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Distance colouring without one cycle length
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Abstract

We consider distance colourings in graphs of maximum degree at most
d and how excluding one fixed cycle length ℓ affects the number of colours
required as d → ∞. For vertex-colouring and t ≥ 1, if any two distinct
vertices connected by a path of at most t edges are required to be coloured
differently, then a reduction by a logarithmic (in d) factor against the
trivial bound O(dt) can be obtained by excluding an odd cycle length
ℓ ≥ 3t if t is odd or by excluding an even cycle length ℓ ≥ 2t + 2. For
edge-colouring and t ≥ 2, if any two distinct edges connected by a path of
fewer than t edges are required to be coloured differently, then excluding
an even cycle length ℓ ≥ 2t is sufficient for a logarithmic factor reduction.
For t ≥ 2, neither of the above statements are possible for other parity
combinations of ℓ and t. These results can be considered extensions of
results due to Johansson (1996) and Mahdian (2000), and are related to
open problems of Alon and Mohar (2002) and Kaiser and Kang (2014).

1 Introduction

For a positive integer t, the t-th power Gt of a (simple) graph G = (V,E) is a
graph with vertex set V in which two distinct elements of V are adjacent in Gt

if there is a path in G of length at most t between them. The line graph L(G) of
a graph G = (V,E) is a graph with vertex set E in which two distinct elements
are adjacent in L(G) if the corresponding edges of G have a common endpoint.
The distance-t chromatic number χt(G), respectively, distance-t chromatic index
χ′
t(G), of G is the chromatic number of Gt, respectively, of (L(G))t. (So χ1(G)

is the chromatic number χ(G) of G, χ′
1(G) the chromatic index χ′(G) of G, and

χ′
2(G) the strong chromatic index χ′

s(G) of G.)
The goal of this work is to address the following basic question. What is the

largest possible value of χt(G) or of χ′
t(G) among all graphs G with maximum

degree at most d that do not contain the cycle Cℓ of length ℓ as a subgraph? For
both parameters, we are interested in finding those choices of ℓ (depending on
t) for which there is an upper bound that is o(dt) as d → ∞. (Trivially χt(G)
and χ′

t(G) are O(dt) since the maximum degrees ∆(Gt) and ∆((L(G))t) are
O(dt) as d → ∞. Moreover, by probabilistic constructions [2, 9], these upper
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bounds must be Ω(dt/ log d) as d → ∞ regardless of the choice of ℓ.) We first
discuss some previous work.

For t = 1 and ℓ = 3, the question for χt essentially was a long-standing
problem of Vizing [13], one that provoked much work on the chromatic number
of triangle-free graphs, and was eventually settled asymptotically by Johans-
son [8]. He used nibble methods to show that the largest chromatic number over
all triangle-free graphs of maximum degree at most d is Θ(d/ log d) as d → ∞.
It was observed in [10] that this last statement with Cℓ-free, ℓ > 3, rather than
triangle-free also holds, thus completely settling this question asymptotically
for χ1 = χ.

Regarding the question for χ′
t, first notice that since the chromatic index

of a graph of maximum degree d is either d or d + 1, there is little else to say
asymptotically if t = 1.

For t = 2 and ℓ = 4, the question for χ′
t was considered by Mahdian [11] who

showed that the largest strong chromatic chromatic index over all C4-free graphs
of maximum degree at most d is Θ(d2/ log d) as d → ∞. Vu [14] extended this to
hold for any fixed bipartite graph instead of C4, which in particular implies the
statement for any Cℓ, ℓ even. Since the complete bipartite graph Kd,d satisfies
χ′
2(Kd,d) = d2, the statement does not hold for Cℓ, ℓ odd. This completely

settles the second question asymptotically for χ′
2 = χ′

s.
In this paper, we advance a systematic treatment of our basic question. Our

main results are as follows, which may be considered as extensions of the results
of Johansson [8] and Mahdian [11] to distance-t vertex- and edge-colouring,
respectively, for all t.

Theorem 1. Let t be a positive integer and ℓ an even positive integer.

(i) For ℓ ≥ 2t + 2, the supremum of the distance-t chromatic number over
Cℓ-free graphs of maximum degree at most d is Θ(dt/ log d) as d → ∞.

(ii) For t ≥ 2 and ℓ ≥ 2t, the supremum of the distance-t chromatic index over
Cℓ-free graphs of maximum degree at most d is Θ(dt/ log d) as d → ∞.

Theorem 2. Let t and ℓ be odd positive integers such that ℓ ≥ 3t. The supre-
mum of the distance-t chromatic number over Cℓ-free graphs of maximum degree
at most d is Θ(dt/ log d) as d → ∞.

This study was initiated by a conjecture of ours in [10], that the largest
distance-t chromatic number over all C2t+2-free graphs of maximum degree at
most d is Θ(dt/ log d) as d → ∞. Theorem 1(i) confirms our conjecture.

In Section 2, we exhibit constructions to certify the following, so improved
upper bounds are impossible for the parity combinations of t and ℓ other than
those in Theorems 1 and 2.

Proposition 3. Let t and ℓ be positive integers.

(i) For t even and ℓ odd, the supremum of the distance-t chromatic number
over Cℓ-free graphs of maximum degree at most d is Θ(dt) as d → ∞.

