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Anagram-free colorings of graphs

Nina Kamčev ∗ Tomasz  Luczak † Benny Sudakov ‡

Abstract

A sequence S is called anagram-free if it contains no consecutive symbols r1r2 . . . rkrk+1 . . . r2k
such that rk+1 . . . r2k is a permutation of the block r1r2 . . . rk. Answering a question of Erdős and

Brown, Keränen constructed an infinite anagram-free sequence on four symbols. Motivated by

the work of Alon, Grytczuk, Ha luszczak and Riordan [1], we consider a natural generalisation of

anagram-free sequences for graph colorings. A coloring of the vertices of a given graph G is called

anagram-free if the sequence of colors on any path in G is anagram-free. We call the minimal

number of colors needed for such a coloring the anagram-chromatic number of G.

In this paper we study the anagram-chromatic number of several classes of graphs like trees,

minor-free graphs and bounded-degree graphs. Surprisingly, we show that there are bounded-

degree graphs (such as random regular graphs) in which anagrams cannot be avoided unless we

basically give each vertex a separate color.

1 Introduction

The study of non-repetitive colorings was conceived by a famous result of Thue [18] from 1906.

He showed that there exists an infinite sequence S on an alphabet of three symbols in which

no two adjacent blocks (of any length) are the same. In other words, S contains no sequence

of consecutive symbols r1r2 . . . r2n with ri = ri+n for all i ≤ n. Note that it is not a priori

obvious that the minimal size of the alphabet necessary for an infinite non-repetitive sequence is

even finite. Thue’s result is interesting in its own right, but it also has influential and surprising

applications, the most famous one probably occurring in a solution to the Burnside problem for

groups by Novikov and Adjan [16]. Thue-type problems lead to the development of Combinatorics

on Words, a new area of research with many interesting connections and applications.

Generalisations of Thue’s result occurred in two directions. Firstly, the setting has been

changed from sequences to, e.g., the real line, the lattice Z
n, or graphs. Secondly, repetitions as

a forbidden structure can be replaced by anagrams, sums, patterns etc. For a formal treatment

and references to these problems, we refer the reader to the survey of Grytczuk [12]. Here we

focus on graph colorings, and the structure we are avoiding are anagrams.

A sequence r1r2 . . . rnrn+1 . . . r2n is called an anagram if the second block, rn+1 . . . r2n, is a

permutation of r1r2 . . . rn. A long standing open question of Erdős [8] and Brown [5] was whether
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tomasz@amu.edu.pl. Research supported by NCN grant 2012/06/A/ST1/00261.
‡Department of Mathematics, ETH, 8092 Zurich. Email: benjamin.sudakov@math.ethz.ch. Research supported in

part by SNSF grant 200021-149111.

1

http://arxiv.org/abs/1606.09062v1


there exists a sequence on {0, 1, 2, 3} containing no anagrams. We call such sequences anagram-

free. It is easy to check that no such sequence on three symbols exists. In 1968 Evdokimov [9]

showed that the goal can be achieved with 25 symbols, which was the first finite upper bound. We

remark that a finite bound can also be deduced from the Lovász Local Lemma which, of course,

has not been known in the time Evdokimov proved his result. Later Pleasants [17] and Dekking

[7] lowered this number to five. Finally, Keränen [14] constructed arbitrarily long anagram-free

sequences on four symbols using Thue’s idea – given a non-repetitive finite sequence S on symbols

{0, 1, 2, 3}, we can replace each symbol by a longer word on the same alphabet in a way that yields

a new, longer non-repetitive sequence S. This answered the question of Erdős and Brown, but at

the same time opened new avenues for further studies; some of them can be found in [12].

Bean, Ehrenfeucht and McNulty [4] have studied the problem of non-repetitive colorings in

a continuous setting. A coloring of the real line is called square-free if no two adjacent intervals

of the same length are colored in the same way. More precisely, for any intervals I = [a, b] and

J = [b, c] of the same length L > 0, there exists a point x ∈ I whose color is different from

x + L. In [4], they showed that there exist square-free two-colorings of the real line. Grytczuk

[12] also describes a strong variant of square-free colorings, which basically defines anagrams in

the continuous setting and asks for an anagram-free coloring.

Alon, Grytczuk, Ha luszczak and Riordan [1] proposed another variation on the non-repetitive

theme. Let G be a graph. A vertex coloring c : V (G) → C is called non-repetitive if any path

in G induces a non-repetitive sequence. Define the Thue number π(G) as the minimal number

of colors in a non-repetitive coloring of G. It is easy to see that this number is a strengthening

of the classical chromatic number, as well as the star-chromatic number. It turns out that the

Thue number is bounded for several interesting classes of graphs, e.g. π(Pn) ≤ 3 for a path Pn of

length n (directly from Thue’s Theorem), and π(T ) ≤ 4 for any tree T . Alon et al. [1] showed that

π(G) ≤ c∆(G)2, where c is a constant and ∆(G) denotes the maximum degree of G. They also

found a graph G with π(G) ≥ c′∆2

log∆ . Closing the above gap remains an intriguing open question.

Another interesting problem is to decide if the Thue number of planar graphs is finite. A survey

of Grytczuk [11] lays out some progress in this direction, as well as numerous related questions

on non-repetitive graph colorings.

In the concluding remarks of their paper, Alon et al. [1] suggested investigating anagram-free

colorings of graphs, which we do here. Let G be a graph and let c : V (G) → C be its vertex

coloring. Two vertex sets V1 and V2 have the same coloring if they have the same number of

occurrences of each color, i.e. |c−1(a) ∩ V1| = |c−1(a) ∩ V2| for each a ∈ C. An anagram is a

path v1v2 . . . v2n in G whose two segments v1 . . . vn and vn+1 . . . v2n have the same coloring. We

denote the minimum number of colors in an anagram-free coloring of G by πα(G), and call it the

anagram-chromatic number of G. Clearly πα(G) ≤ n for any n-vertex graph G. The result of

Keränen [14] states that πα(Pn) ≤ 4 for a path Pn of length n, so it is only natural to ask what is

πα for other families of graphs. It turns out that as soon as we move on from paths, the situation

gets very different. We first show that the anagram-chromatic number of a binary tree already

increases with the number of vertices.

Proposition 1.1. Let Th be a perfect binary tree of depth h, i.e. every non-leaf has two children

and there are 2h leaves, all at distance h from the root. Then
√

h

log2 h
≤ πα(Th) ≤ h + 1.

