈ I(θ) and s ∈ S, then ρ(ws) = ρ(w)±1. Moreover,

the following statements are equivalent:

• s ∈ DR(w);
• ρ(ws) = ρ(w)− 1;

• some reduced S-expression for w ends with s.
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The exchange property is a fundamental property of Coxeter groups; in
fact, it characterises them among groups generated by involutions, see [14].

Lemma 2.6 (Exchange property). If [s1 · · · sk] is a reduced expression and

s ∈ DR(s1 · · · sk), then s1 · · · sks = s1 · · · si−1si+1 · · · sk for some i ∈ [k].

An analogous result holds for twisted involutions:

Lemma 2.7 ([9, Proposition 3.10]). If [s1 · · · sk] is a reduced S-expression

and s ∈ DR(s1 · · · sk), then s1 · · · sks = s1 · · · si−1si+1 · · · sk for some i ∈ [k].

The subword property, due to Chevalley [2], characterises the Bruhat order

on W .

Lemma 2.8 (Subword property). Let u,w ∈ W and suppose [s1 · · · sk] is

a reduced expression for w. Then u ≤ w in the Bruhat order if and only if

[si1
· · · sim

] is a reduced expression for u, for some 1 ≤ i1 < · · · < im ≤ k.

Again there is an analogous result for twisted involutions:

Lemma 2.9 ([10, Theorem 2.8]). Let u,w ∈ I(θ) and suppose [s1 · · · sk] is

a reduced S-expression for w. Then u ≤ w in the Bruhat order if and only if

[si1
· · · sim

] is a reduced S-expression for u, for some 1 ≤ i1 < · · · < im ≤ k.

3. A word property for reduced S-expressions

3.1. Lemmas. In order to establish Theorem 1.2, it is crucial to understand
when w ∈ I(θ) admits reduced S-expressions that end with the longest
possible alternating sequence of two given right descents.

Definition 3.1. Given w ∈ I(θ) and s, s′ ∈ DR(w), s 6= s′, say that w is
(s, s′)-maximal if it has a reduced S-expression of the form

[s1 · · · sk · · · s
′s s′

︸ ︷︷ ︸

m(s,s′)

] ∈ R̂θ(w).

Since braid moves in a reduced S-expression preserve the twisted invo-
lution, any (s, s′)-maximal element is also (s′, s)-maximal. A more general
assertion is provided by Lemma 3.2 below.

The main goal of this subsection is to provide a characterisation of the
(s, s′)-maximal elements w ∈ I(θ); this is Lemma 3.6 below. A closely
related description, in terms of the minimal coset representative of w in
W/W{s,s′}, can be gleaned from the proof of [4, Theorem 7.9].1 In particular,
the following lemma is a consequence of that description. We provide a short
independent argument.

Lemma 3.2. Suppose w ∈ I(θ) and s, s′ ∈ DR(w). If

ǫ = [s1 · · · sk · · · s
′s s′

︸ ︷︷ ︸

α letters

] ∈ R̂θ(w)

with α maximal, then

ǫ′ = [s1 · · · sk · · · s s
′s

︸ ︷︷ ︸

α letters

] ∈ R̂θ(w).

1Namely, with the notation of [4], said proof shows that the number m(s, t, θa) is the

length of the longest sequence s, t, s, . . . which can be attached to a, if s, t /∈ DR(δ̂∗(a)),
without destroying reducedness.
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Proof. By Lemma 2.7, a reduced S-expression ǫ′′ for w = ws s is obtained
by deleting a letter from ǫ and appending s at the end. Maximality of α
and rank considerations show that the deleted letter necessarily is the one
immediately to the right of sk. Hence, ǫ′′ = ǫ′. �

Lemma 3.3. Let ǫ be a reduced S-expression. Then ord(ǫ) is also reduced.