(ii) For t ≥ 2 and ℓ odd, the supremum of the distance-t chromatic index over
Cℓ-free graphs of maximum degree at most d is Θ(dt) as d → ∞.
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We have reason to suspect that the values 2t + 2 and 2t, respectively, may
not be improved to lower values in Theorem 1, but we do not go so far yet as to
conjecture this. We also wonder whether the value 3t in Theorem 2 is optimal
— it might well only be a coincidence for t = 1 — but we know that in general
it may not be lower than t, as we show in Section 2.

Our basic question in fact constitutes refined versions of problems of Alon
and Mohar [2] and of Kaiser and the first author [9], which instead asked about
the asymptotically extremal distance-t chromatic number and index, respec-
tively, over graphs of maximum degree d and girth at least g as d → ∞. Our
upper bounds imply bounds given earlier in [2, 9, 10], and the lower bound con-
structions given there are naturally relevant here (as we shall see in Section 2).

It is worth pointing out that the basic question unrestricted, i.e. asking for
the extremal value of the distance-t chromatic number or index over graphs
of maximum degree d as d → ∞, is likely to be very difficult if we ask for
the precise (asymptotic) multiplicative constant. This is because the question
for χt then amounts to a slightly weaker version of a well-known conjecture of
Bollobás on the degree–diameter problem [3], while the question for χ′

t then
includes the notorious strong edge-colouring conjecture of Erdős and Nešetřil,
cf. [6], as a special case.

Our proofs of Theorems 1 and 2 rely on direct applications of the following
result of Alon, Krivelevich and Sudakov [1], which bounds the chromatic number
of a graph with bounded neighbourhood density.

Lemma 4 ([1]). For all graphs Ĝ = (V̂ , Ê) with maximum degree at most ∆̂

such that for each v̂ ∈ V̂ there are at most ∆̂2

f edges spanning N(v̂), it holds

that χ(Ĝ) = O
(

∆̂
log f

)

as ∆̂ → ∞.

The proof of this result in [1] invoked Johannson’s result for triangle-free graphs;
using nibble methods directly instead, Vu [14] extended it to hold for list colour-
ing. So Theorems 1 and 2 also hold with list versions of χt and χ′

t.
Section 3 is devoted to showing the requisite density properties for Lemma 4.

In order to do so with respect to Theorem 1, we in part use a classic result
of Bondy and Simonovits [4] that the Turán number ex(n,C2k) of the even
cycle C2k, that is, the maximum number of edges in a graph on n vertices not
containing C2k as a subgraph, satisfies ex(n,C2k) = O(n1+1/k) as n → ∞. We
also use a technical refinement which we describe and prove in Section 3.

We made little effort to optimise the multiplicative constants implicit in
Theorems 1 and 2 and in Proposition 3. Importantly, the constants we obtained
depend on ℓ or t, and it is left to future work to determine the nature of the
true precise dependencies.

2 Constructions

In this section, we describe some constructions that certify the conclusions of
Theorems 1 and 2 are not possible with other parity combinations of t and ℓ,
in particular showing Proposition 3.
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First we review constructions we used in previous work [10]. In combination
with the trivial bound χt(G) = O(dt) if ∆(G) ≤ d, the following two proposi-
tions imply Proposition 3(i). The next result also shows that the value 3t in
Theorem 2 may not be reduced below t.

Proposition 5. Fix t ≥ 3. For every even d ≥ 2, there exists a d-regular graph
G with χt(G) ≥ dt/2t and χ′

t+1(G) ≥ dt+1/2t. Moreover, G is bipartite if t is
even, and G does not contain any odd cycle of length less than t if t is odd.

Proof. We define G = (V,E) as follows. The vertex set is V = ∪t−1
i=0U

(i) where
each U (i) is a copy of [d/2]t, the set of ordered t-tuples of symbols from [d/2] =

{1, . . . , d/2}. For all i ∈ {0, . . . , t−1}, we join an element (x
(i)
0 , . . . , x

(i)
t−1) of U

(i)

and an element (x
(i+1 mod t)
0 , . . . , x

(i+1 mod t)
t−1 ) of U (i+1 mod t) by an edge if the t-

tuples agree on all symbols except possibly at coordinate i, i.e. if x
(i+1 mod t)
j =

x
(i)
j for all j ∈ {0, . . . , t−1}\{i} (and x

(i)
i , x

(i+1 mod t)
i are arbitrary from [d/2]).

It is easy to see that each U (i) is a clique in Gt, and every set of edges incident
to some U (i) is a clique in (L(G))t+1. This gives χt(G) ≥ |U (0)| = (d/2)t and
χ′
t+1(G) ≥ d · |U (0)| = 2(d/2)t+1. (In fact here it is easy to find a colouring

achieving equality in both cases.)
Since G is composed only of bipartite graphs arranged in sequence around a

cycle of length t, every odd cycle in G is of length at least t, and G is bipartite
if t is even.

As observed in [2] and [9], certain finite geometries yield bipartite graphs of
prescribed girth giving better bounds than in Proposition 5 for a few cases.

Proposition 6. Let d be one more than a prime power.

• There exists a bipartite, girth 6, d-regular graph Pd−1 with χ2(Pd−1) =
d2 − d+ 1 and χ′

3(Pd−1) = d3 − d2 + d.

• There exists a bipartite, girth 8, d-regular graph Qd−1 with χ′
4(Qd−1) =

d4 − 2d3 + 2d2.