It follows that the anagram-chromatic number of planar graphs is also unbounded, but it is

still interesting to determine how quickly it increases with the number of vertices. We observe that
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in dealing with a family of graphs which admits small seperators (such as H-minor-free graphs),

this fact can be used to bound πα(G) from above.

Proposition 1.2. Let h ≥ 1 be an integer, and let H be a graph on h vertices. Any n-vertex

graph G with no H-minor satisfies πα(G) ≤ 10h3/2n1/2.

In this paper we are particularly interested in anagram-free colorings of graphs of bounded

degree. We show that, surprisingly, there are graphs of bounded degree such that to avoid

anagrams we essentially need to give every vertex a separate color. We show this by considering

the random regular graph Gn,d, which is chosen uniformly at random from all n-vertex d-regular

graphs. Here we write Gn,d for the sampled graph as well as the underlying probability space,

and we study Gn,d for a constant d and n → ∞. We say that an event in this space holds with

high probability (whp) if its probability tends to 1 as n tends to infinity over the values of n for

which nd is even (so that Gn,d is non-empty). Then our main result can be stated as follows.

Theorem 1.3. There exists a constant C such that for sufficiently large d, with high probability,

the random regular graph Gn,d satisfies

(

1 − C log d

d

)

n ≤ πper(Gn,d) ≤
(

1 − log d

d

)

n.

The rest of this paper is organized as follows. We start with some observations on the anagram-

chromatic number for trees and minor-free graphs. Then, we give the proof of Theorem 1.3. We

conclude the article with some open questions and conjectures on anagram-free colorings.

We mostly omit floor and ceiling signs for the sake of clarity. The log will denote the base-e

logarithm. We will sometimes use standard O-notation for the asymptotic behaviour of the

relative order of magnitude of two sequences, depending on a parameter n → ∞.

2 Specific families of graphs

2.1 Bounds for trees

A binary tree is a tree in which every vertex has at most two children. Let Th be a perfect binary

tree of depth h, that is to say that every non-leaf has two children and there are 2h leaves, all at

distance h from the root. The root is taken to be at depth 0, so a tree consisting of one vertex

has depth 0. Coloring each vertex of Th by its distance from the root shows that πα(Th) ≤ h+ 1.

In the following section, we will argue that actually any n-vertex tree can be colored with 2 logn

colors. Proposition 1.1 asserts the lower bound πα(Th) ≥
√

h
log2 h , which will be proven in this

section.

Let T be a vertex-colored binary tree and U its subtree. The effective vertices of U are its

root (i.e. the vertex of U of the smallest depth), leaves, and vertices of degree three. The effective

depth of U is set to h1, where h1+1 is the minimum number of effective vertices on any path from

the root to a leaf (that is, the depth of the binary tree obtained by contracting all the internal

degree-two vertices of U). Note that if U has effective depth h1, then it has at least 2h1 leaves.

We say that U is essentially monochromatic if all its effective vertices carry the same color.

We will use a Ramsey-type argument to find a large essentially monochromatic subtree of a

given tree. In the statement below H(a1, a2, . . . ad) denotes the minimal number h for which any

perfect binary tree T of depth h whose vertices are colored using colors 1, 2, . . . , d contains an

essentially i-colored subtree of effective depth ai, for some i ∈ [d].

Lemma 2.1. H(a1, a2, . . . ad) ≤ a1 + · · · + ad.

3



Proof. We use induction on
∑d

i=1 ai. The base case is a1 = · · · = ad = 0, for which the claim

clearly holds.

Let T be a perfect binary tree of depth a1 + · · ·+ ad. Suppose that its root v has the color 1,

and call its children vL and vR. Consider the subtrees TL and TR of depth at least a1+ · · ·+ad−1

rooted at vL and vR respectively. If for some i ≥ 2, TL contains an essentially i-colored subtree of

effective depth ai, we are done. The same holds for TR. Otherwise, using the induction hypothesis,

TL and TR contain essentially 1-colored subtrees of effective depth a1 − 1. Those two subtrees,

together with the root v, form an essentially 1-colored subtree of T , as required.

Proof of Proposition 1.1. Let Th be colored using d <
√

h
log2 h colors. By Lemma 2.1, it contains

an essentially monochromatic subtree U of depth h/d.

Let u be the root of U , and suppose U is essentially red. There are at least 2h/d paths from

u to the leaves, and the coloring of each path is a multiset of order at most h + 1. On the other

hand, there are at most hd such multisets. Since hd < 2h/d for our choice of d, there is a multiset

which occurs on two different paths, say P1 and P2. Let v be the lowest common vertex of P1

and P2, and let ℓ1 and ℓ2 be their respective leaves. By construction of U , the vertices v, ℓ1 and

ℓ2 are red. Hence the segments from ℓ1 to v, excluding v, and from v to ℓ2, excluding ℓ2, have

the same coloring.

We conclude that the given coloring of Th, even restricted to U , contains an anagram.

2.2 Graphs with an excluded minor

Planar graphs are of special interest when it comes to coloring problems. The Four color theorem

is one of the most celebrated results in Graph Theory. Moreover, the question of whether the

Thue-chromatic number of planar graphs is finite has attracted a lot of attention and is still open.

We use separator sets to show that for a large class of minor-free graphs the anagram-chromatic

number is of order O (
√
n). The crucial ingredient of our argument is the separator theorem,

proved by Alon, Seymour and Thomas [3]. It states that for a given h-vertex graph H , in any

graph G with n vertices and no H-minor, one can find a set S ⊂ V (G) order |S| ≤ h
3
2n

1
2 , whose

removal partitions G into disjoint subgraphs each of which has at most 2n
3 vertices. Such a set S

is called a separator in G.

Using this theorem, we construct a coloring of any proper minor-closed family of graphs. For

convenience of the reader, we restate Proposition 1.2.

Proposition 1.2. Let h ≥ 1 be an integer, and let H be a graph on h vertices. Any n-vertex

graph G with no H-minor satisfies πα(G) ≤ 10h3/2n1/2.

Proof. The coloring is inductive – suppose the claim holds for graphs on at most n− 1 vertices.

Let G be as in the statement, and let S be a separating set of vertices in G of order at most

h3/2n1/2 given by the Separator Theorem. Then G− S consists of two vertex-disjoint subgraphs

spanned by A1 ⊂ V (G) and A2 ⊂ V (G), with |Ai| ≤ 2n
3 .

