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Abstract

In 1998, Reed conjectured that every graph G satisfies χ(G) ≤ ⌈ 1

2
(∆(G) + 1 + ω(G))⌉,

where χ(G) is the chromatic number of G, ∆(G) is the maximum degree of G, and ω(G) is the
clique number of G. As evidence for his conjecture, he proved an “epsilon version” of it, i.e.
that there exists some ε > 0 such that χ(G) ≤ (1− ε)(∆(G) + 1) + εω(G). It is natural to ask
if Reed’s conjecture or an epsilon version of it is true for the list-chromatic number. In this
paper we consider a “local version” of the list-coloring version of Reed’s conjecture. Namely,
we conjecture that if G is a graph with list-assignment L such that for each vertex v of G,
|L(v)| ≥ ⌈ 1

2
(d(v) + 1 + ω(v))⌉, where d(v) is the degree of v and ω(v) is the size of the largest

clique containing v, then G is L-colorable. Our main result is that an “epsilon version” of this
conjecture is true, under some mild assumptions.

Using this result, we also prove a significantly improved lower bound on the density of

k-critical graphs with clique number less than k/2, as follows. For every α > 0, if ε ≤ α
2

1350
,

then if G is an L-critical graph for some k-list-assignment L such that ω(G) < ( 1
2
− α)k and

k is sufficiently large, then G has average degree at least (1 + ε)k. This implies that for every
α > 0, there exists ε > 0 such that if G is a graph with ω(G) ≤ ( 1

2
−α)mad(G), where mad(G)

is the maximum average degree of G, then χℓ(G) ≤ ⌈(1− ε)(mad(G) + 1) + εω(G)⌉. It also
yields an improvement on the best known upper bound for the chromatic number of Kt-minor
free graphs for large t, by a factor of .99982.

1 Introduction

Let G be a graph, and let L = (L(v) : v ∈ V (G)) be a collection of lists which we call available
colors. If each set L(v) is non-empty, then we say that L is a list-assignment for G. If k is an
integer and |L(v)| ≥ k for every v ∈ V (G), then we say that L is a k-list-assignment for G. An
L-coloring of G is a mapping φ with domain V (G) such that φ(v) ∈ L(v) for every v ∈ V (G) and
φ(u) 6= φ(v) for every pair of adjacent vertices u, v ∈ V (G). If G has an L-coloring, then we say
G is L-colorable. We say that G is k-list-colorable, or k-choosable, if G has an L-coloring for every
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k-list-assignment L. If L(v) = {1, . . . , k} for every v ∈ V (G), then we call an L-coloring of G a
k-coloring, and we say G is k-colorable if G has a k-coloring. The chromatic number of G, denoted
χ(G), is the smallest k such that G is k-colorable. The list-chromatic number of G, denoted χℓ(G),
is the smallest k such that G is k-list-colorable.

It is easy to see that for every graph G,

ω(G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1, (1)

where ω(G) denotes the size of a largest clique in G and ∆(G) denotes the maximum degree of
a vertex in G. If G is a clique or an odd cycle then the upper bound in (1) is tight for both the
chromatic number and list-chromatic number. A classical theorem of Brooks [2] says that for the
chromatic number, this is essentially the only case in which it is tight.

Theorem 1.1 (Brooks’ Theorem [2]). If G is a connected graph that is not a clique or odd cycle,
then χ(G) ≤ ∆(G).

In 1998, Reed [20] famously conjectured that, up to rounding, the chromatic number of a graph
is at most the average of its clique number and maximum degree plus one.

Conjecture 1.2 (Reed’s Conjecture [20]). For every graph G,

χ(G) ≤
⌈

1

2
(∆(G) + 1 + ω(G))

⌉

.

As evidence for his conjecture, Reed [20] proved that the chromatic nuumber of a graph is at
most a weighted average of its clique number and maximum degree plus one. We call this an
“epsilon version” of Reed’s Conjecture.

Theorem 1.3 (Reed [20]). There exists ε > 0 such that for every graph G,

χ(G) ≤ (1− ε)(∆(G) + 1) + εω(G).

Reed [20] originally proved that Theorem 1.3 holds for graphs of sufficiently large maximum
degree for ε = 1.4 · 10−8. In 2016, Bonamy, Perrett, and Postle [1] improved this to ε = 1

26 .
Recently, Delcourt and Postle [5] (see [6] for an extended abstract) improved this further to ε = 1

13 .
The blowup of a 5-cycle demonstrates that Theorem 1.3 does not hold for ε ≥ 1

2 and that the
rounding in Reed’s Conjecture is necessary.

It is natural to wonder if Brooks’ Theorem or even Reed’s Conjecture is true for the list-chromatic
number. We conjecture that for Reed’s Conjecture this is the case.

Conjecture 1.4. For every graph G,

χℓ(G) ≤
⌈

1

2
(∆(G) + 1 + ω(G))

⌉

.

The result of Delcourt and Postle [5] is actually proved for the list-chromatic number, implying
an “epsilon version” of Conjecture 1.4.

In 1979, in one of the papers that introduced list-coloring, Erdős, Rubin, and Taylor [8] proved
the following classical theorem.
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Theorem 1.5 (Erdős, Rubin, and Taylor [8]). Let G be a connected graph with list-assignment L.
If for every v ∈ V (G), |L(v)| ≥ d(v), then G is L-colorable, unless every block of G is a clique or
an odd cycle and for every v ∈ V (G), |L(v)| = d(v).

Note that Theorem 1.5 implies that Brooks’ Theorem is true for the list-chromatic number. We
consider Theorem 1.5 to be the archetype of what we call a “local version.” The main focus of
this paper is the following conjecture, which we consider to be the natural “local version” of Reed’s
Conjecture and Conjecture 1.4.

Conjecture 1.6 (Local Version of Reed’s Conjecture). If G is a graph with list-assignment L such
that for every v ∈ V (G),

|L(v)| ≥
⌈

1

2
(d(v) + 1 + ω(v))

⌉

,

where ω(v) is the size of the largest clique containing v, then G is L-colorable.

Note that if true, Conjecture 1.6 implies Reed’s Conjecture and Conjecture 1.4. As evidence for
Conjecture 1.6, we prove an “epsilon version” of it, under certain mild assumptions. The following
is the main result of this paper.

Theorem 1.7. Let ε = 1
330 . If G is a graph of sufficiently large maximum degree and L is a

list-assignment for G such that for all v ∈ V (G), |L(v)| ≥ ω(v) + log10(∆(G)) and

|L(v)| ≥ (1 − ε)(d(v) + 1) + εω(v),

then G is L-colorable.

We prove Theorem 1.7 by proving structural properties of a “minimum counterexample” that
enable us to then find an L-coloring using the probabilistic method. The assumption in Theorem 1.7
that for each vertex v, |L(v)| ≥ ω(v)+log10(∆(G)), implies both that no vertex has a neighborhood
that is “too close” to being a clique and that the minimum number of available colors for a vertex is
sufficiently large. As we will see, this in turn implies that a minimum counterexample to Theorem 1.7
has sufficiently large minimum degree. It would be interesting to prove Theorem 1.7 with the
hypothesis that |L(v)| ≥ ω(v)+ log10(∆(G)) for each vertex v replaced with the weaker assumption
that the minimum degree of G is at least log10(∆(G)). As we discuss in Section 2, this may be
possible to prove with an extension of our methods, at the expense of a worse value of ε. However,
since we use the probabilistic method, we do not believe our techniques could be extended to to
prove Conjecture 1.6 in full.

In Section 2, we provide an overview of the proof of Theorem 1.7, and Sections 3-6 are devoted
to its proof. In order to prove Theorem 1.7, we needed to develop a new version of Talagrand’s
“Concentration Inequality,” Theorem 6.3, which we prove in Appendix A. Our proof of Theorem 6.3
corrects a flaw in a version of Talagrand’s Inequality in the book of Molloy and Reed [15, Talagrand’s
Inequality II] (see Remark 2 in Section 6).