If, moreover,

ǫ = [s1 · · · sk · · · s
′s s′

︸ ︷︷ ︸

α letters

],

then

ord(ǫ) = [· · · θ(s′)θ(s)θ(s′) · · ·
︸ ︷︷ ︸

β letters

ord(s1 · · · sk) · · · s′ss′
︸ ︷︷ ︸

α letters

]

for some α− 2 ≤ β ≤ α.

Proof. By [8, Theorem 4.8], ℓ = 2ρ − ℓθ. The first claim thus follows from
Definition 2.4. For the second, observe that for any u ∈ I(θ) and s ∈ S,
ℓθ(us) > ℓθ(u) implies DR(us) ⊃ DR(u). Since ǫ is reduced, this means that
at most two of its rightmost α letters (namely, the first and the last) can
contribute to ℓθ(s1 · · · sk · · · s

′s s′). This yields the second claim. �

Lemma 3.4. If ws = θ(s′)w for some w ∈ I(θ) and s, s′ ∈ S, then ws′ =
θ(s)w.

Proof. We have ws′ = (s′θ(w))−1 = (θ(θ(s′)w))−1 = (θ(ws))−1 = θ(s)w.
�

Lemma 3.5. Let w ∈ I(θ) and s, s′ ∈ DR(w), and suppose w is not (s, s′)-
maximal. Then ws = θ(s)w if and only if ws′ = θ(s′)w.

Proof. By Lemmas 3.2 and 3.3, w has reduced S-expressions

ǫ = [s1 · · · sk · · · s
′s s′

︸ ︷︷ ︸

α

] and ǫ′ = [s1 · · · sk · · · s s
′s

︸ ︷︷ ︸

α

]

with corresponding reduced words

ord(ǫ) = [· · · θ(s′)θ(s)θ(s′) · · ·
︸ ︷︷ ︸

β

ord(s1 · · · sk) · · · s′ss′
︸ ︷︷ ︸

α

]

and

ord(ǫ′) = [· · · θ(s)θ(s′)θ(s) · · ·
︸ ︷︷ ︸

β

ord(s1 · · · sk) · · · ss′s
︸ ︷︷ ︸

α

]

for some β ≤ α. Now, ws = θ(s)w ⇔ ws = ws ⇔ w = (ws)s, which is the
case if and only if ord(ǫ′) does not begin with θ(s). Similarly, ws′ = θ(s′)w
precisely when ord(ǫ) does not begin with θ(s′). Since α < m(s, s′), and
ord(ǫ) and ord(ǫ′) represent the same element w, they begin with different
letters. Hence, it cannot be that exactly one of ws = θ(s)w and ws′ = θ(s′)w
holds. �

The promised characterisation of (s, s′)-maximal elements can now be
delivered. It is the main technical ingredient in the proofs of Lemmas 3.8
and 3.9, which are needed in order to establish Theorem 1.2.
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Lemma 3.6. Given w ∈ I(θ), let s, s′ ∈ DR(w) with s 6= s′. Then w is

(s, s′)-maximal if and only if either

• m(s, s′) = 2 and ws 6= θ(s′)w

or

• m(s, s′) ≥ 3 and {ws,ws′} 6= {θ(s)w, θ(s′)w}.

Proof. Choose a reduced S-expression for w,

ǫ = [s1 · · · sk · · · s
′s s′

︸ ︷︷ ︸

α

] ∈ R̂θ(w),

with α maximal.
The proof is divided into three parts. In the first part, we show that if

{ws,ws′} 6= {θ(s)w, θ(s′)w}, then α = m(s, s′). Then, in the second part,
we show that if ws = θ(s′)w and ws′ = θ(s)w, then α < m(s, s′). Finally, we
show that if ws = θ(s)w and ws′ = θ(s′)w, then α = m(s, s′) if m(s, s′) = 2,
and α < m(s, s′) if m(s, s′) ≥ 3.