• There exists a bipartite, girth 12, d-regular graph Hd−1 with χ′
6(Hd−1) =

d6 − 4d5 + 7d4 − 6d3 + 3d2.

Proof. Letting Pd−1 be the point-line incidence graph of the projective plane
PG(2, d−1), Qd−1 that of a symplectic quadrangle with parameters (d−1, d−1),
and Hd−1 that of a split Cayley hexagon with parameters (d − 1, d − 1), it is
straightforward to check that these graphs satisfy the promised properties.

In [10], we somehow combined Propositions 5 and 6 for other lower bound
constructions having prescribed girth. This approach is built upon generalised
n-gons, structures which are known not to exist for n > 8 [7]. We refer the
reader to [10] for further details.

Our second objective in this section is to introduce a different graph product
applicable only to two regular balanced bipartite graphs. We use it to produce
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Figure 1: An illustration of the product K2,2 ⊲⊳ K2,2.

two bipartite constructions for χ′
t, both of which settle the case of t even left

open in Proposition 5, and the second of which treats what could be interpreted
as an edge version of the degree–diameter problem.

Let H1 = (V1 = A1 ∪B1, E1) and H2 = (V2 = A2 ∪B2, E2) be two balanced
bipartite graphs with given vertex orderings, i.e. A1 = {a11, . . . , a

1
n1
}, B1 =

{b11, . . . , b
1
n1
}, A2 = {a21, . . . , a

2
n2
}, B2 = {b21, . . . , b

2
n2
} for some positive integers

n1, n2. We define the balanced bipartite product H1 ⊲⊳ H2 of H1 and H2 as the
graph with vertex and edge sets defined as follows:

VH1⊲⊳H2
:= A1 ×A2 ∪B1 ×B2 and

EH1⊲⊳H2
:= {(a1i , a

2)(b1i , b
2)|i ∈ {1, . . . , n1}, a

2b2 ∈ E2}∪

{(a1, a2j )(b
1, b2j )|a

1b1 ∈ E1, j ∈ {1, . . . , n2}}.

See Figure 1 for an example of this product.
Usually the given vertex orderings will be of either of the following types.

We say that a labelling A = {a1, . . . , an}, B = {b1, . . . , bn} of H = (V =
A ∪ B,E) is a matching ordering of H if aibi ∈ E for all i ∈ {1, . . . , n}. We
say it is a comatching ordering if aibi /∈ E for all i ∈ {1, . . . , n}. Note by
Hall’s theorem that every non-empty regular balanced bipartite graph admits a
matching ordering, while every non-complete one admits a comatching ordering.

Let us now give some properties of this product relevant to our problem,
especially concerning its degree and distance properties. The first of these
propositions follow easily from the definition.

Proposition 7. Let H1 and H2 be two balanced bipartite graphs that have part
sizes n1 and n2, respectively, and are regular of degrees d1 and d2, respectively,
for some positive integers n1, n2, d1, d2. Suppose H1, H2 are given in either
matching or comatching ordering. Then H1 ⊲⊳ H2 is a regular balanced bipartite
graph with parts AH1⊲⊳H2

= A1 ×A2 and BH1⊲⊳H2
= B1 ×B2 each of size n1n2.

If both are in matching ordering, then H1 ⊲⊳ H2 has degree d1+d2−1, otherwise
it has degree d1 + d2.

Proposition 8. Let H1 = (V1 = A1 ∪B1, E1) and H2 = (V2 = A2 ∪B2, E2) be
two regular balanced bipartite graphs.
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(i) Suppose that for every a1, a′1 ∈ X1 ⊆ A1 there is a t1-path between a1 and
a′1 in H1 (for some t1 even). Suppose that for every a2, a′2 ∈ X2 ⊆ A2

there is a t2-path between a2 and a′2 in H2 (for some t2 even). Then for
every (a1, a2), (a′1, a′2) ∈ X1 × X2 ⊆ AH1⊲⊳H2

, there is a (t1 + t2)-path
between (a1, a2) and (a′1, a′2) in H1 ⊲⊳ H2.

(ii) Suppose that for every a1, a′1 ∈ X1 ⊆ A1 there is a t1-path between a1

and a′1 in H1 (for some t1 even). Suppose that for every a2 ∈ X2 ⊆ A2

and b2 ∈ Y2 ⊆ B2 there is a t2-path between a2 and b2 in H2 (for some
t2 odd). Then for every (a1, a2) ∈ X1 × X2 ⊆ AH1⊲⊳H2

and (b1, b2) ∈
Y1 × Y2 ⊆ BH1⊲⊳H2

where Y1 = {b1i | a1i ∈ X1}, there is a (t1 + t2)-path
between (a1, a2) and (b1, b2) in H1 ⊲⊳ H2.