We now discuss some applications of our result.

1.1 King’s Conjecture

In 2009, King [11] conjectured the following strengthening of Reed’s Conjecture.

3



Conjecture 1.8 (King [11]). For every graph G,

χ(G) ≤ max
v∈V (G)

⌈

1

2
(d(v) + 1 + ω(v))

⌉

.

King’s idea behind Conjecture 1.8 was that a strengthened form of Reed’s Conjecture may be
easier to prove using induction. For certain classes of graphs, this idea has been useful. Using this
and the structure theory of claw-free graphs of Chudnovsky and Seymour, King [11] proved that
Reed’s Conjecture is true for claw-free graphs. The proof also appears in [12]. In 2013, Chudnovsky
et al. [4] proved that King’s Conjecture holds for quasi-line graphs, and in 2015 King and Reed [12]
proved it for claw-free graphs with a 3-colorable complement.

Note that Conjecture 1.6, if true, implies Conjecture 1.8, even for list-coloring. The first ap-
plication of our main result is that it implies that an “epsilon version” of Conjecture 1.8 is true,
assuming G does not contain a clique of size within a factor of 329

330 − o(1) of the maximum degree
of G. The following corollary follows easily from Theorem 1.7.

Corollary 1.9. Let ε ≤ 1
330 . If G is a graph of sufficiently large maximum degree such that

ω(G) ≤ (1− ε)∆(G) − log10(∆(G)), then

χℓ(G) ≤ max
v∈V (G)

(1− ε)(d(v) + 1) + εω(v).

1.2 Critical Graphs

Now we discuss an application of Theorem 1.7 to critical graphs. A graph G is k-critical if G is not
(k−1)-colorable but every proper induced subgraph of G is, and if L is a list-assignment for G, then
G is L-critical if G is not L-colorable but every proper induced subgraph of G is. A list-assignment
L is k-uniform if for every vertex v, |L(v)| = k. We denote the average degree of a graph G by
ad(G). The average degree of critical graphs has been extensively studied. Note that a k-critical
graph has no vertex of degree less than k− 1, so the average degree of a k-critical graph is trivially
at least k − 1. Much work has been devoted to improving this bound. In a breakthrough result
from 2014, Kostochka and Yancey [14] proved the following lower bound on the number of edges in
k-critical graphs.

Theorem 1.10 (Kostochka and Yancey [14]). If k ≥ 4 and G is k-critical, then

|E(G)| ≥
⌈

(k + 1)(k − 2)|V (G)| − k(k − 3)

2(k − 1)

⌉

.

Theorem 1.10 implies the following asymptotic lower bound on the average degree of k-critical
graphs.

Corollary 1.11 (Kostochka and Yancey [14]). Let k ≥ 4, and let G be a k-critical graph on n
vertices. Then as n approaches infinity,

ad(G) ≥ k − 2

k − 1
− o(1).

Theorem 1.10 is tight for every k for an infinite family of graphs, as shown by Ore [18]. Therefore
the asymptotic bound in Corollary 1.11 can not be improved. Kostochka and Yancey asked if their
bound can be improved by excluding certain subgraphs, such as cliques, and if similar results hold
for list-coloring. This was considered earlier by Kostochka and Stiebitz [13].
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Theorem 1.12 (Kostochka and Stiebitz [13]). For every fixed r, if G is L-critical for some (k−1)-
uniform list-assignment L and ω(G) ≤ r, then

ad(G) ≥ 2k − o(k).

It is natural to not only consider graphs with bounded clique number but also graphs with clique
number bounded by a function of k. Theorem 1.7 implies that the bound in Corollary 1.11 can be
improved for large k if G is an L-critical graph for some k-list-assignment L and G has no clique of
size at least k/2, as follows.

Theorem 1.13. For every α > 0, if ε ≤ α2

1350 then the following holds. If G is an L-critical graph
for some k-list-assignment L such that ω(G) < (12 − α)k and k is sufficiently large, then

ad(G) > (1 + ε)k.

1.3 Maximum Average Degree

The bound on the chromatic number supplied by Reed’s Conjecture can be viewed as the average
of the lower and upper bounds provided in (1), as previously mentioned. However, the upper bound
in (1) can easily be improved by replacing ∆(G) with ⌊mad(G)⌋, where mad(G) = maxH⊆G ad(H),
the maximum average degree of G. In the spirit of Reed’s Conjecture, we conjecture the following
which, if true, implies Reed’s Conjecture.

Conjecture 1.14. For every graph G,

χℓ(G) ≤
⌈

1

2
(mad(G) + 1 + ω(G))

⌉

.

Note that Conjecture 1.14, if true, would be tight for K2,4, since χℓ(K2,4) = 3. More generally,
χℓ(Kt,tt) = t+1 and mad(Kt,tt) = 2tt/(1+ tt−1) ≤ 2t, so the graphs Kt,tt provide an infinite family
for which the difference of the right and left side of the inequality in Conjecture 1.14 is at most one.

Another application of Theorem 1.7 is an “epsilon version” of Conjecture 1.14 for graphs with
clique number less than half their maximum average degree.

Theorem 1.15. For every α > 0, there exists ε > 0 such that the following holds. For every graph
G such that ω(G) ≤ (12 − α)mad(G),

χℓ(G) ≤ ⌈(1− ε)(mad(G) + 1) + εω(G)⌉ .

Theorem 1.15 follows easily from Theorem 1.13. We include the proof in Section 7.

1.4 Kt-minor free graphs

We conclude this section with an application of Theorem 1.13 to Hadwiger’s conjecture, which is
considered one of the most important open problems in graph theory. Hadwiger [9] conjectured in
1943 that if a graph has no Kt+1-minor, then it has chromatic number at most t. The best known
upper bound on the chromatic number of Kt-minor free graphs to date uses the fact that the
chromatic number of a graph is at most its maximum average degree, combined with the following
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theorem of Thomason [23] providing a tight upper bound on the average degree of Kt-minor free
graphs.1

Theorem 1.16 (Thomason [23]). If G is a graph with no Kt-minor, then

ad(G) ≤ (γ + o(1))t
√

log t,

where γ = 0.63817... is an explicit constant.

By combining Theorem 1.13 with Theorem 1.16, we can improve the best known upper bound
on the chromatic number of Kt-minor free graphs by a constant factor, as follows.

Corollary 1.17. If G is a graph with no Kt-minor, then

χℓ(G) ≤ (.99982 · γ + o(1))t
√

log t,

where γ is the explicit constant from Theorem 1.16.

Proof. It suffices to show that for every ξ > 0, if kt = .99982(γ+ξ)t
√
log t, then for sufficiently large

t, every Kt-minor free graph is kt-list-colorable. Suppose not. Then there exists a graph G with no
Kt-minor that is L-critical for some kt-list-assignment L where kt ≥ 1000t. Using Theorem 1.16,
we may assume ad(G) ≤ kt/.99982.

Let α = 499/1000 and ε = α2/1350. Since ω(G) < t, ω(G) < (12 − α)kt. Since G is L-critical,
by Theorem 1.13, ad(G) > (1 + ε)kt. But 1 + ε ≥ 1/.99982, a contradiction.

2 Overview of the Proof of Theorem 1.7 and Outline of the

Paper

The following definition will be useful.

Definition 2.1. Let G be a graph. For each v ∈ V (G) we let

GapG(v) = d(v) + 1− ω(v),

and if L is a list-assignment for G, we let

SaveL(v) = d(v) + 1− |L(v)|.