First, assume {ws,ws′} 6= {θ(s)w, θ(s′)w}. In order to obtain a contradic-
tion, suppose α < m(s, s′). Then, by Lemmas 3.4 and 3.5, θ(s)w /∈ {ws,ws′}
and θ(s′)w /∈ {ws,ws′}. From Lemma 3.3, we know that ord(ǫ) is reduced,
and since ws′ 6= θ(s′)w, we have

ord(ǫ) = [θ(s′)θ(s)θ(s′) · · ·
︸ ︷︷ ︸

β

ord(s1 · · · sk) · · · s′ss′
︸ ︷︷ ︸

α

]

for some 1 ≤ β ≤ α.
Consider the element ws. By the exchange property, a reduced word for

ws is obtained by deleting a letter in ord(ǫ). Since α < m(s, s′), s is not
a right descent of s1 · · · sk · · · s

′ss′. Hence the deleted letter is one of the
leftmost β generators. It is not the very first one, because ws 6= θ(s′)w. It
cannot be any of the other ones not adjacent to ord(s1 · · · sk) since ℓ(ws) =
ℓ(w) − 1. Hence it is the generator immediately to the left of ord(s1 · · · sk).
Thus,

w = (ws)s = θ(s′)θ(s)θ(s′) · · ·
︸ ︷︷ ︸

β−1

ord(s1 · · · sk) · · · s′ss′s
︸ ︷︷ ︸

α+1

.

Now considering ws′, and continuing in this way, we finally obtain

w = θ(s′)θ(s)θ(s′) · · ·
︸ ︷︷ ︸

β+α−m(s,s′)

ord(s1 · · · sk) · · · s′ss′s · · ·
︸ ︷︷ ︸

m(s,s′)

.

Observe that θ(s) ∈ DL(w) and β+α−m(s, s′) < m(s, s′). By the exchange
property and similar reasoning as above, this however means that

θ(s)w = θ(s′)θ(s)θ(s′) · · ·
︸ ︷︷ ︸

β+α−m(s,s′)

ord(s1 · · · sk) · · · s′ss′s · · ·
︸ ︷︷ ︸

m(s,s′)−1

,

which is equal to either ws or ws′, a contradiction. Hence, α = m(s, s′).
Next, assume ws = θ(s′)w and ws′ = θ(s)w. We have

ord(ǫ) = [θ(s′)θ(s)θ(s′) · · ·
︸ ︷︷ ︸

β

ord(s1 · · · sk) · · · s′ss′
︸ ︷︷ ︸

α

]



8 MIKAEL HANSSON AND AXEL HULTMAN

s1 s2 s3

θ = id

s1 s2 s3

θ 6= id

Figure 3.1. The graph G(w, θ), where w is the longest ele-
ment in S4. Observe that G(w, θ) is connected when θ = id,
but disconnected when θ 6= id.

with 1 ≤ β ≤ α. Thus,

w = θ(s′)ws = θ(s)θ(s′) · · ·
︸ ︷︷ ︸

β−1

s1 · · · sk · · · s
′ss′s

︸ ︷︷ ︸

α+1

.

Since ord(ǫ) is reduced, α < m(s, s′).
Finally, suppose ws = θ(s)w and ws′ = θ(s′)w. This implies that

ord(ǫ) = [θ(s)θ(s′)θ(s) · · ·
︸ ︷︷ ︸

β

ord(s1 · · · sk) · · · s′ss′
︸ ︷︷ ︸

α

]

for some 0 ≤ β < α. In case β ≥ 1, we obtain

w = θ(s)ws = θ(s′)θ(s) · · ·
︸ ︷︷ ︸

β−1

s1 · · · sk · · · s
′ss′s

︸ ︷︷ ︸

α+1

,

which exactly as above leads to α < m(s, s′), and hence, m(s, s′) ≥ 3. If
β = 0, then w = s1 · · · sk · · · s

′ss′ = s1 · · · sk · · · ss
′s, whence m(s, s′) = α.