The induced subgraphs G[Ai] do not contain H as a minor, so by the inductive hypothesis,

we can color them using k = 10h3/2
√

2n/3 colors a1, a2, . . . , ak. Note that the two subgraphs

receive colors from the same set. This coloring guarantees that any path containing only vertices

from A1 or A2 is anagram-free. Furthermore, we assign to each vertex vi ∈ S a separate color bi,

making any path passing through S anagram-free. Hence the coloring is indeed anagram free. As
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intended, the number of colors used is at most

h3/2n1/2

(

10

√

2

3
+ 1

)

≤ 10h3/2n1/2.

Since planar graphs are characterized as graphs containing neither K5 nor K3,3 as a minor,

we arrive at the following consequence of the above result (note that the constant 150 can be

replaced by 19 if we use the fact that each planar graph has a separator of order 1.84
√
n).

Corollary 2.2. Let G be an n-vertex planar graph. Then πα(G) ≤ 150
√
n.

In fact, any hereditary family of graphs with small separators can be colored using the argu-

ment from Proposition 1.2. For example, it is easy to see that an n-vertex forest F contains a

single vertex which separates it into several forests on at most n/2 vertices. The same inductive

argument implies πα(F ) ≤ ⌈log2 n⌉.
As for the lower bound for planar graphs, we only have the following modification of the

argument we gave for trees.

Proposition 2.3. There is an n-vertex planar graph Fn with πα(Fn) ≥ ⌈ 1
4 log2 n⌉.

Proof. Let Fn be a perfect binary tree with n leaves, plus extra edges between any two vertices

on the same level having the same parent. Suppose it is colored in k = ⌈ 1
4 log2 n⌉ colors. The

number of shortest paths from the root to the vertices corresponding to leaves is n, whereas the

number of possible colorings of these paths is
(

log2 n+k
k−1

)

< n; hence some two paths have the same

coloring. These two paths, minus the shared initial segment, can be made into an anagram.

3 Bounded-degree graphs

3.1 A four-regular graph with a large anagram-chromatic number

In this section we study the number of colors needed to color a bounded-degree graph on n vertices

so as to avoid all anagrams. The trivial upper bound is n, so we will mainly be interested in lower

bounds for the anagram-chromatic number. It is easy to use the Local Lemma to show that for

every graph G with maximum degree at most two, we have πα(G) ≤ C for a suitably chosen

constant. It turns out that there are already 4-regular graphs G for which πα(G) grows rather

quickly with the size of the graph.

Proposition 3.1. For infinitely many values of n, there exists a 4-regular n-vertex graph H with

πα(H) ≥
√
n

log2 n .

Proof. Note that for each even k ≥ 4, there exists a 3-regular k-vertex graph G which is Hamilton-

connected, which means that any two vertices of G are joined by a Hamilton path. Indeed, it can

be easily checked that for any m ≥ 1, the Cayley graph of C2 ×C2m+1 with canonical generators

is Hamilton-connected. For a self-contained proof, we refer the reader to [6]. Let n = (k + 1)k.

Take k + 1 copies of such G on vertex sets V1, V2, . . . Vk+1 with |Vi| = k. Furthermore, take a

perfect matching M on V1 ∪ · · · ∪ Vk+1 such that there exists exactly one edge between any two

Vi and Vj , for i 6= j. To see that such a matching exists, denote Vi = {vij : j ∈ [k + 1] \ {i}}, and

take M = {{vij , vji} : 1 ≤ i < j ≤ k + 1}.
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Call the resulting graph H . H is 4-regular - any vertex has three adjacent edges belonging

to its copy of G and one edge belonging to M . Suppose that the vertices of H are colored with
⌊ √

n
log2 n

⌋

colors. Consider the subsets of form
⋃

i∈S Vi for any S ⊂ [k + 1]. There are 2k+1 such

subsets. The coloring of each
⋃

i∈S Vi defines a multiset of order at most n. Given
⌊ √

n
log2 n

⌋

colors,

the number of such multisets is at most n
√

n

log2 n = 2
√
n < 2k+1. Thus, by the pigeonhole principle,

there are two distinct sets S, T ⊂ [k + 1] such that
⋃

i∈S Vi and
⋃

i∈T Vi have the same number of

occurrences of each color. The same holds for sets S′ = S\T and T ′ = T \S, which are in addition

disjoint. Without loss of generality assume S′ = {V1, . . . Vs} and T ′ = {Vs+1, . . . V2s}. By the

choice of M , we can find vertices v1, u1, v2, u2, . . . v2s, u2s such that vi, ui ∈ Vi for i ∈ [2s],and

uivi+1 are edges in M for i ∈ [2s − 1]. Moreover, we can find a Hamilton path in each H [Vi]

between ui and vi, using Hamilton-connectedness of G. Concatenating these 2s paths gives us

a path in H which traverses V1 ∪ V2 · · · ∪ V2s in order. This path forms an anagram in H , so

πα(H) >
⌊ √

n
log2 n

⌋

.

3.2 Random regular graphs

Let us start with a simple observation which slightly improves the trivial upper bound n for the

anagram-chromatic number of a graph.

Proposition 3.2. Let G be an n-vertex graph with an independent set of order m. Then πα(G) ≤
n−m + 1.

Proof. Let S be an independent set inside G of order m. Give each vertex of S the same color,

and each vertex of V (G)\S its own color. Any path in G contains at least one vertex of V (G)\S,

so it cannot contain an anagram. This means that our coloring is indeed anagram-free.

The above bound is essentially optimal for the random regular graph Gn,d. To recapitulate,

Theorem 1.3 states that for sufficiently large d, with high probability, Gn,d satisfies

(

1 − 2 · 105 log d

d

)

n ≤ πα(Gn,d) ≤
(

1 − log d

d

)

n.