If the graph G or list-assignment L is clear from the context, we may omit the subscript G or L
in Gap and Save, respectively. Note that the conditions of Theorem 1.7 imply that for each vertex
v ∈ V (G), Gap(v)− Save(v) ≥ log10(∆(G)) and Save(v) ≤ εGap(v).

First we discuss our strategy for proving Theorem 1.7. We use a variant of a technique called
the “naive coloring procedure,” given its name by Molloy and Reed [15]. Essentially, we analyze
a random partial coloring of a graph and prove that with nonzero probability this partial coloring
can be extended deterministically to a coloring of the whole graph. The random partial coloring is
described formally in Definition 3.8. After the random partial coloring, we let G′ be the subgraph

1Following acceptance of this paper for publication in JCTB, further improvements were made by Norin and
Song [17] and Postle [19].
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induced by G on the vertices that are not colored, and we let L′ be a list-assignment for G so that
any L′-coloring of G′ can be combined with the random partial coloring to obtain an L-coloring of
G. We prove that with nonzero probability G′ is L′-colorable. To do this, we would like to show
that with high probability, for every vertex v ∈ V (G′), |L′(v)| > dG′(v), i.e. that SaveL′(v) ≤ 0.
However, this is not the case. In fact, it may be likely that SaveL′(v) = SaveL(v). For example, the
neighborhood of a vertex v may form

√

d(v) cliques, while for the list-assignment L, the vertices in
each clique have the same list of available colors and vertices in different cliques have disjoint lists
of available colors. Nevertheless, if a vertex v has many neighbors with at least as many available
colors, we are able to show that SaveL′(v) < SaveL(v). This motivates the following definitions.

Definition 2.2. Let α be some constant to be determined later. Let G be a graph with list-
assignment L, let v ∈ V (G), and let u ∈ N(v).

• If |L(u)| < |L(v)|, then we say u is a subservient neighbor of v.
• If |L(u)| ∈ [|L(v)|, (1 + α)|L(v)|), then we say u is an egalitarian neighbor of v.
• If |L(u)| ≥ (1 + α)|L(v)|, then we say u is a lordlier neighbor of v.

For convenience, we will let Lord(v) denote the set of lordlier neighbors of v, Egal(v) denote the
set of egalitarian neighbors of v, and Subserv(v) denote the set of subservient neighbors of v.

Definition 2.3. Let β be some constant to be determined later. Let G be a graph with list-
assignment L, let v ∈ V (G), and let u be an egalitarian neighbor of v.

• If |L(u)| < |L(v)|+ βGap(v), then we say u is a strongly egalitarian neighbor of v.
• If |L(u)| ≥ |L(v)|+ βGap(v), then we say u is a weakly egalitarian neighbor of v.

For convenience, we will let SEgal(v) denote the set of strongly egalitarian neighbors of v, WEgal(v)
denote the set of weakly egalitarian neighbors of v, and NEgal(v) = N(v)− Egal(v).

If a vertex v has many subservient neighbors, then we say v is lordly. The names “subservient”,
“egalitarian”, and “lordlier” neighbors are evocative of feudalism in medeival Europe, where power
is analogous to list size. As mentioned previously, if v is a lordly vertex, we are unable to guarantee
that SaveL′(v) < SaveL(v) for certain list-assignments for v’s subservient neighbors. We resolve
this issue by coloring vertices before their subservient neighbors when finding an L′-coloring, thus
giving “priority” to the lordly vertices.

A lordlier neighbor also has the power to choose from more colors. If v has many lordlier
neighbors or weakly egalitarian neighbors, then it is likely that after the random partial coloring v
has many neighbors receiving a color not in L(v). If v has many egalitarian neighbors, then it is
likely that after the random partial coloring there are many colors assigned to multiple neighbors
of v. In both cases, SaveL′(v) < SaveL(v).

A common technique in coloring is to attempt to greedily color a vertex of smallest degree,
since fewer neighbors means fewer potential color conflicts. However, for our “local version,” this
technique is not so useful because vertices of lower degree also have fewer available colors. Our
trick to finding an L′-coloring of G′ is to order the vertices of G′ by the size of their list in L,
from greatest to least, and color greedily, which may seem counterintuitive. This works because
we are able to guarantee for every vertex v ∈ V (G′), that SaveL′(v) is smaller than the number of
neighbors of v in G′ that will be colored after v in this ordering, and thus |L′(v)| is larger than the
number of neighbors of v in G′ that will be colored before v in this ordering.

For each vertex v, after an application of our naive coloring procedure, we refer to the number of
neighbors of v receiving a color not in L(v), plus the multiplicity less 1 of each color in L(v) assigned
to multiple neighbors, plus the number of uncolored subservient neighbors of v as the “savings”
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for v. In order to prove Theorem 1.7, we first prove Theorem 3.11, which essentially says that it
suffices to show that the expected savings for each vertex is at least SaveL(v) and is also sufficiently
large. Here “sufficiently large” means poly log∆, which we need in order to show that the savings
for each vertex is sufficiently close to its expectation with probability inverse to a polynomial in
∆, in which case we can apply the Lovász Local Lemma to guarantee an outcome for which the
savings for every vertex is close to its expectation.

Using Theorem 3.11 it suffices to show that the expected savings for a vertex v is Ω(Gap(v)).
If the savings for each vertex v is at least Ω(Gap(v)), then the condition in Theorem 1.7 that
Save(v) ≤ εGap(v) guarantees that the savings for v is at least Save(v) if ε is small enough.
Moreover, the technical condition in Theorem 1.7 that Gap(v) − Save(v) ≥ log10(∆(G)) ensures
that the savings are large enough to obtain concentration. In order to prove Theorem 1.7 without
this latter condition with our methods, it is necessary to find a way to show that a vertex v with
Gap(v) = O(log10(∆(G))) still has savings at least on the order of log10(∆(G)).

2.1 Outline of the Paper

We prove Theorem 1.13 and Theorem 1.15 in Section 7. The rest of the paper is devoted to the
proof of Theorem 1.7.

In Section 3, we formalize the previous discussion on the “naive coloring procedure” and prove
Theorem 3.11, which could be considered a “metatheorem.” We also use Theorem 3.11 in a follow-
up paper [10]. In order to prove Theorem 3.11, we need to show that the savings for each vertex
is concentrated around its expectation. Lemma 3.14 makes this precise. We prove Lemma 3.14 in
Section 6.

Before proving Theorem 1.7, in Section 4 we prove that a minimum counterexample to Theo-
rem 1.7 has some desirable structure. The main result of Section 4 is Theorem 4.3, which says that
in a minimum counterexample G, each v ∈ V (G) either has many non-adjacent egalitarian neigh-
bors, many lordlier neighbors, or many subservient neighbors. The idea to separate the strongly
egalitarian neighbors from the weakly egalitiarian neighbors is crucial here, because the weakly
egalitarian neighbors of a vertex v are also likely to receive a color not in L(v).

In Section 5, we exploit this structure to lower bound the expected value of each type of savings
in Lemmas 5.2, 5.3, and 5.4. Using these lemmas in conjunction with Theorem 3.11, we prove
Theorem 1.7 in Section 5.

In Section 6 we prove Lemma 3.14, which completes the proof of Theorem 3.11. In order to prove
this lemma we needed to develop a new “concentration inequality,” Theorem 6.3, which provides
sufficient conditions for a random variable to be concentrated around its expectation with high
probability. Theorem 6.3 is similar to results provided in [3, 15], but those did not work for our
purposes. We prove Theorem 6.3 in Appendix A using Talagrand’s inequality.

As mentioned above, in Section 7 we prove Theorem 1.13 and Theorem 1.15.

3 The Local Naive Coloring Procedure

The main result of this section is Theorem 3.11, which gives sufficient conditions for our naive
coloring procedure to be extended to a coloring of the whole graph. Namely, we need that the
expected “savings” for each vertex is at least SaveL(v) and is sufficiently large. Before we can state
Theorem 3.11, we need to formalize our naive coloring procedure.