By Lemma 3.3, α ≤ 2, so m(s, s′) = α = 2. �

It is convenient to encode the information conveyed by Lemma 3.6 in a
graph. To this end, let G(w, θ) be the graph on vertex set DR(w) in which
{s, s′} is an edge if and only if w is (s, s′)-maximal.

Example 3.7. Figure 3.1 displays G(w, θ) when w is the longest element in
S4. In this case, DR(w) = {s1, s2, s3}with si = (i, i+1). We have ws1 = s3w,
ws2 = s2w, and ws3 = s1w. Let us use Lemma 3.6 to determine the edge set.
Consider first θ = id. Then ws1 = θ(s3)w, so w is not (s1, s3)-maximal. On
the other hand, ws1 /∈ {θ(s1)w, θ(s2)w} and ws3 /∈ {θ(s2)w, θ(s3)w}, whence
w is (s1, s2)- and (s2, s3)-maximal. Now assume θ 6= id. Then ws1 6= θ(s3)w,
so w is (s1, s3)-maximal. However, ws1 = θ(s1)w and ws2 = θ(s2)w, whence
w is not (s1, s2)-maximal. Similarly, w is not (s2, s3)-maximal either.

3.2. Proof of the main result. Before commencing to prove Theorem 1.2,
let us describe the basic strategy. Starting with a list comprised of all braid
moves, we work by induction on the rank of a given twisted involution
w. If the moves that are so far collected do not suffice to connect all the
reduced S-expressions for w, sufficient new ones are added to the list. As we
shall see, new moves must be added precisely when G(w, θ) is disconnected.
Moreover, this can only happen when w is the longest element of a finite,
θ-stable parabolic subgroup WJ (see Lemma 3.8). Using the classification
of finite Coxeter groups, we obtain the list of such WJ (see Lemma 3.9).
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We now turn to the actual proof. First, the connectedness of G(w, θ) is
investigated.

Lemma 3.8. Let w ∈ I(θ). If G(w, θ) is disconnected, then w is the longest

element w0(J) of a finite, θ-stable parabolic subgroup WJ , J ⊆ S.

Proof. Say that s ∈ S passes through w if ws = s̃w for some s̃ ∈ S. It is
an immediate consequence of Lemma 3.6 that s ∈ DR(w) is adjacent to all
other vertices of G(w, θ) if s does not pass through w. Hence, if G(w, θ) is
disconnected, then every right descent of w passes through w. We claim that
in this case, w is the longest element of the (hence finite) parabolic subgroup
generated by S(w), where S(w) is the set of generators that appear in some
reduced word for w; by the word property, it is independent of the choice of
reduced expression. Indeed, if [s1 · · · sk] is a reduced word for w, we have

w = s1 · · · sk = s̃ks1 · · · sk−1 = s̃k−1s̃ks1 · · · sk−2 = · · · = s̃2s̃3 · · · s̃ks1,

implying that S(w) = DR(w), a property which is equivalent to w =
w0(S(w)), see [3, Lemma 7.11].

Clearly, S(w) is θ-stable for any w ∈ I(θ). Therefore, G(w, θ) is always
connected, unless, possibly, w = w0(J) for some θ-stable J ⊆ S. �

Lemma 3.9. If W is finite with longest element w0, then G(w0, θ) is dis-

connected in exactly the following cases:

• W of type A3 with θ 6= id;

• W of type B3;

• W of type D4 with θ = id;

• W of type H3;

• W of type I2(m), 3 ≤ m <∞, with θ = id.

• W of type I2(m), 2 ≤ m <∞, with θ 6= id.

Moreover, when it is disconnected, it has exactly two connected components.

Proof. Let ϕ denote the involutive automorphism x 7→ w0xw0. It is con-
venient to reformulate the conditions stated in Lemma 3.6 in terms of ϕ.
Namely, notice that w0s 6= θ(s′)w0 is equivalent to ϕ(s) 6= θ(s′) and that
{w0s,w0s

′} 6= {θ(s)w0, θ(s
′)w0} if and only if {ϕ(s), ϕ(s′)} 6= {θ(s), θ(s′)}.