Proof. We only show part (ii), as the other part is established in the same
manner. Let (a1, a2) ∈ X1 × X2 and (b1, b2) ∈ Y1 × Y2. Using the distance
assumption on H1, let a1i0 , b

1
i1
, a1i2 , · · · , b

1
it1−1

, a1it1
be a t1-path in H1 between

a1 = a1i0 and a1it1
, where it1 is such that b1 = b1it1

. Using the distance assumption

on H2, let a2j0b
2
j1
a2j2 · · · a

2
jt2−1

b2jt2
be a t2-path in H2 between a2 = a2j0 and

b2 = b2jt2
. The following (t1 + t2)-path between (a1, a2) and (b1, b2) in H1 ⊲⊳ H2

traverses using one of the coordinates, then the other:

(a1, a2) = (a1i0 , a
2
j0)(b

1
i1 , b

2
j0)(a

1
i2 , a

2
j0) · · · (b

1
it1−1

, b2j0)(a
1
it1

, a2j0)

(b1it1
, b2j1)(a

1
it1

, a2j2) · · · (a
1
it1

, b2jt2−1
)(b1it1

, b2jt2
) = (b1, b2).

We use this product to show that no version of Theorem 2 may hold for
χ′
t. In combination with the trivial bound χ′

t(G) = O(dt) if ∆(G) ≤ d, we
deduce Proposition 3(ii) from Proposition 5, the following result and the fact
that χ′

2(Kd,d) = d2.

Proposition 9. Fix t ≥ 4 even. For every d ≥ 2 with d ≡ 0 (mod 2(t − 2)),
there exists a d-regular bipartite graph G with χ′

t(G) ≥ dt/(et2t−1).

Proof. Let t1 = t − 2 and d1 = (t1 − 1)d/t1. Let G1 = (V1, E1) be the
construction promised by Proposition 5 for d1 and t1. Since t1 is even, we
can write V1 = A1 ∪ A2 where A1 = ∪{U (i) | i ∈ {0, . . . , t − 1} even} and
B1 = ∪{U (i) | i ∈ {0, . . . , t − 1} odd}. This is a d1-regular balanced bipartite
graph, and for every a1, a

′
1 ∈ U (0) ⊆ A1 there exists a t1-path between a1 and

a′1. Moreover, it is possible to label A1 and B1 in comatching ordering so that
the indices for U (i) coincide with those for U (i+1) for every i ∈ {0, 2, . . . , t− 2}.

Let t2 = 1 and d2 = d− d1 = d/t1. Let G2 = (V2 = A2 ∪B2, E2) = Kd2,d2 .
This is a d2-regular balanced bipartite graph, and for every a2 ∈ A2, b2 ∈ B2,
there exists a t2-path between a2 and b2. Trivially any labelling of A2 and B2

gives rise to a matching ordering.
Let G = G1 ⊲⊳ G2, X = U (0)×A2 and Y = U (1)×B2. Now G is a d-regular

bipartite graph by Proposition 7, and by Proposition 8 for every (a1, a2) ∈ X
and (b1, b2) ∈ Y , there exists a (t− 1)-path between (a1, a2) and (b1, b2). Thus
the edges of G that span X × Y induce a clique in (L(G))t. The number of
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such edges is (since t > 3) at least

(

d1
2

)t1

d2

(

d1
2

+ d2

)

=

(

1−
1

t− 2

)t−2 (t− 1)dt

(t− 3)22t−1
≥

dt

et2t−1
.

Alternatively, Proposition 3(ii) follows from the following result, albeit at
the expense of a worse dependency on t in the multiplicative factor. For t ≥ 2,
we can take a (t− 1)-th power of the product operation to produce a bipartite
graph G of maximum degree d with Ω(dt) edges such that (L(G))t is a clique.

Proposition 10. Fix t ≥ 2. For every d ≥ 2 with d ≡ 1 (mod t − 1), there
exists a d-regular bipartite graph G = (V,E) with |E| = d·((d−1)/(t−1)+1)t−1

and χ′
t(G) = |E|.

Proof. Let d′ = (d − 1)/(t − 1) + 1 and G =⊲⊳t−1 Kd′,d′ , the (t − 1)-th power
of Kd′,d′ under the product ⊲⊳, where the factors are always taken in matching
ordering. By Proposition 7, G is a d-regular bipartite graph and has d · d′t−1

edges. By Proposition 8, there is a path of length at most t− 1 between every
pair of vertices in the same part if t− 1 is even, or in different parts if t− 1 is
odd. It follows that (L(G))t is a clique.

3 Proofs of Theorems 1 and 2

In this section we prove the main theorems. Before proceeding, let us set
notation and make some preliminary remarks.

Let G = (V,E) be a graph. We will often need to specify the vertices at
some fixed distance from a vertex or an edge of G. Let i be a non-negative
integer. If x ∈ V , we write Ai = Ai(x) for the set of vertices at distance exactly
i from x. If e ∈ E, we write Ai = Ai(e) for the set of vertices at distance
exactly i from an endpoint of e. We shall often abuse this notation by writing
A≤j for ∪i≤jAi and so forth. We will write Gi = G[Ai, Ai+1] to be the bipartite
subgraph induced by the sets Ai and Ai+1

We will also often need to specify a unique breadth-first search subgraph
BFS = BFS(x) (BFS = BFS(e), respectively) rooted at x (e, respectively).
Having fixed an ordering of V beforehand, i.e. writing V = {1, . . . , |V |}, BFS
is a graph on V whose edges are defined as follows. For every v ∈ Ai, i > 0, we
include the edge to that neighbour of v in Ai−1 being least in the ordering.