8



In this section, we let G be a graph with list-assignment L, ε, σ,∈ [0, 1), ρ ∈ [0, 1], and ≺ be a
partial ordering of V (G). When we apply Theorem 3.11 to prove Theorem 1.7 in Section 5, we let
σ be 0 and for u, v ∈ V (G), we have u ≺ v if |L(u)| < |L(v)|. We include these parameters because
we plan to use Theorem 3.11 in a follow-up paper in which σ > 0 and ≺ is different. In order to
demonstrate how σ will be used, we need the following definition.

Definition 3.1. For each v ∈ V (G) and u ∈ N(v), we say u is a σ-egalitarian neighbor of v if u
has at least (1−σ)|L(v)| available colors. We let Egalσ(v) denote the set of σ-egalitarian neighbors
of v.

As we will see in Section 6 and as alluded to in Section 2, we cannot prove that the number
of colors assigned to multiple neighbors of v that are not σ-egalitarian is concentrated around its
expectation.

To simplify our probabilistic analysis, we use a generalization of list-coloring known as corre-
spondence coloring, first introduced by Dvořák and Postle [7]. Using correspondence coloring also
helps improve the value of ε in Theorem 1.7, because we can assume egalitarian neighbors of a
vertex v have at least |L(v)| colors in common, thus making it more likely that a color is assigned
to more than one of them. Recall that L is a list-assignment for G.

Definition 3.2.

• If M is a function defined on E(G) where for each e = uv ∈ E(G), Me is a matching of
{u} × L(u) and {v} × L(v), then (L,M) is a correspondence assignment for G. If for each
e = uv ∈ E(G) the matching Me saturates at least one of {u} × L(u) or {v} × L(v), then we
say (L,M) is total.

• An (L,M)-coloring of G is a function φ : V (G) → N such that φ(u) ∈ L(u) for every u ∈ V (G),
and for every e = uv ∈ E(G), (u, φ(u))(v, φ(v)) /∈ Me. If G has an (L,M)-coloring, then G is
(L,M)-colorable.

One defines a k-correspondence assignment and the correspondence chromatic number in the
natural way, but we do not need these terms. For convenience, if uv ∈ E(G), c1 ∈ L(u), c2 ∈ L(v),
and (u, c1)(v, c2) ∈ Muv, we will just say c1c2 ∈ Muv. Note that if for each e = uv ∈ E(G) and
c ∈ L(u) ∩ L(v), cc ∈ Muv, then an (L,M)-coloring is an L-coloring.

For the remainder of this section, let (L,M) be a correspondence assignment for G. We will
actually define our naive coloring procedure for correspondence coloring. First, we need some
definitions.

Definition 3.3.

• We say a naive partial (L,M)-coloring of G is a pair (φ, U) where φ : V (G) → N such that
φ(u) ∈ L(u) for every u ∈ V (G) and U ⊆ V (G) is a set of uncolored vertices such that
φ|V (G)−U is an (L,M)-coloring of G− U .

• If (φ, U) is a naive partial (L,M)-coloring of G, for each v ∈ U , let

Lφ,U (v) = L(v)\{c ∈ L(v) : ∃u ∈ N(v)\V (G′), cφ(u) ∈ Mvu}

and for each uv ∈ E(G[U ]), let Mφ,U
uv be the matching induced by Muv on {u}×Lφ,U (u) and

{v} × Lφ,U (v).

If (φ, U) is a naive partial (L,M)-coloring of G, then we call a vertex v uncolored if it is in U ,
and otherwise we call it colored.

The following proposition is self-evident.
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Proposition 3.4. If (φ, U) is a naive partial (L,M)-coloring of G and G[U ] is (Lφ,U ,Mφ,U )-
colorable, then G is (L,M)-colorable.

The following is a variant of the naive coloring procedure, but it is not the one we use in
Theorem 3.11. Recall that ρ ∈ [0, 1].

Definition 3.5. The local naive random coloring procedure with activation probability ρ samples a
random naive partial (L,M)-coloring (φ, U) and a set of activated vertices A in the following way.
For each v ∈ V (G),

1. let v ∈ A independently at random with probability ρ,
2. choose φ(v) ∈ L(v) independently and uniformly at random, and
3. let U = (V (G) \A) ∪ U ′, where v ∈ U ′ if there exists u ∈ N(v) ∩ A such that |L(u)| ≥ |L(v)|

and φ(u)φ(v) ∈ Muv.

We also consider the following proposition to be self-evident.

Proposition 3.6. If (φ, U) is a random naive partial (L,M)-coloring sampled using the local naive
random coloring procedure with activation probability ρ, then for each v ∈ V (G) and c ∈ L(v),

P [v /∈ U | φ(v) = c] ≥ ρ
∏

{u∈N(v):|L(u)|≥|L(v)|}

(

1− ρ

|L(u)|

)

.

Recall that ε ∈ [0, 1). Let Kε,ρ = .999ρe
−ρ
1−ε . We need the following proposition.

Proposition 3.7. There exists δ = δ(ε) such that the following holds. Let (φ, U) be a random naive
partial (L,M)-coloring sampled using the local naive random coloring procedure with activation
probability ρ. If for each v ∈ V (G), |L(v)| ≥ (1− ε)d(v) and G has minimum degree at least δ, then
for each v ∈ V (G) and c ∈ L(v),

P [v /∈ U | φ(v) = c] ≥ Kε,ρ.

Proof. By Proposition 3.6,

P [v /∈ U | φ(v) = c] ≥ ρ

(

1− ρ

(1− ε)d(v)

)d(v)

≥ ρ

(

1− ρ2

(1− ε)2d(v)

)

e−
ρ

1−ε .

We let δ(ε) = 1000/(1− ε)2, and the result follows.

Now we introduce the random coloring procedure that we use in Theorem 3.11, which is slightly
easier to analyze than the local naive random coloring procedure.

Definition 3.8. If for each v ∈ V (G), |L(v)| ≥ (1−ε)d(v) and G has minimum degree at least δ(ε)
(as in Proposition 3.7), then the local naive random coloring procedure with activation probability
ρ and ε-equalizing coin-flips samples a random naive partial (L,M)-coloring (φ, U) (and a set of
activated vertices A) in the following way.

1. Sample a random naive partial (L,M)-coloring (φ, U ′) and a set A of activated vertices using
the local naive random coloring procedure with activation probability ρ,

2. for each v ∈ V (G) and c ∈ L(v), conduct a “coin flip” for v and c that is “heads” with
probability 1−Kε,ρ/P [v /∈ U ′ | φ(v) = c], and
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3. let U = U ′ ∪ U ′′, where v ∈ U ′′ if the coin flip for v and φ(c) is heads.

For the remainder of this section, we assume G and (L,M) satisfy the assumptions of Defi-
nition 3.8, and we let (φ, U) be a random naive partial (L,M)-coloring and A a set of activated
vertices sampled using the the local naive random coloring procedure with activation probability
ρ and ε-equalizing coin-flips. The following proposition shows why the ε-equalizing coin-flips are
useful.

Proposition 3.9. For each v ∈ V (G) and c ∈ L(v),

P [v /∈ U | φ(v) = c] = Kε,ρ.

Proof. Let U = U ′ ∪U ′′ as in Definition 3.8. Note that P [v /∈ U | φ(v) = c] = P [v /∈ U ′′ | φ(v) = c] ·
P [v /∈ U ′ | φ(v) = c]. By the choice of U ′′, we have P [v /∈ U ′′ | φ(v) = c] = Kε,ρ/P [v /∈ U ′ | φ(v) = c],
and the result follows.