Now, ϕ preserves irreducible group components. Hence, by Lemma 3.6, s
is non-adjacent to at most one vertex in a different component, s′ = θ(ϕ(s))
being the only candidate. If s′ is indeed in a different component, then θ
interchanges the component containing s with that which contains s′. In
this case, s is adjacent to every vertex in its irreducible group component.
It follows that the only reducible Coxeter system with disconnected G(w0, θ)
is I2(2) with θ interchanging the two generators.

From now on, let us restrict attention to finite, irreducible Coxeter sys-
tems. It is known, see, e.g., [11, Sections 3.19 and 6.3], that ϕ is not the
identity involution if and only if the system has an even exponent, i.e., if
and only if it is of type An (n ≥ 2), D2m+1, E6, or I2(2m + 1), for integral
m.

First, suppose ϕ = θ. Then Lemma 3.6 shows that G(w0, θ) is the com-
plement of the Coxeter graph. That is, s and s′ are connected if and only
if they commute. The finite, irreducible Coxeter systems with disconnected
complement of the Coxeter graph are those of rank 2 and 3 and that of



10 MIKAEL HANSSON AND AXEL HULTMAN

type D4. With the requirement ϕ = θ they comprise the following list: A3

(θ 6= id), B3, D4 (θ = id), H3, I2(2m) (θ = id), and I2(2m + 1) (θ 6= id). In
all cases, the complement of the Coxeter graph has two components.

Second, assume ϕ 6= θ. Only type D4 admits distinct non-trivial, involu-
tive automorphisms; in this type, however, ϕ is trivial. Thus, exactly one
of ϕ and θ must be the identity involution. Let ψ ∈ {ϕ, θ} denote the non-
trivial involution. By Lemma 3.6, s and s′ are adjacent in G(w0, θ) unless
either ψ(s) = s′, or s and s′ are both fixed by ψ and m(s, s′) ≥ 3. It follows
that G(w0, θ) is disconnected if and only if |S| = 2. This accounts for the
remaining dihedral cases I2(2m) (θ 6= id) and I2(2m + 1) (θ = id), and
concludes the proof. �

Recall that an initial move is the replacement of one element in R̂θ(v) (for
some v ∈ I(θ)) by another, in the beginning of a reduced S-expression for
some w ∈ I(θ). Let a list initial move be an initial move in which v is the
longest element of a θ-stable parabolic subgroup of one of the types listed
in Lemma 3.9.

Having established all the necessary preliminaries, we are now in position
to prove the main result.

Proof of Theorem 1.2. Fix w ∈ I(θ). The result is trivially true if w is the
identity element. In order to induct on the rank, assume the result holds
for all twisted involutions of rank less than k = ρ(w). Consider first two
reduced S-expressions for w, ǫ and ǫ′, that end with the same letter. By the
induction hypothesis, they are related by a sequence of braid moves and list
initial moves of rank at most k − 1 that never interfere with the last letter;

let ǫ
ind.
∼ ǫ′ indicate this property.

If s and s′ are connected by an edge in G(w, θ), then there are two reduced
S-expressions ǫ and ǫ′ for w which are related by a braid move and end with

s and s′, respectively; let ǫ
br.
∼ ǫ′ indicate this relationship.