In proving the distance-t chromatic number upper bounds in Theorems 1
and 2 using Lemma 4, given x ∈ V , we need to consider the number of pairs
of distinct vertices in A≤t that are connected by a path of length at most t.
It will suffice to prove that this number is O(d2t−ε) as d → ∞ for some fixed
ε > 0. In fact, in our enumeration we may restrict our attention to paths of
length exactly t whose endpoints are in At. This is because |Ai| ≤ di for all i
and the number of paths of length exactly j containing some fixed vertex is at
most (j + 1)dj for all j.

Similarly, in proving the distance-t chromatic index upper bound in Theo-
rem 1 using Lemma 4, given e ∈ E, we need to consider the number of pairs
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of distinct edges that each have at least one endpoint in A<t and that are con-
nected by a path of length at most t − 1. It will suffice to prove that this
number is O(d2t−ε) as d → ∞ for some fixed ε > 0. Similarly as above, in
our enumeration we may restrict our attention to paths of length exactly t− 1
whose endpoint edges both intersect At−1.

As mentioned in the introduction, for Theorem 1 we will show a technical
refinement of the classic bound on ex(n,C2k) of Bondy and Simonovits [4]. We
borrow heavily from the strategy used by Pikhurko [12] to obtain the following
improvement on the bound of Bondy and Simonovits: for all k ≥ 2 and n ≥ 1,

ex(n,C2k) ≤ (k − 1)n1+1/k + 16(k − 1)n. (1)

This has since been improved by Bukh and Jiang [5]. We will require a bound
like (1) that only counts edges of a certain type in bipartite C2k-free graphs,
but depends on the cardinality of only one of the parts. Given a bipartite graph
H = (V = A∪B,E), we call an edge δ-bunched with respect to A if it is incident
to a vertex in B of degree at least δ.

Lemma 11. Fix k ≥ 2. For any nA ≥ 1, if H = (V = A ∪B,E) is a bipartite
C2k-free graph with |A| = nA, then the number of edges that are δ-bunched with

respect to A is at most δnA, where δ = 2(k − 1)n
1/k
A + 16(k − 1).

Proof. For a contradiction, let us assume for some nA ≥ 1 that there exists a
C2k-free bipartite graph H = (V = A ∪ B,E) with |A| = nA such that the
number of δ-bunched edges with respect to A is more than δnA. Let H ′ =
(V ′ = A′ ∪B′, E′) be the bipartite subgraph of H induced by those δ-bunched
edges so that A′ ⊆ A and B′ ⊆ B have smallest cardinality.

Every vertex in B′ has degree at least δ, and the vertices in A′ have degree
at least |E′|/|A′| > δ by assumption. So the average degree d(H ′) of H ′ is more
than δ. This implies that H ′ contains a subgraph H ′′ = (V ′′ = A′′ ∪B′′, E′′) of

minimum degree at least δ′ where δ′ = d(H ′)/2 > δ/2 = (k− 1)n
1/k
A +8(k− 1),

and so that A′′ ⊆ A′ and B′′ ⊆ B′.
Let x ∈ A′′ if k is odd and x ∈ B′′ otherwise. For every i ≥ 0, we define

Vi to be the set of vertices at distance i from x in H ′′, and Hi = H[Vi, Vi+1] to
be the bipartite subgraph of H ′′ induced by the sets Vi and Vi+1. We use two
intermediary results from [12] concerning the presence of a Θ-subgraph, defined
to be any subgraph that is a cycle of length at least 2k with a chord:

Lemma 12 ([12]). Let k ≥ 3. Any bipartite graph of minimum degree at least
k contains a Θ-subgraph.

Claim 13 ([12]). For i ∈ {0, . . . , k − 1}, Hi contains no Θ-subgraph.

These two statements, together with the fact that there is always a subgraph
whose minimum degree is at least half the average degree of the (super)graph,
imply that for k ≥ 3 and i ∈ {0, . . . , k − 1}, the average degree of Hi must
satisfy d(Hi) ≤ 2k − 2. Note that since H ′′ is bipartite there are no edges of
H ′′ spanning Vi for any i ∈ {1, . . . , k − 1}.

8



We now show by induction for every i ∈ {0, . . . , k − 1} that the average
degree from Vi+1 to Vi is at most k− 1+ ε where ε = 3(k− 1)2/δ′, i.e. that the
number e(Hi) of edges in Hi satisfies

e(Hi) ≤ (k − 1 + ε)|Vi+1|. (2)

The base case i = 0 is clearly true since each vertex of V1 has exactly one
edge to V0. Now for the induction let i ∈ {1, . . . , k − 1} and assume that the
statement is true for i − 1. By the inductive hypothesis and the properties of
H ′′, we have

e(Hi) =
∑

y∈Vi

degVi+1
(y) ≥ (δ′ − (k − 1 + ε))|Vi|. (3)

This shows that the average degree from Vi to Vi+1 is at least δ′ − (k− 1+ ε) ≥
2k − 2 (where we used that δ′ ≥ 8(k − 1) and ε ≤ 3(k − 1)/8). In particular,
|Vi+1| > 0. It cannot be that the average degree from Vi+1 to Vi is greater than
2k − 2, or else we would not have d(Hi) ≤ 2k − 2. So e(Hi) ≤ (2k − 2)|Vi+1|.
Combining this with (3), we obtain

|Vi| ≤
2k − 2

δ′ − (k − 1 + ε)
|Vi+1|.