The upper bound is an immediate consequence of Proposition 3.2, and the fact that with high

probability, Gn,d contains an independent set of order asymptotic to 2 log d
d n > log d

d n (see, for

instance, Frieze and  Luczak [10]). We will now outline the proof of the lower bound on πα(Gn,d),

which comprises the remainder of the section. Instead of studying the random d-regular graph

Gn,d, we will consider the union of two random graphs Gn,d1 and Gn,d2 with d = d1 + d2. The

asymptotic properties of Gn,d are contiguous with such a model (see Lemma 9.24 in [13]). Let

G1 = Gn,d1 , G2 = Gn,d2 and c be a given vertex-coloring of G = G1 ∪ G2. The first step is to

find two vertex subsets V1 and V2 with the same coloring such that G1[V1] and G1[V2] have good

expansion properties. Then we use the edges of G2 to extend paths on V1 and V2, eventually

building Hamilton cycles C1 in G[V1] and C2 in G[V2]. Finally, we can find an edge v1v2 ∈ G with

vi ∈ Vi and use it to build a single path S which traverses first the vertices of C1 and then the

vertices of C2. The segments S[V1] and S[V2] give an anagram in c.

Before proceeding, let us introduce some notation. For a graph G and v ∈ V (G), we denote

the neighborhood of v in G by NG(v). For a vertex set U ⊂ V (G), NG(U) =
⋃

v∈U NG(v) \ U .

The graph induced on U is G[U ], and its edge set is denoted by EG(U) = E(G[U ]). For disjoint

sets U and T , EG(U, T ) is the set of edges with one endpoint in U and one in T . Finally, the

corresponding counts are eG(U) = |EG(U)| and eG(U, V ) = |EG(U, V )|. We denote the uniform
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probability measure on the space of random regular graphs Gn,d by P, suppressing the indices.

All the inequalities below are supposed to hold only for n large enough.

3.2.1 Edge distribution in the configuration model

In analysing Gn,d, we pass to the configuration model of random regular graphs. For nd even,

we take a set of nd points partitioned into n cells v1, v2, . . . vn, each cell containing d points. A

perfect matching P on [nd] induces a multigraph M(P ) in which the cells are regarded as vertices

and pairs in P as edges. For a fixed degree d and P chosen uniformly from the set of perfect

matchings Pn,d, the probability that M(P ) is a simple graph is bounded away from zero, and

each simple graph occurs with equal probability. Therefore, if an event holds whp in M(P ), then

it holds whp even when we condition on the event that M(P ) is a simple graph, and therefore it

holds whp in Gn,d (for a formal description of the configuration model and its basic properties,

see, for instance, Chapter 9 of [13]).

We use the configuration model to get a bound on the edge distribution in Gn,d analogous to

the Erdős-Renyi model. The uniform probability measure on Pn,d is denoted by PP . Both indices

n and d are kept so that each perfect matching P corresponds to a unique d-regular multigraph

M(P ).

Lemma 3.3. Let V1 ⊂ [n], and let B be a set of pairs of vertices from V1. Let E be another set

of pairs of vertices from [n] with |E| ≤ min
{

1
4|V1| |B|d, nd

20

}

. For a fixed positive integer d and

P ∈ Pn,d chosen uniformly at random,

PP [M(P ) ⊃ E and M(P ) ∩B = ∅] ≤
(

2d

n

)|E|
e−

2|B|d
5n .

The lemma also holds for more general configurations of B and E, but we state it in the form

which is fit for our purpose. We will need a bound on the probability that Gn,d does not intersect

a given set of edges. For this purpose, we use the following lemma.

Lemma 3.4. For each even number N , let F = F (N) be a graph on [N ] consisting of at least

βN2 edges. Let GN,1 denote a random matching on [N ]. Then

P [GN,1 ∩ F = ∅] ≤ e−
8β
9 N .

Proof. Let P(F ) be the set of perfect matchings on [N ] which do not intersect our graph F . Since

the number of perfect matchings on [N ] is exactly N !

2
N
2 (N

2 )!
, we need to show that

|P(F )| ≤ e−
8β
9 N N !

2
N
2

(

N
2

)

!
.

Consider the complement F of F . The matchings in P(F ) are exactly perfect matchings in F . We

use the following estimate of Alon and Friedland [2], which is a simple corollary of the Brègman

bound on the permanent of a (0, 1)-matrix.

Theorem 3.5 ([2]). Let H be a graph on [N ]. Let r1, r2, . . . rN be the degrees of the vertices in H.

Furthermore, denote r = 1
N

∑N
i=1 ri. Then the number of perfect matchings in H is at most

N
∏

i=1

(ri!)
1

2ri ≤ (r!)
N
2r .

7



We apply this bound directly to the graph F with r = N − 2βN , and use Stirling’s formula

to reach the final result. Indeed, we have

|P(F )| ≤ ((N − 2βN)!)
1

2(1−2β)

P [GN,1 ∩ F = φ] ≤ ((N − 2βN)!)
1

2(1−2β) ·
(

N
2

)

! · 2
N
2

N !

= O
(√

N
)

(

(1 − 2β)N

e

)
N
2 ( e

N

)
N
2

= O
(√

N
)

e−βN .

Here we use the fact that N !

(N
2 )!·2

N
2

= Θ(1)
(

N
e

)
N
2 , as well as the inequality e1−2β ≤ e−2β .

Absorbing the error term into the constant, we get, for N large enough,

P [GN,1 ∩ F = ∅] ≤ e−
8β
9 N .

Proof of Lemma 3.3. We will restate the event {M(P ) ⊃ E and M(P ) ∩ B = ∅} in terms of

P , rather than M(P ). For a matching M ⊂
(

[nd]
2

)

, we denote the induced multigraph on V =

{vi}i∈[n] by M(M). To save on notation, we write M(M) for both the graph and its edge set.

Conversely, if e = {vi, vj} is a pair of vertices from V , we denote its corresponding pairs in
(

[nd]
2

)

by ẽ = {{x, y} : x ∈ vi, y ∈ vj}. Finally, for a set E ⊂
(

V
2

)

, we put Ẽ =
⋃

e∈E ẽ.

Assume that M(P ) ⊃ E. Then we can find a matching M ⊂ P such that |M | = |E| = m and

M(M) = E. Conditioning over the possible choices of M , we have

PP [M(P ) ⊃ E ∧M(P ) ∩B = ∅] ≤
∑

M

PP [P ⊃ M ]PP
[

P ∩ B̃ = ∅ | P ⊃ M
]

.

We bound the two probabilities separately. Fix a choice M = {{xi, yi} : i ∈ [m]}, and let

W = [nd] \ {x1, . . . , xm, y1, . . . , ym}.
Claim 1. PP [P ⊃ M ] ≤ 2

(nd−2m)m

To show this, we just count perfect matchings. The total number of perfect matchings P is
(nd)!

(nd
2 )!2

nd
2

. The points from W can be paired in (nd−2m)!