Now, choose two arbitrary reduced S-expressions for w, ǫ = [s1 · · · sk] and
ǫ′ = [s′

1 · · · s
′
k]. If there is a path sk = z0 → z1 → · · · → zt = s′

k in G(w, θ),
we have reduced S-expressions for w related in the following way:

ǫ
ind.
∼ [u0 · · · z1z0

︸ ︷︷ ︸

m(z0,z1)

]
br.
∼ [u0 · · · z0z1

︸ ︷︷ ︸

m(z0,z1)

]
ind.
∼ [u1 · · · z2z1

︸ ︷︷ ︸

m(z1,z2)

]
br.
∼ [u1 · · · z1z2

︸ ︷︷ ︸

m(z1,z2)

]
ind.
∼ · · ·

ind.
∼ [ut−1 · · · ztzt−1

︸ ︷︷ ︸

m(zt−1,zt)

]
br.
∼ [ut−1 · · · zt−1zt

︸ ︷︷ ︸

m(zt−1,zt)

]
ind.
∼ ǫ′,

where the ui are reduced S-expressions. Hence, ǫ and ǫ′ are related by a
sequence of braid moves, and list initial moves of rank at most k − 1. On
the other hand, if there is no such path connecting sk and s′

k, then it follows
from Lemmas 3.8 and 3.9 that ǫ and ǫ′ are related by a list initial move of
length k. �

4. Necessary list initial moves

In a reduced S-expression, any operation that trades a prefix representing
w0(J) for another is among those listed in Theorem 1.2, if WJ is one of the
specified parabolic subgroups. However, it is far from necessary to allow
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s1 s2 s3

A3

s1 s2 s3

4

B3

s1

s2 s3 s4

D4

s1 s2 s3

5

H3

s1 s2

m

I2(m)

Figure 4.1. The Coxeter graphs in types A3, B3, D4, H3,
and I2(m).

all of these list initial moves if the only objective is to connect all reduced
S-expressions that represent the same twisted involution. In fact, it follows
from the proof of Theorem 1.2 that it is necessary and sufficient to allow the
replacement of one fixed prefix whose last letter is in one connected com-
ponent of G(w0(J), θ), whenever this graph is disconnected, by one whose
last letter is in the (only) other connected component. We next present one
possible list of such replacements.

Theorem 4.1. Let (W,S) be a Coxeter system with an involutive automor-

phism θ. Suppose J ⊆ S is θ-stable. Consider the following moves, with

generator indexing as in Figure 4.1:

• When WJ is of type A3 and θJ 6= id:

[s2s3s1s2] ←→ [s2s3s2s1]

• When WJ is of type B3:

[s1s2s3s1s2s1] ←→ [s1s2s3s2s1s2]

• When WJ is of type D4 and θJ = id:

[s4s2s1s3s2s1s3s4] ←→ [s4s2s1s3s2s1s4s3]

• When WJ is of type H3:

[s1s3s2s1s3s2s1s3s2] ←→ [s1s3s2s1s3s2s1s2s3]

• When WJ is of type I2(m), 3 ≤ m <∞, and θJ = id:

[s1s2s1 · · · ]
︸ ︷︷ ︸

⌈(m(s1, s2) + 1)/2⌉ letters

←→ [s2s1s2 · · · ]
︸ ︷︷ ︸

⌈(m(s1, s2) + 1)/2⌉ letters

• When WJ is of type I2(m), 2 ≤ m <∞, and θJ 6= id:

[s1s2s1 · · · ]
︸ ︷︷ ︸

⌈m(s1, s2)/2⌉ letters

←→ [s2s1s2 · · · ]
︸ ︷︷ ︸

⌈m(s1, s2)/2⌉ letters

If w ∈ I(θ), then any two reduced S-expressions for w can be connected by

a sequence of braid moves and initial moves of the listed kinds.
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s1s2s3s2 s1s3s2s3 s3s1s2s3

s2s1s3s2

s2s3s1s2

s3s2s1s2 s3s1s2s1 s1s3s2s1

θ = id

s2s3s1s2 s2s1s3s2

s2s3s2s1

s3s2s3s1 s3s2s1s3

s1s2s3s1 s1s2s1s3 s2s1s2s3

θ 6= id

Figure 4.2. The reduced S-expressions for the longest ele-
ment in type A3, where solid lines denote braid moves. For
θ = id, dashed lines indicate the I2(3) list initial move. When
θ 6= id, dashed lines indicate the I2(2) list initial move, and
the dotted line represents the A3 initial move specified in
Theorem 4.1.