Again using the density condition on Hi, this implies

2e(Hi)

(1 + 2k−2
δ′−(k−1+ε))|Vi+1|

≤
2e(Hi)

|Vi+1|+ |Vi|
= d(Hi) ≤ 2k − 2

which in turn implies (using that δ′ ≥ 8(k − 1) and ε ≤ 3(k − 1)/8) that

e(Hi) ≤

(

k − 1 +
2(k − 1)2

δ′ − (k − 1 + ε)

)

|Vi+1| ≤ (k − 1 + ε)|Vi+1|,

as required.
Combining (2) and (3), we have that for all i ∈ {0, . . . , k − 1}

|Vi+1|

|Vi|
≥

δ′ − (k − 1 + ε)

k − 1 + ε
≥

δ′

k − 1 + 2ε
,

where the last inequality again uses that δ′ ≥ 8(k−1) and ε ≤ 3(k−1)/8 together

with the definition of ε. Since δ′ > (k − 1)n
1/k
A + 8(k − 1) ≥ (k − 1)n

1/k
A , we

have by the choice of x in A′′ or B′′ that

nA ≥ |A′′| ≥ |Vk| ≥

(

δ′

k − 1 + 2ε

)k

>

(

(k − 1)n
1/k
A + 8(k − 1)

k − 1 + 6(k − 1)n
−1/k
A

)k

> nA,

a contradiction. This completes the proof.
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Proof of Theorem 1(i). By the probabilistic construction described in [2], it suf-
fices to prove only the upper bound in the statement. We may also assume that
t ≥ 2, since it was already observed in [10] that for any ℓ ≥ 3 the chromatic
number of any Cℓ-free graph of maximum degree d is O(d/ log d).

Let ℓ ≥ 2t + 2 be even, let G = (V,E) be a graph of maximum degree at
most d such that G contains no Cℓ as a subgraph, and let x ∈ V . Let T denote
the number of pairs of distinct vertices in At that are connected by a path of
length exactly t. Let ε = (ℓ − 2t)/ℓ ∈ (0, 1). As discussed at the beginning
of the section, it suffices for the proof to show that T ≤ Cd2t−ε where C is a
constant independent of d, by Lemma 4.

Let us count the possibilities for a path x0 . . . xt of length t between two
distinct vertices x0, xt ∈ At. Setting δ = 2(ℓ/2 − 1)d2t/ℓ + 16(ℓ/2 − 1), we
consider three cases.

(i) The penultimate vertex in the path satisfies xt−1 ∈ At−1 ∪ At. By the
assumption that t ≥ 2, we obtain that |At−1∪At| ≤ dt. By (1), the number
of edges in G[At−1 ∪At] is at most (ℓ/2 − 1)dt(1+2/ℓ) + 16(ℓ/2 − 1)dt. So
the number of choices for xt−1xt is at most 8.5ℓdt+1−ε. The number of
choices for the rest of the path is at most dt−1.

(ii) The penultimate vertex satisfies xt−1 ∈ At+1 and xt−1xt is δ-bunched in
Gt with respect to At. Then Lemma 11 ensures that there are at most
δdt = 2(ℓ/2 − 1)dt(1+2/ℓ) + 16(ℓ/2 − 1)dt ≤ 9ℓdt+1−ε choices for xt−1xt.
The number of choices for the rest of the path is at most dt−1.

(iii) The penultimate vertex satisfies xt−1 ∈ At+1 and xt−1xt is not δ-bunched
in Gt with respect to At. By the definition of δ-bunched, there are fewer
than δ ≤ 9ℓd1−ε choices for xt given xt−1, and so at most 9ℓdt−ε choices
given x0. There are at most dt choices for x0.

Summing over the above cases, the overall number of choices for the path
x0 . . . xt is at most 26.5ℓd2t−ε, giving the required bound on T .

Proof of Theorem 1(ii). By the probabilistic construction described in [9], it
suffices to prove only the upper bound in the statement. To that end, let ℓ ≥ 2t
be even, let G = (V,E) be a graph of maximum degree at most d such that G
contains no Cℓ as a subgraph, and let e ∈ E. Let T denote the number of pairs
of distinct edges in G[At−1] or Gt−1 that are connected by a path of length t−1.
Let ε = (ℓ− 2t+ 2)/ℓ ∈ (0, 1). As discussed at the beginning of the section, it
suffices to show that T ≤ Cd2t−ε where C is a constant independent of d, by
Lemma 4.

Let us count the possibilities for a path x0 . . . xt+1 where x1 . . . xt is a path
of length t− 1 between two distinct edges x0x1 and xtxt+1 of G[At−1] or Gt−1.
Setting δ = 2(ℓ/2 − 1)(2dt−1)2/ℓ + 16(ℓ/2 − 1), we consider five cases.

(i) The last edge xtxt+1 is δ-bunched in Gt−1 with respect to At−1. Then
using Lemma 11 there are at most 2δdt−1 = 22+2/ℓ(ℓ/2− 1)d(t−1)(1+2/ℓ) +
32(ℓ/2 − 1)dt−1 ≤ (16 + 21+2/ℓ)ℓdt−ε choices for xtxt+1. The number of
choices for the rest of the path is at most dt.