(nd
2 −m)!2

nd
2

−m
ways. Altogether, using Stirling’s

formula, we get

PP [M ⊂ P ] ≤ (nd− 2m)!
(

nd
2

)

!

(nd)!
(

nd
2 −m

)

!2−m

=(1 + o(1))

(

nd− 2m

nd

)nd (
nd− 2m

e

)−2m(
nd

nd− 2m

)
nd
2
(

nd− 2m

e

)m

=(1 + o(1))

(

1 − 2m

nd

)
nd
2
(

e

nd− 2m

)m

≤ 2

(nd− 2m)m
.

Here we used the fact that since 1 − x ≤ e−x, we have (1 − 2m
nd )

nd
2 ≤ e−m.

Claim 2. For |B| = βn2, PP
[

P ∩ B̃ = ∅ | P ⊃ M
]

≤ e−
2β
5 nd.

8



Let W be as before, and denote N = |W |. Using the assumption m ≤ nd
20 , we get N =

nd− 2m ≥ 9nd
10 . Let BW = B̃[W ], that is, the set of pairs contained in W which would induce B.

By putting the matching M aside, we have lost some pairs from B̃, namely those touching the

vertices of M . Each vertex of M is contained in at most |V1|d pairs from B̃, so the hypothesis

m ≤ 1
4|V1| |B|d implies

|BW | ≥ |B|d2 − 2m|V1|d = βn2d2
(

1 − 2m|V1|
βn2d

)

≥ 1

2
βn2d2 ≥ 1

2
βN2.

A random matching P conditioned on P ⊃ M corresponds to a random matching on W , i.e. an

element of GN,1. Hence we can apply Lemma 3.4 with |BW | ≥ 1
2βN

2, and N = |W | ≥ 9nd
10 .

PP [P ∩BW = ∅ | P ⊃ M ] ≤ P [E(GN,1) ∩BW = ∅] ≤ e−
8
9 · 12βN ≤ e−

2
5βnd.

Claim 1 and 2 hold for any choice of the matching M with M(M) = E. Putting them together,

and using the fact that there are at most d2m such matchings M , we get

PP [M(P ) ⊃ E and M(P ) ∩B = ∅] ≤ d2m · 2

(nd− 2m)m
· e− 2β

5 nd.

Using m ≤ nd
20 ,

PP [M(P ) ⊃ E and M(P ) ∩B = ∅] ≤ d2m ·
(

2

nd

)m

e−
2β
5 nd =

(

2d

n

)m

e−
2β
5 nd.

3.2.2 Expansion properties and Pósa rotations

Recall that we will be working with the union of random graphs Gn,d1 and Gn,d2 . First we focus

on expansion properties of G1 = Gn,d1 , which will allow us to do rotations in G1. The aim is to

identify large sets of vertex pairs, called boosters, which could increase the length of the longest

path in G1. Hence all the lemmas in this section will later be applied with d replaced by d1. The

following lemma says that edges in Gn,d1 are uniformly distributed.

Lemma 3.6. For sufficiently large d, with high probability Gn,d has the following two properties:

(P1) any vertex set U with |U | ≤ 30 log d
d n satisfies eG(U) ≤ 100|U | log d;

(P2) for any two disjoint vertex subsets T and U with |T | ≥ 10 log d
d n and |U | ≥ 100 log d

d n, we

have

eG(T, U) ≥ |T ||U | d

20n
. (1)

Proof. We prove Lemma 3.6 for G sampled according to the configuration model, i.e. take G =

M(P ), where P is a random element of Pn,d. We start with (P2). Take vertex sets T and U in G

with |T | = t and |U | = u. We need to bound the probability of the event

DT,U =

{

eG(T, U) <
d

20n
tu

}

.

For a fixed set of m edges E with m ≤ d
20n tu, the probability that EG(T, U) = E is at most

(

2d

n

)m

e−
2d
5n (tu−m).

9



This bound is a direct application of Lemma 3.3 to the edge set E and its bipartite complement

(T × U) \ E. Taking the union bound over all sets E, we get

PP [DT,U ] ≤
d

20n tu
∑

m=0

(

tu

m

)(

2d

n

)m

e−
2d
5n (tu−m) ≤

d
20n tu
∑

m=0

(

etu

m
· 2d

n

)m

e−
2d
5n (tu−m).

The summand is increasing in m, so we bound it using the largest term, m = M = d
20n tu.

PP [DT,U ] ≤ M

(

etu · 20n

dtu
· 2d

n

)
d

20n tu

e−
2d
5n (tu−M) = M · (40e)

dtu
20n e−

2d
5n (tu−M)

= Me
dtu
n ( 5

20− 2
5+

d
n ) ≤ e−

dtu
8n .

Finally, we take the union bound over all sets T and U of order at least t0 = 10 log d
d n and

u0 = 100 log d
d n respectively.

PP [G violates (P2)] ≤
n
∑

t=t0

n
∑

u=u0

(

n

t

)(

n

u

)

e−
dtu
8n .

We use the bound
(

n
t

)

≤ dt = et log d valid for t ≥ t0 and large enough d.

PP [G violates (P2)] ≤
n
∑

t=t0

n
∑

u=u0

et log d+u log de−
dtu
8n .

For t ≥ 10 log d
d n, we get u log d ≤ dtu

10n . Similarly, since u ≥ 100 log d
d n, it holds that t log d ≤ dtu

100n .

PP [G violates (P2)] ≤ O(n2)e(
1

100+
1
10− 1

8 )n log2 d
d = o(1).

We deduce (P1) from the following more general statement.

Claim 3. Fix the constants A1 and A2 satisfying
(

eA1

A2

)A2

≤ e−2. Then with high probability,

any vertex set U ⊂ V (G) with |U | ≤ A1 log d
d n satisfies eG(U) ≤ A2|U | log d.

Introducing A1 = 30 and A2 = 100, which indeed satisfy
(

30e
100

)100 ≤ e−2, gives exactly (P2).

To prove the claim, we fix a set U of order u, and use Lemma 3.3 to establish that the

probability of some A2u log d edges occurring in U is at most

(

u2/2

A2u log d

)(

2d

n

)A2u log d

≤
(

eu

2A2 log d
· 2d

n

)A2u log d

.

Let Du denote the event that some subset U with |U | = u spans more than A2u log d edges.