Recall that a vertex u is a σ-egalitarian neighbor of a vertex v if |L(u)| ≥ (1− σ)|L(v)|. Recall
also that ≺ is a partial ordering of V (G). We can now formalize what we mean by the “savings”
for each vertex, as follows.

Definition 3.10. For each v ∈ V (G), we define the following random variables.
• Let unmatchedv,σ count the number of colored σ-egalitarian neighbors u of v such that φ(u)
is not matched by Muv.

• Let pairsv,σ and tripsv,σ count the number of pairs and triples respectively of colored σ-
egalitarian neighbors of v that receive colors that are matched to the same color in L(v).

• Let inactivev,≺ count the number of non-activated neighbors u of v such that u ≺ v.
• Let savingsv,σ,≺ = unmatchedv,σ + inactivev,≺ + pairsv,σ − tripsv,σ.
More precisely, we have that

unmatchedv,σ = |{u ∈ Egalσ(v) \ U : φ(u) /∈ V (Muv)}|,
pairsv,σ = |{x, y ∈ Egalσ(v) \ U, c ∈ L(v) : φ(x)c ∈ Mxv and φ(y)c ∈ Myv}|,
tripsv,σ = |{x, y, z ∈ Egalσ(v) \ U, c ∈ L(v) : φ(x)c ∈ Mxv, φ(y)c ∈ Myv, and φ(z)c ∈ Mzv}|, and

inactivev,≺ = |{u ∈ N(v) \A : u ≺ v}|.

Remark 1. In the journal version of this paper, there are a few mistakes in the preceding part of
this section that we have corrected. In Sections 5 and 6 and in the remainder of this section, we
make minor adjustments to account for these changes. We descrbe these changes below.

1. In the journal version of this paper, Proposition 3.6 is incorrect. We correct this mistake by
reversing the inequality in Step 3 of Definition 3.5. However, in the previous version, instead
of inactivev,≺, we used the random variable uncoloredv,≺ where uncoloredv,≺(φ, U) =
|{u ∈ N(v) ∩ U : u ≺ v}|, and with the change to Definition 3.5, uncoloredv,≺ is no longer
concentrated around its expectation. Thus, this version introduces activation probabilities,
a commonly used technique, in order to define inactivev,≺. We replace uncoloredv,≺ with
inactivev,≺ throughout the paper with minimal changes. Similarly, in the previous version,
instead of unmatchedv,σ, we used unmatchedv where unmatchedv(φ, U) = |{u ∈ N(v) \
U : φ(u) /∈ V (Muv)}|, and with the change to Definition 3.5, unmatchedv is no longer
concentrated around its expectation. Nevertheless, unmatchedv,σ is, and we can replace
unmatchedv with unmatchedv,σ throughout the paper with minimal changes.
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2. In Definition 3.8 of the journal version of this paper, we conduct only one ε-equalizing coin flip
for each vertex. However, with this definition, if u ∈ N(v), then the events “φ(u) /∈ V (Muv)”
and “u /∈ U” (as in the definition of unmatchedv,σ) are not necessarily independent, and
likewise, if x, y ∈ Egalσ(v) and cx ∈ L(x), cy ∈ L(y) are colors such that ccx ∈ Mvx and
ccy ∈ Mvy, then the events “x /∈ U”, “y /∈ U”, and “φ(x) = cx and φ(y) = cy” are not
necessarily independent (even if cxcy /∈ Mxy), but we assume so in Section 5. By conducting
an ε-equalizing coin flip for each vertex and color in its list, this issue is resolved.

3. The journal version of this paper incorrectly defines pairs and triples to count only nonadjacent
pairs and triples. In the list coloring setting, specifying nonadjacency makes no difference,
as any pair of colored neighbors receiving the same color are nonadjacent. However, in the
more general setting of correspondence coloring, the distinction matters. In particular, (3)
did not hold with the previous definition, and this definition corrects that mistake. We need
to slightly adjust Lemmas 5.4 and 5.5 to account for this difference.

We are now prepared to state Theorem 3.11.

Theorem 3.11. For every ξ1, ξ2 > 0, ε, σ ∈ [0, 1), and ρ ∈ [0, 1], there exists ∆0 such that the
following holds. If G is a graph with correspondence-assignment (L,M) and a partial ordering ≺
of V (G) such that

1. ∆ ≥ ∆0,
2. G has maximum degree at most ∆ and minimum degree at least δ(ε) (as in Proposition 3.7),

and for each v ∈ V (G),
3. ∆ ≥ |L(v)| ≥ (1− ε)d(v), and
4. E

[

savingsv,σ,≺
]

≥ max{(1 + ξ1)SaveL(v), ξ2 log
10 ∆},

then G is (L,M)-colorable.

In order to prove Theorem 3.11, we need the following lemma.

Lemma 3.12. Under the conditions of Theorem 3.11, if (φ, U) is a random naive partial color-
ing sampled using the local naive random coloring procedure with ε-equalizing coin-flips, then with
nonzero probability every v ∈ V (G) satisfies

SaveLφ,U (v) ≤ inactivev,≺. (2)

Observe that by the inclusion-exclusion principle, if we let the repetitiveness of color c ∈ L(v)
be one less than the number of colored neighbors u ∈ N(v) such that φ(u)c ∈ Muv, then pairsv,σ−
tripsv,σ undercounts the total repetitiveness of colors assigned to neighbors of v. Therefore

SaveL(v)− SaveLφ,U (v) ≥ unmatchedv,σ + pairsv,σ − tripsv,σ. (3)

We need to show that with high probability, these random variables are close to their expectation.
We make this precise in the following definition.

Definition 3.13. We say a random variable X is ∆-concentrated if

P

[

|X − E [X ] | ≥ 2max{E [X ]
5/6

, log9 ∆}
]

<
∆−4

16
.

We will use the following lemma to prove Lemma 3.12.
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Lemma 3.14. If ∆ is sufficiently large, G has maximum degree at most ∆, and maxv |L(v)| ≤ ∆,
then for each v ∈ V (G), unmatchedv,σ, inactivev,≺,pairsv,σ, and tripsv,σ are ∆-concentrated.

We defer the proof of Lemma 3.14 to Section 6. Lemma 3.14 is the reason why we need to
include the parameter σ.

To prove Lemma 3.12, we will also use the Lovász Local Lemma.

Lemma 3.15 (Lovász Local Lemma). Let p ∈ [0, 1) and A a finite set of events such that for every
A ∈ A,

1. P [A] ≤ p, and
2. A is mutually independent of a set of all but at most d other events in A.

If 4pd ≤ 1, then the probability that none of the events in A occur is strictly positive.

Now we are ready to prove Lemma 3.12.

Proof of Lemma 3.12. For each v ∈ V (G), let Av be the event that (2) does not hold, and let
A = {Av : v ∈ V (G)}. Note that for each v ∈ V (G), Av depends only on trials at vertices at
distance at most two from v, so if u ∈ V (G) has distance at least five to v, then Au and Av do not
depend on any of the same trials. Therefore each Av is mutually independent of a set of all but at
most ∆4 events in A.

By Lemma 3.15, it suffices to show that for each v ∈ V (G), P [Av] ≤ ∆−4/4. Let

Zv = 2(max{E [unmatchedv,σ]
5/6

, log9 ∆}+max{E [inactivev,≺]
5/6

, log9 ∆}

+max{E
[

pairsv,σ
]5/6

, log9 ∆} −max{E
[

tripsv,σ
]5/6

, log9 ∆}),

and let A′
v be the event that

savingsv,σ,≺ ≤ E
[

savingsv,σ,≺
]

− Zv.