Of course, many other choices than those stated in Theorem 4.1 are pos-
sible. A different selection can be found in Marberg [13]. Those we have
chosen are involution braid relations in the sense of [4]; recall the discussion
about those from the introduction. Thus, the theorem conveys a minimal
set of involution braid relations to add to the ordinary braid relations in
order to connect all reduced S-expressions of any twisted involution. As
an example, Figure 4.2 illustrates how Theorem 4.1 connects the various
reduced S-expressions for the longest element in type A3.

5. Special cases

There are many situations where there are few list initial moves possible.
In this final section, we present some consequences of the main result that
arise in such settings. A half-braid move is a list initial move of type I2(m),
see the list given in Theorem 4.1.

Corollary 5.1. Let (W,S) be a Coxeter system with an involutive automor-

phism θ, and let w ∈ I(θ). Suppose (W,S) does not have a θ-stable parabolic

subgroup WJ of type B3, D4, or H3 with θJ = id, nor one of type A3 with

θJ 6= id. Then any two reduced S-expressions for w can be connected by a

sequence of braid moves and half-braid moves.

Marberg [13, Conjecture 1.7] conjectured that the conclusion of Corol-
lary 5.1 holds whenever θ fixes no element of S. Since the hypotheses are
satisfied in that situation, we have confirmed the conjecture. Marberg’s
Conjectures 1.8 and 1.9 also follow directly from Theorem 1.2.2

Another interesting consequence of Theorem 1.2 concerns right-angled

Coxeter systems, i.e., those that satisfy m(s, s′) ∈ {2,∞} for all generators

2[13, Conjecture 1.9] predicts that every R̂θ(w) can be connected using moves that
satisfy certain assumptions. These assumptions imply that all braid moves and all list
initial moves can be performed.
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s 6= s′. Observe that if θ = id, no list initial moves are available in a right-
angled group. Let I(W ) denote the set of involutions in W , and recall that
I(id) = I(W ).

Proposition 5.2. If W is right-angled and θ = id, then the map [s1 · · · sk] 7→
[s1 · · · sk] sends reduced words to reduced S-expressions, and it induces a bi-

jection W → I(W ).

Proof. In order to obtain a contradiction, assume that [s1 · · · sk] is reduced
and [s1 · · · sk] is not. If k is minimal among all expressions with this property,
sk ∈ DR(s1 · · · sk−1). Hence, by Theorem 1.2, [s1 · · · sk−1] is related to a
reduced S-expression ending with sk by a sequence of braid moves. But
then the same sequence of braid moves transforms [s1 · · · sk−1] into a word
ending with sk. This contradicts the reducedness of [s1 · · · sk], proving the
first claim. It is then clear that [s1 · · · sk] 7→ [s1 · · · sk] provides a bijection
between reduced words and reduced S-expressions. Since it respects braid
moves, the second claim follows. �

Given a subset X ⊆W , let Br(X) denote the poset on X with the order
induced by the Bruhat order on W .

Corollary 5.3. If (W,S) is right-angled, then Br(W ) and Br(I(W )) are

isomorphic as posets.

Proof. This follows from Proposition 5.2 together with Lemmas 2.8 and
2.9. �

The only finite, right-angled (W,S) are of type A1 × · · · × A1. In these
groups, I(W ) = W , so Corollary 5.3 is not particularly amusing. If W is
infinite, however, the inclusion I(W ) ⊂W is proper. Hence a copy of Br(W )
sits inside Br(W ) as a proper subposet. Thus Br(W ) contains an infinite
sequence of induced subposets Pi, all of them isomorphic to Br(W ), such
that

Br(W ) = P0 ⊃ P1 ⊃ P2 ⊃ · · · .
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