We have

PP [Du] ≤
(

n

u

)(

eud

A2n log d

)A2u log d

≤
[

ne

u

(

eud

A2n log d

)A2 log d
]u

. (2)

The term in square brackets is increasing in u, so for u ≤ A1 log d
d n,

PP [Du] ≤
[

ed

A1 log d

(

eA1

A2

)A2 log d
]u

≤
[

ed

A1 log d
e−2 log d

]u

< d−u.

10



Here we used the condition
(

eA1

A2

)A2

≤ e−2. For u ≤ √
n we use (2) to get a stronger bound

PP [Du] ≤
(

O
(

n
1
2 (1−A2 log d)

))u

< n−1,

valid for large d. Putting the two bounds together,

PP [G violates (P1)] ≤
√
n

∑

u=1

PP [Du] +

A1 log d

d
n

∑

u=
√
n

PP [Du] ≤ √
n · n−1 +

A1 log d

d
n

∑

u=
√
n

d−u = o(1),

completing the proof of Claim 3. To recapitulate, applying the claim for A1 = 30 and A2 = 100

gives that G = M(P ) satisfies (P1) with high probability.

Since the random graph Gn,d is contiguous to G, we conclude that for large enough d, Gn,d

satisfies (P1) and (P2).

The next step is to build subsets of [n] which will later give us the required anagram. In

everything that follows, take α = 105. Given a d-regular graph G, we say that a subset V1 ⊂ [n] is

G-dense if α log d
2d n ≥ |V1| ≥ α log d

4d n, and any vertex v ∈ V1 has at least α
160 log d neighbors in V1.

Lemma 3.7. Suppose we are given a d-regular graph G on [n] with properties (P1) and (P2),

and a vertex coloring c : [n] → C with |C| =
(

1 − α log d
d

)

n colors. For sufficiently large d and n,

there exist two disjoint G-dense sets of vertices V1, V2 ⊂ [n] which have the same coloring.

Proof. Let c be a coloring of the vertices of G into
(

1 − α log d
d

)

n colors.

Claim 4. There exists a subset Z ⊂ V (G) satisfying α log d
d n ≥ |Z| ≥ α log d

2d n such that each color

appears in Z an even number of times, and for all v ∈ Z, |NG(v) ∩ Z| ≥ α
40 log d.

We construct Z using the following algorithm. Let V (G) = [n], and denote δ = α
40 log d. Let X

contain one vertex from each color class with an odd number of colors, so |X | ≤
(

1 − α log d
d

)

n. We

assume |X | =
(

1 − α log d
d

)

n, by discarding more pairs of vertices of the same color if necessary.

Furthermore, set R0 = R̂0 = ∅. Note that from this step onwards, all color classes in [n] \ (X ∪
Ri ∪ R̂i) will have even order. For i ≥ 0, we form Ri+1 := Ri ∪ {v}, R̂i+1 = R̂i ∪ {w}, where v is

the smallest vertex with fewer than δ neighbors in [n]\ (X ∪Ri∪ R̂i), and w is the smallest vertex

with c(v) = c(w). When there are no such vertices v, set Z = [n] \ (X ∪Ri ∪ R̂i) and terminate

the algorithm. We claim that this occurs after at most 10 log d
d n steps.

Suppose that it is not the case and G satisfies (P1) and (P2), but the algorithm continues

beyond t = 10 log d
d n steps. Look at the sets Rt and Zt = [n] \ (X ∪Rt ∪ R̂t). Each vertex from Rt

has fewer than δ neighbors in Zt, so

eG(Rt, Zt) < δ|Rt| =
α

40
|Rt| log d.

On the other hand, since |Rt| = t = 10 log d
d n and |Zt| = α log d

d n − 2t ≥ α log d
2d n, the property

(P2) gives

eG(Rt, Zt) ≥ |Rt||Zt|
d

20n
≥ |Rt| ·

α log d

2d
· d

20n
=

α

40
|Rt| log d.

We reached a contradiction, so indeed we have the desired set Z with |Z| ≥ α log d
2d n.

11



We show the existence of the required partition of Z into sets V1 and V2 using a probabilistic

argument. Partition each color class c−1(a) into ordered pairs arbitrarily, and denote the collection

of pairs by Q. For each pair (v, w) ∈ Q, randomly and independently put v into V1 and w into

V2 or vice versa, with probability 1
2 . This guarantees that V1 and V2 have the same coloring.

Claim 5. With positive probability, the partition satisfies degG[Vi](v) ≥ α
160 log d for all v ∈ Vi

and i ∈ {1, 2}.
We use the Local Lemma. Fix a vertex v, wlog v ∈ V1. Let Bv be the event that fewer than

α
160 log d neighbors of v in Z have ended up in V1. Let S be a set of α

40 log d neighbors of v in Z,

and let T ⊂ S be the set of vertices whose match according to Q does not lie in S. Note that S

contains exactly y = 1
2 (|S| − |T |) pairs of Q. If Bv occurs, then |S ∩ V1| ≤ α

160 log d, and therefore
1
2 |S| − |S ∩ V1| ≥ α

160 log d. But this implies

1

2
|T | − |T ∩ V1| =

1

2
(|S| − 2y) − (|S ∩ V1| − y) ≥ α

160
log d.

|T ∩ V1| is a random variable with distribution B
(

|T |, 12
)

, so Chernoff bounds (as stated in

[13, Remark 2.5]) give

P [Bv] = P

[

1

2
|T | − |T ∩ V1| ≥

α

160
log d

]

≤ e−
2

|T | (
α

160 log d)
2

≤ e−3 log d = d−3.

Here we used |T | ≤ α
40 log d and α = 105.

Two events Bv and Bw are dependent only if v and w share a neighbor, or if some two

neighbors of v and w are paired. In such a dependency graph, the event Bv has degree at most

2d2. Since for sufficiently large d,

e(2d2 + 1)d−3 < 1,

the Lovász Local Lemma grants that there is a splitting avoiding all the bad events Bv. This is

exactly the required splitting. It concludes the proof of Claim 5 and Lemma 3.7.

We say a graph G is a p-expander if it is connected, and |NG(U)| ≥ 2|U | for |U | ≤ p.

Lemma 3.8. Let G be a d-regular graph on vertex set [n] satisfying (P1) and (P2), and let

V1 ⊂ [n] be a G-dense subset of [n]. Then G[V1] is a
(

|V1|
4

)

-expander.