By Lemma 3.14 and the Union Bound, P [A′
v] < ∆−4/4. We claim that Av ⊆ A′

v, which completes
the proof. By (3), it suffices to show

SaveL(v) ≤ E
[

savingsv,σ,≺
]

− Zv. (4)

By the assumption that E
[

savingsv,σ,≺
]

≥ ξ2 log
10 ∆, Zv = o(E

[

savingsv,σ,≺
]

). Since ∆ is suffi-

ciently large, we may assume that Zv ≤ ξ1SaveL(v). Since E
[

savingsv,σ,≺
]

≥ (1+ ξ1)SaveL(v), (4)
holds, which completes the proof.

We conclude this section with the proof of Theorem 3.11.

Proof of Theorem 3.11. By Proposition 3.4, it suffices to show that G[U ] is (Lφ,U ,Mφ,U )-colorable
with nonzero probability. Thus it suffices to show that for some instance of (φ, U), for each v ∈ U ,

|Lφ,U(v)| − 1 ≥ |{u ∈ N(v) ∩ U : u 6≺ v}|, (5)

because then we can color G[U ] greedily in the ordering provided by ≺, breaking ties arbitrarily.
By Lemma 3.12, we may consider the instance in which each v ∈ V (G) satisfies (2).

For each v ∈ V (G), since U ⊇ V (G) \A,

|{u ∈ N(v) ∩ U : u 6≺ v}| = dU (v) − |{u ∈ N(v) ∩ U : u ≺ v}|| ≥ dU (v)− inactivev,≺.

Therefore if (2) holds, then (5) holds. Thus, G[U ] is (Lφ,U ,Mφ,U )-colorable, as desired.
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4 Structure

The main result of this section is Theorem 4.3, which lower bounds the number of non-adjacent
egalitarian neighbors of a vertex in terms of the number of its neighbors that are lordlier, subservient,
or weakly egalitarian.

First we need to prove Theorem 4.1, which may be of independent interest. It bounds the
number of edges of a critical graph in terms of the size of a matching in the complement. Recall
that a graph G with list-assignment L is L-critical if G is not L-colorable but every proper induced
subgraph of G is.

Theorem 4.1. If G is L-critical, H is an induced subgraph of G, and M is a matching in H, then

|E(H)| ≥ |M |(|V (H)| − |M |)−
∑

u∈V (H)

SaveL(u).

We will apply Theorem 4.1 to an appropriate subset of the neighborhood of each vertex. In
order to prove Theorem 4.1, we need an improved version of a classic result of Erdős, Rubin, and
Taylor [8] about list-coloring a complete graph with a matching removed, proved by Delcourt and
Postle [5]. We include a proof for completeness.

Lemma 4.2 (Delcourt and Postle [5]). If G = Kn − M , where M is a matching and L is a
list-assignment for G such that

1. for all ab ∈ M , |L(a)|, |L(b)| ≥ |M | and |L(a)|+ |L(b)| ≥ n,
2. for all v ∈ V (G− V (M)), |L(v)| ≥ n− |M |,

then G is L-colorable.

Proof. We proceed by induction on n. If n ≤ 1, then M = ∅ and by 2, |L(v)| ≥ n for all v ∈ G. So
we may assume n ≥ 2.

Suppose there exists ab ∈ M such that L(a) ∩ L(b) 6= ∅. Let c ∈ L(a) ∩ L(b), and for all
v ∈ V (G)\{a, b}, let L′(v) = L(v)\{c}. Let G′ = G − a− b and M ′ = M − ab. Then G′,M ′, and
L′ satisfy conditions 1 and 2. By induction, G′ has an L′-coloring. Therefore G has an L-coloring,
obtained from an L′-coloring G′ by coloring a and b with color c, as desired.

Therefore we may assume that for all ab ∈ M , L(a) ∩ L(b) = ∅. Since |L(a)| + |L(b)| ≥ n,
|L(a)∪L(b)| ≥ n. We claim for all X ⊆ V (G), |⋃v∈X L(v)| ≥ |X |. If there exists ab ∈ M such that
a, b ∈ X , then |

⋃

v∈X L(v)| ≥ n ≥ |X |, as claimed. Therefore we may assume that |X | ≤ n− |M |.
If X\V (M) 6= ∅, then |⋃v∈X L(v)| ≥ n − |M | ≥ |X |, as claimed. Hence, we may assume that
X ⊆ V (M). But then |⋃v∈X L(v)| ≥ |M | ≥ |X |, as claimed.

Therefore |
⋃

v∈X L(v)| ≥ |X | for all X ⊆ V (G). By Hall’s Theorem, there is a matching from
V (G) to ∪vL(v), and thus G has an L-coloring, as desired.

Now we prove Theorem 4.1.

Proof of Theorem 4.1. We proceed by induction on |V (H)|. Since G is L-critical, G − V (H) has
an L-coloring φ. For all v ∈ V (H), let L′(v) = L(v)\{φ(u) : u ∈ N(v) ∩ V (G − V (H))}. Since G
does not have an L-coloring, H does not have an L′-coloring. By Lemma 4.2, either there exists
ab ∈ M such that |L(a)| < |M | or |L(a)|+ |L(b)| < |V (H)| or there exists v ∈ V (H − V (M)) such
that |L′(v)| < |V (H)| − |M |. Note that for all v ∈ V (H),

|L′(v)| ≥ |L(v)| − dG−V (H)(v)

= dH(v) + 1− SaveL(v).
(6)
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If there exists ab ∈ M such that |L′(a)| < |M |, then let H ′ = H − a and M ′ = M − ab. By (6),
dH(a) + 1− SaveL(a) < |M |. Hence,

dH(a) = |V (H)| − 1− dH(a)

> |V (H)| − |M | − SaveL(a).

By induction, |E(H
′
)| ≥ |M ′|(|V (H ′)| − |M ′|)−∑u∈V (H′) SaveL(u). Therefore,

|E(H)| = |E(H
′
)|+ dH(a)

> |M ′|(|V (H ′)| − |M ′|)−
∑

u∈V (H′)

SaveL(u) + |V (H)| − |M | − SaveL(a)

= (|M | − 1)(|V (H)| − |M |) + |V (H)| − |M | −
∑

u∈V (H)

SaveL(u)

= |M |(|V (H)| − |M |)−
∑

u∈V (H)

SaveL(u),

as desired.
If there exists ab ∈ M such that |L′(a)| + |L′(b)| < |V (H)| then let H ′ = H − a − b and

M ′ = M − ab. By (6), dH(a) + 1− SaveL(a) + dH(b) + 1− SaveL(b) < |V (H)|. Hence,

|δH({a, b})| = 2(|V (H)| − 2)− dH(a)− dH(b)

> 2(|V (H)| − 2)− |V (H)|+ 2− SaveL(a)− SaveL(b)

= |V (H)| − 2− SaveL(a)− SaveL(b),

where δH({a, b}) is the set of edges in H incident to precisely one of a and b.

By induction, |E(H
′
)| ≥ |M ′|(|V (H ′)| − |M ′|)−∑u∈V (H′) SaveL(u). Therefore,

|E(H)| = |E(H
′
)|+ δH({a, b}) + 1

≥ |M ′|(|V (H ′)| − |M ′|)−
∑

u∈V (H′)

SaveL(u) + |V (H)| − SaveL(a)− SaveL(b)

= (|M | − 1)(|V (H)| − |M | − 1) + |V (H)| −
∑

u∈V (H)

SaveL(u)

> |M |(|V (H)| − |M |)−
∑

u∈V (H)

SaveL(u),

as desired.
Otherwise, there exists some v ∈ V (H − V (M)) such that |L′(v)| < |V (H)| − |M |, so let

H ′ = H − v. By (6), dH′ (v) + 1− SaveL(v) < |V (H)| − |M |. Hence,

dH(v) = |V (H)| − 1− dH(v)

> |M | − SaveL(v).
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By induction, |E(H
′
)| ≥ |M |(|V (H ′)| − |M |)−∑u∈V (H′) SaveL(u). Therefore,

|E(H)| = |E(H
′
)|+ dH(v)

> |M |(|V (H ′)| − |M |)−
∑

u∈V (H′)

SaveL(u) + |M | − SaveL(v)

= |M |(|V (H)| − |M | − 1) + |M | −
∑

u∈V (H)

SaveL(u)

= |M |(|V (H)| − |M |)−
∑

u∈V (H)

SaveL(u),

as desired.