10



(ii) The penultimate vertex satisfies xt ∈ At and xtxt+1 is not δ-bunched in
Gt−1 with respect to At−1. By the definition of δ-bunched, there are fewer
than δ ≤ (8+ 22/ℓ)ℓd1−ε choices for xt+1 given xt. The number of choices
for x0x1 is at most 4dt (where the extra factor 2 accounts for whether
x0 or x1 is in At) and then given x1 there are at most dt−1 choices for
x1 . . . xt. So there are at most 4(8 + 22/ℓ)ℓd2t−ε choices for this case.

(iii) The penultimate vertex satisfies xt ∈ At−1 and the penultimate edge
xt−1xt is contained in G[At−2 ∪At−1]. By (1) together with the fact that
|At−2 ∪ At−1| ≤ 2dt−1, the number of edges in G[At−2 ∪At−1] is at most
21+2/ℓ(ℓ/2 − 1)d(t−1)(1+2/ℓ) + 32(ℓ/2 − 1)dt−1. So the number of choices
for xt−1xt is at most (16 + 22/ℓ)ℓdt−ε. The number of choices for the rest
of the path is at most dt.

(iv) The penultimate vertex satisfies xt ∈ At−1 and the penultimate edge
xt−1xt is δ-bunched in Gt−1 with respect to At−1. Again by Lemma 11
there are at most 2δdt−1 ≤ (16 + 21+2/ℓ)ℓdt−ε choices for xt−1xt. The
number of choices for the rest of the path is at most dt.

(v) The penultimate vertex satisfies xt ∈ At−1 and xt−1xt is not δ-bunched
in Gt−1 with respect to At−1. By the definition of δ-bunched, there are
fewer than δ ≤ (8 + 22/ℓ)ℓd1−ε choices for xt−1 given xt. The number of
choices for xt+1xt is at most 4dt. The number of choices for the rest of
the path is at most dt−1, so there are at most 4(8+22/ℓ)ℓd2t−ε choices for
this case.

Summing over the above cases, the overall number of choices for the path
x0 . . . xt+1 is at most (112+12 ·22/ℓ)ℓd2t−ε giving the required bound on T .

Proof of Theorem 2. By the probabilistic construction described in [2], it suf-
fices to prove only the upper bound in the statement. Moreover, we may assume
t ≥ 3 due to Johansson’s result [8] and our observation in [10].

Let ℓ ≥ 3t be odd, let G = (V,E) be a graph of maximum degree at most
d such that G contains no Cℓ as a subgraph, and let x ∈ V . Any path all of
whose non-endpoint vertices are in A≥t we call peripheral. Let T denote the
number of pairs of distinct vertices in At that are connected by a peripheral
path of length t. For the same reasons as discussed at the beginning of the
section, it suffices for the proof to show that T ≤ Cd2t−1 where C is a constant
independent of d, by Lemma 4.

Since ℓ is odd, we may write ℓ = 3t+2k for some non-negative integer k. For
j ∈ {0, 1, . . . , 2k}, let us call a vertex v ∈ At j-implantable if it is the endpoint
of some peripheral path of length j, the other endpoint of which (if it exists) is
in At \ {v}.

Fix v to be a 2k-implantable vertex and P = v0v1 . . . v2k a path certifying
its implantability, so that v0 = v and (if k > 0) v2k ∈ At \ {v}. Notice that
crudely the number of peripheral paths of length t starting at v which intersect
P at another vertex is at most 2ktdt−1. Now consider the set Y ⊆ At \ {v}
such that there is a peripheral path of length t between v and y that does not
intersect P except at v for all y ∈ Y . Let us see that there is some vertex
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aY ∈ A1 such that aY is an ancestor of every element of Y in the tree BFS. If
not, then there exist distinct y1, y2 ∈ Y such that the lowest common ancestor
of y1 and y2 in BFS is x. Since BFS is a tree, the lowest common ancestor
of v2k and y1 (without loss of generality) is also x. But then we have found a
cycle of length 3t+2k that contains x, v2k, v, y1, in that order, a contradiction.
Thus |Y | ≤ dt−1, the number of pairs with v that are counted by T is at most
(1 + 2kt)dt−1, and the number of pairs with a 2k-implantable vertex that are
counted by T is at most (1 + 2kt)d2t−1.

Observe we are already done if k = 0, so assume from here on that k > 0.
It remains for us to (crudely) count the number of paths z0 . . . zt of length

t that have two distinct non-2k-implantable endpoints z0, zt ∈ At. Let κ0 = t
if k mod t = 0 and κ0 = k mod t otherwise. We organise our count according
to a parameter j < 2k defined as the largest integer such that j ≥ 2κ0, j ≡ 2κ0
(mod t), and one of z0 and zt is j-implantable. If this is not defined, then we
know that z0 and zt are not 2κ0-implantable so we may let j = 0.

If j = 0, then trivially the number of choices for z0 is at most dt and the
number of choices for the sub-path z0 . . . zt−κ0

is dt−κ0 . Given zt−κ0
, the choice

for the remainder subpath zt−κ0
. . . zt is restricted by the fact that zt may not

be 2κ0-implantable; in particular, all such sub-paths must intersect at a vertex
other than zt−κ0

. It follows that the number of choices for z0 . . . zt in this case
is at most dt · dt−κ0 · κ20d

κ0−1 = κ20d
2t−1.