Proof. Denote H = G[V1]. To show expansion, suppose for the sake of contradiction that

|NH(U)| < 2|U |, and first assume that |U | ≤ 10 log d
d n. We can apply (P1) to T = U∪NH(U) ⊂ V1,

using the assumption |T | ≤ 30 log d
d n. This gives e(G[T ]) ≤ 100|T | logd. Counting all the edges

with an endpoint in U , which certainly lie inside T , we get 1
2 · α

160 |U | log d ≤ e(G[T ]). The two

inequalities imply |T | ≥ 1
100 · α

320 |U | = 105

32000 > 3|U |, which contradicts our assumption.

Secondly, in case |V1|
4 ≥ |U | ≥ 10 log d

d n and |NG(U)| < 2|U |, we have |V1 \ (U ∪ NH(U))| ≥
|V1|
4 ≥ 104 log d

d n. This puts us in the position to apply (P2) and claim that G contains edges

between U and V1 \ (U ∪NH(U)), contradicting the definition of NH(U). Hence sets of order up

to |V1|
4 indeed expand in H .

Finally, assume that H is not connected. Let its smallest component be spanned by S ⊂ V1,

i.e. |S| ≤ |V1|
2 and NH(S) = ∅. We already showed that certainly |S| > |V1|

4 . But then the fact

that EG(S, V1 \ S) = ∅ contradicts (P2).
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We will use these expansion properties to build long paths and ultimately a Hamilton cycle

in G. Our approach is based on the rotation-extension technique originally developed by Pósa.

Given a graph G, denote the length (number of edges) of the longest path in G by ℓ(G). We

say that a non-edge {u, v} /∈ E(G) is a booster with respect to G if G + {u, v} is Hamiltonian or

ℓ(G + {u, v}) > ℓ(G). We denote the set of boosters in G by B(G). Pósa’s rotation technique

guarantees that there exist plenty of boosters in G (see, for instance, Corollary 2.10 from [15]).

Lemma 3.9. Let p be a positive integer. Let G = (V,E) be a p-expander. Then |B(G)| ≥ p2

2 .

3.2.3 Using G2 to hit boosters in G1

Now we move on to G2 = Gn,d2 . Recall that we would like to add its edges to G1[V1] and complete

a cycle on V1. However, we have to argue carefully because the choice of a G1-dense set V1 will

depend on the given vertex coloring.

Lemma 3.10. Let G1 be a d1-regular graph on [n] with properties (P1) and (P2), for sufficiently

large d1, and let d1

150 ≤ d2 ≤ d1

100 . With high probability, G2 = Gn,d2 has the property that for any

G1-dense subset V1 ⊂ [n], (G1 ∪G2)[V1] is Hamiltonian.

The proof of Lemma 3.10 consists of two parts. First we identify a deterministic property

that is sufficient to make (G1 ∪G2)[V1] Hamiltonian, and then, using the configuration model, we

show that Gn,d2 possesses this property with high probability.

Lemma 3.11. Let H1 and H2 be graphs on vertex set V1. Suppose that for any edge set E′ ⊂
E(H2) with |E′| ≤ |V1|,

H1 ∪ E′ is Hamiltonian, or B(H1 ∪ E′) ∩ E(H2) 6= ∅.

Then the graph H1 ∪H2 Hamiltonian.

Proof. We will build a subset of E(H2) such that its addition to H1 creates a Hamiltonian graph.

Start with E0 = ∅. Assume that Ei is a subset of i edges in E(H2). If the graph H1 ∪ Ei is

Hamiltonian, we are done. Otherwise, by hypothesis, E(H2) ∩B(H1 ∪Ei) contains an edge e, so

we set Ei+1 = Ei ∪ {e}.

In each step i, we have ℓ(H1 ∪ Ei+1) > ℓ(H1 ∪ Ei), so the process terminates after at most

|V1| steps, with a Hamiltonian graph H1 ∪ Ei.

Lemma 3.12. Let G1 be a d1-regular graph on V with properties (P1) and (P2), where |V | = n

and d1 is sufficiently large. Let G2 = Gn,d2 for d1

150 ≤ d2 ≤ d1

100 . We say that G2 ∈ AG1 (or AG1

occurs) if there exists a G1-dense subset V1 ⊂ V , and an edge set E ⊂
(

V1

2

)

, |E| ≤ |V1|, such that

G2 contains E and does not intersect B((G1 + E)[V1]). It holds that P [AG1 ] = o(1).

Proof. We will prove the claim for G2 sampled according to the configuration model, which is

contiguous to the uniform model Gn,d2 . This allows us to apply Lemma 3.3, which gives us a

precise estimate on the probability of (non-)occurrence of certain edge sets. Let P ∈ Pn,d2 be

chosen uniformly at random. We will actually bound the probability that the induced multigraph

M(P ) is in AG1 , denoted by PP [AG1 ], with a slight abuse of notation for not renaming the event

AG1 itself.

Fix a G1-dense subset V1 ⊂ V with |V1| = ξn, and E ⊂
(

V1

2

)

with |E| = m ≤ |V1|. Recall that

since V1 is G1-dense, ξn ≥ α log d1

4d1
n = 105 log d1

4d1
n. Note that the graph G1+E is a

(

|V1|
4

)

-expander,
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so we apply Lemma 3.9, which says that the set of boosters B = B((G1 + E)[V1]) contains at

least 2−5ξ2n2 edges.

Applying Lemma 3.3 to E and B, we get

PP [M(P ) ⊃ E and M(P ) ∩B = ∅] ≤
(

2d2
n

)m

e−
2

5·25 ξ2nd2 .

Now we can take the union bound over all choices of E and V1. We crudely bound the number

of ways to choose V1 by n
(

n
ξn

)

.

PP [AG1 ] ≤ n

(

n

ξn

) ξn
∑

m=1

( ξ2n2

2

m

)(

2d2
n

)m

e−
1

5·24 ξ2nd2 .

The term
( ξ2n2

2
m

) (

2d2

n

)m ≤
(

eξ2nd2

m

)m

is increasing in m in the given range, and hence

PP [AG1 ] ≤ n · ξn ·
(

eξ−1 · eξd2 · e−
1

5·24 ξd2

)ξn

.

Introducing the value of ξ, the term in brackets is at most

e2d2e
− 105

4·5·24
d2 log d1

d1 ≤ e2d2d
− 300d2

d1
1 .