Recall that if v is a vertex of a graph G and u ∈ N(v), we say u is a subservient neighbor of v if
|L(u)| < |L(v)|, a strongly egalitarian neighbor of v if |L(u)| ∈ [|L(v)|, |L(v)|+ βGap(v)), a weakly
egalitarian neighbor of v if |L(u)| ∈ [|L(v)| + βGap(v), (1 + α)|L(v)|), and a lordlier neighbor
of v if |L(u)| ≥ (1 + α)|L(v)|. Recall also that this partitions the neighbors of v into the sets
Subserv(v), SEgal(v),WEgal(v), and Lord(v), the sets of subservient, strongly egalitarian, weakly
egalitarian, and lordlier neighbors of v, respectively, and that we let NEgal(v) = N(v)− Egal(v).

The following is the main result of this section.

Theorem 4.3. Let ε ∈ (0, 1). If G is an L-critical graph for some list-assignment L such that for
every v ∈ V (G), |L(v)| ≥ εω(v) + (1− ε)(d(v) + 1), then for all v ∈ V (G),

|E(G[Egal(v)])| ≥
(

1

4
− ε(4 + β + 2α)

2(1− ε)

)

Gap(v)d(v) −
(

1

2
− ε(1 + β)

2(1− ε)

)

d(v)|NEgal(v)|

−
(

1

4
− ε(2 + β)

2(1− ε)

)

Gap(v)|WEgal(v)|.

For the remainder of this section, we assume that G is a graph with list-assignment L satisfying
the conditions of Theorem 4.3.

Theorem 4.3 is useful because it implies that if v does not have many lordlier or subservient
neighbors, or many weakly egalitarian neighbors, then it has many non-adjacent egalitarian neigh-
bors. We prove Theorem 4.3 by considering a maximum antimatching M among v’s egalitarian
neighbors and applying Theorem 4.1 with H = G[V (M) ∪ SEgal(v)]. If u is a strongly egalitarian
neighbor of v, then SaveL(u) is close to SaveL(v). If u is a weakly egalitarian neighbor of v, then we
can not bound SaveL(u) well enough, so we do not include u in H unless u is in the antimatching.

We will use the following propositions to prove Theorem 4.3. First, we need to bound the size
of a maximum antimatching taken among the egalitarian neighbors, as in the following proposition.

Proposition 4.4. If M is a maximum matching in G[Egal(v)], then

Gap(v)− |NEgal(v)|
2

≤ |M | ≤ Gap(v).

Proof. Since M is maximum, G[Egal(v)−V (M)] is a clique, so 2|M | ≥ |Egal(v)|−ω(G[Egal(v)]) ≥
|Egal(v)| − ω(v) = Gap(v)− |NEgal(v)|, as desired.

Since no clique in G[Egal(v)] contains an edge in M , ω(G[Egal(v)]) ≤ |Egal(v)| − |M |. Note
that for any H ⊆ G[N(v) ∪ {v}], |V (H)| − ω(H) ≤ Gap(v). Hence, |M | ≤ Gap(v), as desired.
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Proposition 4.5. If u is an egalitarian neighbor of a vertex v (i.e. u ∈ Egal(v)), then

Gap(u) ≤ 1 + α

1− ε
d(v).

Proof. Since G is L-critical, |L(v)| ≤ d(v). Since u ∈ Egal(v), |L(u)| ≤ (1 + α)|L(v)|. Hence,
|L(u)| ≤ (1 + α)d(v). Since |L(u)| ≥ (1 − ε)d(u), d(u) ≤ 1+α

1−ε d(v). Since Gap(u) ≤ d(u), the result
follows.

Since we will apply Theorem 4.1, we will need to upper bound SaveL(u) for egalitarian neighbors
u of v. Since SaveL(u) ≤ εGap(u), it suffices to upper bound Gap(u). Proposition 4.5 provides a
rough bound on Gap(u) that we will use for the egalitarian neighbors in the antimatching. The
next proposition provides an improved bound on Gap(u) if u is a strongly egalitarian neighbor that
is not in the antimatching.

Proposition 4.6. If M is a maximum matching in G[Egal(v)] and u ∈ SEgal(v)− V (M), then

Gap(u) ≤ (2 + β)Gap(v) + |NEgal(v)|
1− ε

.

Proof. Since M is maximum, G[Egal(v)− V (M)] is a clique, so

ω(u) ≥ |Egal(v)| − 2|M |. (7)

Since u ∈ SEgal(v), |L(u)| ≤ |L(v)| + βGap(v). Since G is L-critical, |L(v)| ≤ d(v). Hence,

|L(u)| ≤ d(v) + βGap(v). Since d(u) ≤ |L(u)|−εω(u)
1−ε ,

d(u) ≤ d(v) + βGap(v) − εω(u)

1− ε
. (8)

Now the result follows from (7), (8), and Proposition 4.4.

Now we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. LetM be a maximummatching inG[Egal(v)]), and let WEgal′(v) = WEgal(v)−
V (M). Let H = G[V (M) ∪ SEgal(v)]). By Theorem 4.1,

|E(H)| ≥ |M |(|V (H)| − |M |)−
∑

u∈V (H)

Save(u). (9)

By Proposition 4.6,

∑

u∈V (H−V (M))

Save(u) ≤
∑

u∈V (H−V (M))

εGap(u)

≤ (|V (H)| − |M |)
(

ε

1− ε

)

((2 + β)Gap(v) + |NEgal(v)|). (10)

By Proposition 4.5 and 4.4.

∑

u∈V (M)

Save(u) ≤ ε(1 + α)

1− ε
d(v)|M | ≤ ε(1 + α)Gap(v)d(v)

1− ε
. (11)
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By (9), (10), and (11),

|E(H)| ≥ (|V (H)| − |M |)
(

|M | − ε((2 + β)Gap(v) + |NEgal(v)|)
1− ε

)

− ε(1 + α)Gap(v)d(v)

1− ε
. (12)

Note that |M | ≤ |V (H)|/2, so |V (H)| − |M | ≥ |V (H)|/2. Therefore by Proposition 4.4 and (12),

|E(H)| ≥
( |V (H)|

2

)(

Gap(v)

(

1

2
− ε(2 + β)

1− ε

)

− |NEgal(v)|
(

1

2
+

ε

1− ε

))

− ε

1− ε
(1 + α)Gap(v)d(v). (13)

Since |V (H)| = d(v)− |NEgal(v)| − |WEgal′(v)|, by combining terms in (13) and ignoring some
positive terms, we have that

|E(H)| ≥ Gap(v)d(v)

(

1

4
− ε(4 + β + 2α)

2(1− ε)

)

− d(v)|NEgal(v)|
(

1

4
+

ε

2(1− ε)

)

−Gap(v)|NEgal(v)|
(

1

4
− ε(2 + β)

2(1− ε)

)

−Gap(v)|WEgal′(v)|
(

1

4
− ε(2 + β)

2(1− ε)

)

.

Since Gap(v) ≤ d(v), |WEgal′(v)| ≤ |WEgal(v)|, and |E(G[Egal(v)])| ≥ |E(H)|,

|E(G[Egal(v)])| ≥
(

1

4
− ε(4 + β + 2α)

2(1− ε)

)

Gap(v)d(v) −
(

1

2
− ε(1 + β)

2(1− ε)

)

d(v)|NEgal(v)|

−
(

1

4
− ε(2 + β)

2(1− ε)

)

Gap(v)|WEgal(v)|,

as desired.