So suppose that j > 0. By the definition of j, we deem one of z0 and zt to
be j-implantable. Fix v to be a j-implantable vertex and P = v0v1 . . . vj a path
certifying its implantability, so that v0 = v and vj ∈ At \ {v}. The number of
peripheral paths of length t starting at v which intersect P is at most jtdt−1.
Consider the set Y ⊆ At \ {v} such that there is a peripheral path of length
t between v and y that does not intersect P except at v for all y ∈ Y . Every
y ∈ Y is (j + t)-implantable, as certified by the path P concatenated with the
path certifying y ∈ Y . Recalling the definition of j, in particular that neither
z0 nor zt may be (j + t)-implantable, we have just shown that the number of
choices for z0 . . . zt in this case is at most 2jtd2t−1.

By summing over all possible j, we obtain that the overall number of choices

for z0 . . . zt is at most
(

κ20 + 2
∑(2k−2κ0)/t

ι=0 (2κ0 + ιt)t
)

d2t−1. It therefore follows

that T ≤
(

1 + 2kt+ κ20 + 2
∑(2k−2κ0)/t

ι=0 (2κ0 + ιt)t
)

d2t−1, as required.

Our impression is that it might be possible to improve upon the value 3t
in Theorem 2; however, in order to do so, it seems one would have to take
a different approach. This is because of a simple construction of a d-regular
graph G with no odd cycle of length less than 3t such that Gt does not satisfy
the density conditions demanded by Lemma 4. Roughly, we take the main
example of Proposition 5 but around a cycle of length 3t rather than of length
t. More precisely, the vertex set is ∪3t−1

i=0 U (i) where each U (i) is a copy of [d/2]t.

For all i ∈ {0, . . . , 3t − 1}, we join an element (x
(i)
0 , . . . , x

(i)
t−1) of U (i) and an

element (x
(i+1 mod 3t)
0 , . . . , x

(i+1 mod 3t)
t−1 ) of U (i+1 mod 3t) by an edge if the t-tuples

agree on all symbols except possibly at coordinate i mod t. It is straightforward
to check that Gt is a graph in which all vertices have degree Θ(dt) and every
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neighbourhood is spanned by Θ(d2t) edges, meaning that Lemma 4 is ineffective
here. But neither is G an example to certify sharpness of the value 3t in
Theorem 2, since it is also straightforward to check that χt(G) = o(dt).

4 Concluding remarks and open problems

Our goal was to address the question, what is the asymptotically largest value of
χt(G) or of χ′

t(G) among graphs G with maximum degree at most d containing
no cycle of length ℓ, where d → ∞? The case t = 1 for both parameters and
the case t = 2 for χ′

t followed from earlier work, but we showed more generally
that for each fixed t this question for both parameters can be settled apart from
a finite number of cases of ℓ. These exceptional cases are a source of mystery.
We would be very interested to learn if the cycle length constraints 2t, 2t + 2
and 3t in Theorems 1 and 2 could be weakened (or not).

More specifically, writing χt(d, ℓ) = sup{χt(G) | ∆(G) ≤ d,G ) Cℓ} and
χ′
t(d, ℓ) = sup{χ′

t(G) | ∆(G) ≤ d,G ) Cℓ}, the following questions are natural,
even if there is no manifest monotonicity in ℓ.

1. For each t ≥ 1, is there a critical even ℓet such that for any even ℓ, if ℓ < ℓet
then χt(d, ℓ) = Θ(dt), while if ℓ ≥ ℓet then χt(d, ℓ) = Θ(dt/ log d)?

2. For each t ≥ 2, is there a critical even ℓ′t such that for any even ℓ, if ℓ < ℓ′t
then χ′

t(d, ℓ) = Θ(dt), while if ℓ ≥ ℓ′t then χ′
t(d, ℓ) = Θ(dt/ log d)?

3. For each t ≥ 1 odd, is there a critical odd ℓot such that for any odd ℓ, if
ℓ < ℓot then χt(d, ℓ) = Θ(dt), while if ℓ ≥ ℓot then χt(d, ℓ) = Θ(dt/ log d)?

We knew from before that ℓe1 = 4, ℓo1 = 3, ℓe2 = 6, ℓ′2 = 4, ℓ′3 = 6, ℓ′4 = 8, and
ℓ′6 = 12. In this paper, we showed that there are linear in t upper bounds on
all these critical values, provided the values are well-defined.

The above three questions are natural analogues to open questions of Alon
and Mohar [2] and of Kaiser and the first author [9] that ask for a critical
girth gt (resp. g′t) for which there is an analogous decrease in the asymptotic
extremal behaviour of the distance-t chromatic number (resp. index). If these
critical values all exist, it would be natural to think that gt = min{ℓet , ℓ

o
t } and

g′t = ℓ′t, and moreover, if t is odd, that |ℓot−ℓet | = 1. But there is limited evidence
for the existence questions, let alone this stronger set of assertions. We have
already established other lower bounds for these hypothetical critical values
in [10], but for none of these critical values is there any general construction
known to certify a lower bound that is unbounded as t → ∞ .

As mentioned in the introduction, Vu [14] proved that the exclusion of any
fixed bipartite graph is sufficient for a O(d2/ log d) upper bound on the strong
chromatic index of graphs of maximum degree d. One might wonder, similarly,
for each t ≥ 2 is there a natural wider class of graphs than sufficiently large
cycles (of appropriate parity) whose exclusion leads to asymptotically better
upper bounds on the distance-t chromatic number or index?
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