For d2 ∈
[

d1

150 ,
d1

100

]

the term above is upper-bounded by d
1− 300

150
1 , so

PP [AG1 ] ≤ ξn2e−Ω(ξn) = e−Ω(ξn),

as claimed.

Proof of Lemma 3.10. Since G1 satisfies (P1) and (P2), for G2 = Gn,d2 it holds with high prob-

ability that G2 /∈ AG1 . Hence, given a G1-dense set V1 ⊂ V we can apply Lemma 3.11 to G1[V1]

and G2[V1] to find a Hamilton cycle in (G1 ∪G2)[V1], as required.

We are now ready to put together the proof.

Proof of Theorem 1.3. For a given d, set d2 = 2 ·
⌈

d
300

⌉

and d1 = d − d2. Let d be large enough

so that d2 ≤ 1
100d1, and for Lemma 3.6 and Lemma 3.10 to hold. Moreover, by choosing d2 to

be even, we ensured that whenever nd is even (so that Gn,d is non-empty), nd1 and nd2 are also

even.

Generate G1 = Gn,d1 and G2 = Gn,d2 on vertex set V . Suppose that G1 is has properties

(P1) and (P2), and G2 satisfies the conclusion of Lemma 3.10. By Lemma 3.6 and Lemma 3.10,

this holds with high probability. We claim that in this case πα(G1∪G2) >
(

1 − α log d1

d1

)

n, where

α = 105 as before. Let c : V →
[(

1 − α log d1

d1

)

n
]

be a given coloring.

We first use Lemma 3.7 to find G1-dense sets V1, V2 ⊂ V with the same coloring. Then by

Lemma 3.10, we conclude that the graphs (G1 ∪G2)[Vi] are Hamiltonian, for i = 1, 2. Let C1 and

C2 be Hamilton cycles on V1 and V2. G1 satisfies (P2), which implies that it contains an edge

between some two vertices v1 ∈ V1 and v2 ∈ V2. We form the required path S by going along C1,

using v1v2 to skip to V2 and then going along C2. The segments S[V1] and S[V2] give an anagram

in c, as required.

It remains to express the bound in terms of d. Note that d1 lies between
(

1 − 1
100

)

d and d, so

α log d1
d1

≤ 105 log d

d1
≤ 2 · 105 log d

d
.
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Hence πα(G1 ∪ G2) >
(

1 − 2·105 log d
d

)

n, and by contiguity, the same holds for Gn,d with high

probability.

4 Concluding Remarks

In this paper we studied anagram-free colorings of graphs, and showed that there are very sparse

graphs in which anagrams cannot be avoided unless we basically give each vertex a separate color.

Our research suggests several interesting questions, some of which we mention here.

The first question concerns the lower bound on the anagram-chromatic number for trees. Is

there a family of trees T (n) on n vertices for which πα (T (n)) ≥ ε logn for some positive constant

ε > 0? We remark that this is the case for the analogous problem of finding the anagram-chromatic

index of a tree. Indeed, a simple counting argument (cf. Proposition 2.3) shows that if instead of

vertex colorings, we color edges of a graph, then to avoid anagrams in the complete binary tree

of depth h, we need to use at least ⌈ 1
4h⌉ colors.

In estimating the anagram-chromatic number of planar graphs we relied only on the fact that

they have small separators. It would be interesting to know a better lower bound on πα(G) for

such graphs. In particular, we wonder if there exists a family Hn of planar graphs on n vertices

such that πα(Hn) ≥ nǫ for some absolute constant ǫ > 0?

Let G(n, d) denote the graph with the largest anagram-chromatic number among all graphs G

on n vertices with ∆(G) ≤ d. Our main result shows that if d is large enough then πα(G(n, d)) ≥
n
(

1 − C log d
d

)

, while for d = 4 we can only provide a construction which gives πα(G(n, 4)) ≥
√
n

2 logn . We believe that there exist cubic graphs for which the anagram-chromatic number grows

linearly with the order of the graph.

It would be nice to know how fast the function f(d) = 1− lim supn→∞ πα(G(n, d))/n decreases

with d. Let us recall that from Proposition 3.2 and Theorem 1.3 it follows that

1

d
≤ f(d) = O

( log d

d

)

.

We do not know the correct bound, but we have good reasons to believe that the upper bound

can be improved. Indeed, consider a graph which is a union of 2n/d cliques of size d/2 and a

random n-vertex d/2-regular graph. We think that using such a construction one can show that

f(d) ≤ (log d)1/2+o(1)/d but the proof looks quite involved and would probably not be worth the

effort since it is by no means clear whether it would give the right order of f(d).

Finally, Lemma 3.10 motivates questions on Hamiltonicity of small induced subgraphs of Gn,d.

Pursuing our proof outline, we can prove the following.

Claim 6. There is a constant C such that with high probability, G = Gn,d has the following

property. For any vertex set V1 ⊂ [n] of order at least C
√

log d
d n, if the graph H = G[V1] has

minimum degree at least d
10n |V1|, then H is Hamiltonian.

To see this, take G2 = Gn,d2 for d2 = C
20

√
d log d, and G1 = Gn,d1 for d1 = d − d2. Consider

G = Gn,d1 ∪ Gn,d2 . Let V1 and H = G[V1] satisfy the hypothesis, and denote |V1| = ξn with

ξ ≥ C
√

log d
d . Since the graph G[V1] has minimum degree at least ξd

10 , and we ensured d2 ≤ ξd
20 ,

G1[V1] has minimum degree at least ξd
20 . This guarantees that G1[V1], as well as any graph on V1

containing it, has Θ(ξ2n2) boosters. On the other hand, the condition d2e
−Ω(ξd2) < 1 implies that

G2 hits those boosters with high probability (see the calculation in Lemma 3.12). Hence G[V1] is

Hamiltonian for any such V1, and by contiguity, Gn,d satisfies the claim.
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The above discussion leads to the natural question, what is the smallest possible lower bound

on |V1| in Claim 6? Note that |V1| = C
√

log d
d n is the best we can get from our approach. Namely,

the above-mentioned conditions require Ω
(

1
ξ log

(

1
ξ

))

= d2 ≤ ξd
20 , i.e ξ = Ω

(

√

log d
d n

)

.

We also give a lower bound on |V1|. Using independent sets in Gn,d, one can find an induced

unbalanced bipartite subgraph of order log d
d n with high minimum degree, which is obviously non-

Hamiltonian. This observation implies that we need at least |V1| ≥ log d
d n. We wonder how tight

this estimate is.
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