Note that we could take a maximum antimatching among the strongly egalitarian neighbors of
a vertex v and follow the same proof strategy of Theorem 4.3 to obtain a bound of

|E(G[SEgal(v)])| ≥ Ω(Gap(v)d(v)) − O(d(v))|N(v) − SEgal(v)|.

However, this is not a good enough bound, because if there are Ω(Gap(v)) weakly egalitarian
neighbors of v, we do not have enough non-adjacent strongly egalitarian neighbors to expect many
colors assigned to multiple neighbors of v, and we do not expect enough weakly egalitarian neighbors
to receive a color not in L(v).

5 Proof of Theorem 1.7

In this section, we prove Theorem 1.7. In order for the proof of Theorem 1.7 to work inductively,
we actually prove the following.

Theorem 5.1. Let ε = 1
330 . There exists ∆0 such that for all ∆ ≥ ∆0, if G is a graph of maximum

degree at most ∆ with a list assignment L such that for all v ∈ V (G),
1. |L(v)| ≥ ω(v) + log10(∆) and
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2. |L(v)| ≥ ǫω(v) + (1 − ǫ)(d(v) + 1),
then G is L-colorable.

Note that Theorem 1.7 follows immediately from Theorem 5.1. If G is a graph with list-
assignment L that satisfies the conditions of Theorem 5.1, then so does any subgraph ofG. Therefore
in proving Theorem 5.1, we may assume G is L-critical, and hence we can apply Theorem 4.3.

For the remainder of this section, unless specified otherwise, G,L, ε, ρ, and ∆ are assumed to
satisfy the conditions of Theorem 5.1, and we assume that G is L-critical. For each edge e ∈ E(G),
we let Me be a matching of {u} × L(u) and {v} × L(v) such that (L,M) is a total correspondence
assignment for G where every (L,M)-coloring of G is an L-coloring. Let (φ, U) be a random naive
partial coloring and A a set of activated vertices sampled using the local naive random coloring
procedure with activation probability ρ and ε-equalizing coin flips. Note that we are assuming G is
L-critical before assuming the correspondence assignment is total, since Theorem 4.3 does not hold

for correspondence coloring. Recall that we let Kε,ρ = .999e
−ρ
1−ε . For convenience, let K = Kε,ρ.

For u, v ∈ V (G), let u ≺ v if |L(u)| < |L(v)|.
Before proving Theorem 1.7, we need to lower bound the expected savings for each vertex, as

in the following lemmas.

Lemma 5.2. For each v ∈ V (G),

E [inactivev,≺] = (1− ρ)|Subserv(v)|.

Proof. Since each neighbor of v is in A with probability ρ, the lemma follows by linearity of expec-
tation.

Lemma 5.3. For each v ∈ V (G),

E [unmatchedv,0] ≥ K

(

α

1 + α
|Lord(v)|+ βGap(v)

d(v) + βGap(v)
|WEgal(v)|

)

.

Proof. Let
unmatchedtot

v = |{u ∈ Egal(v) : φ(u) /∈ V (Muv)}|,
and note that E [unmatchedv,0] = K ·E

[

unmatchedtot
v

]

by Proposition 3.9. For each u ∈ Lord(v),

P [φ(u) /∈ V (Muv)] ≥
α

1 + α
,

and for each u ∈ WEgal(v),

P [φ(u) /∈ V (Muv)] ≥
βGap(v)

|L(v)|+ βGap(v)
≥ βGap(v)

d(v) + βGap(v)
.

Therefore it follows that

E
[

unmatchedtot
v

]

≥ α

1 + α
|Lord(v)| + βGap(v)

d(v) + βGap(v)
|WEgal(v)|.

Since E [unmatchedv,0] = K · E
[

unmatchedtot
v

]

, the result follows.

Recall that we apply Theorem 3.11 with σ = 0. Thus we need to bound pairsv,0 − tripsv,0, as
in the following lemma.
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Lemma 5.4. For each v ∈ V (G),

E
[

pairsv,0 − tripsv,0
]

≥ min
i∈{1,2}

(

K · ei
|L(v)|

)(

K

(1 + α)2
−

√
2 · ei

3|L(v)|

)

,

where e1 = |E(G[Egal(v)])| and e2 =
(

d(v)
2

)

.

Proof. We let T (H) denote the set of triangles in a graph H . We define the following random
variables for each c ∈ L(v):

pairstotv,c = |{x, y ∈ Egal(v) : φ(x)c ∈ Mxv and φ(y)c ∈ Myv}|, and

trips
tot
v,c = |{x, y, z ∈ Egal(v) : φ(x)c ∈ Mxv, φ(y)c ∈ Myv, and φ(z)c ∈ Mzv}|,

and we define pairs
tot
v =

∑

c∈L(v) pairs
tot
v,c and trips

tot
v =

∑

c∈L(v) trips
tot
v,c.

For each c ∈ L(v), let Hc be the subgraph of G[Egal(v)] defined as follows. A vertex x ∈ Egal(v)
is in V (Hc) if there exists a color cx ∈ L(x) such that ccx ∈ Mvx, and xy ∈ E(Hc) if xy ∈ E(G)
and moreover cxcy ∈ Mxy, where ccx ∈ Mvx and ccy ∈ Mvy. For any pair xy ∈ E(Hc), we
have P [x, y /∈ U | φ(x) = cx, φ(y) = cy] ≥ K2. Moreover, for any triple xyz ∈ T (Hc), we have
P [x, y, z /∈ U | φ(w) = cw ∀ w ∈ {x, y, z}] ≤ P [x /∈ U ] ≤ K. Hence,

E
[

pairsv,0 − tripsv,0
]

≥ K2
E
[

pairstotv

]

−KE
[

tripstotv

]

. (14)

In 2002, Rivin [21] proved that

|T (H)| ≤ (2|E(H)|) 3

2

6
. (15)

For every c ∈ L(v), we have V (Hc) = Egal(v) since (L,M) is total, so

E
[

pairstotv,c

]

=
∑

xy∈E(Hc)

1

|L(x)||L(y)| .

By the definition of Egal(v), if x, y ∈ Egal(v),

1

|L(x)||L(y)| ≥
1

(1 + α)2|L(v)|2 .

Therefore

E
[

pairstotv,c

]

≥ |E(Hc)|
(1 + α)2|L(v)|2 . (16)

Similarly,

E
[

tripstotv,c

]

=
∑

xyz∈T (Hc)

1

|L(x)||L(y)||L(z)| ,

and
1

|L(x)||L(y)||L(z)| ≤
1

|L(v)|3 .
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Therefore

E
[

tripstotv,c

]

≤ |T (Hc)|
|L(v)|3 . (17)

By (15) and (17),

E
[

tripstotv,c

]

≤
√
8|E(Hc)|3/2
6|L(v)|3 . (18)

It follows from (14), (16), and (18) that

E [pairsv − tripsv] ≥
∑

c∈L(v)

(

K|E(Hc)|
|L(v)|2

)





K

(1 + α)2
−

√

2|E(Hc)|
3|L(v)|



 . (19)

Since Hc ⊆ G[Egal(v)] for every c ∈ L(v), we have |E(G[Egal(v)])| ≤ |E(Hc)| ≤
(

d(v)
2

)

. For any
constants a and b, the function (a− b

√
x)x is increasing for 0 ≤ x < (2a/(3b))2 and decreasing for

x > (2a/(3b))2. Letting a = K/(1 + α)2 and b =
√
2/(3|L(v)|), this fact implies that each term in

the sum in the right side of (19) is at least as large as the minimum of two values: the value of the

term when |E(Hc)| is either |E(G[Egal(v)])| or simply
(

d(v)
2

)

. Since there are |L(v)| terms in the
sum, the result follows.

Combining Theorem 4.3 with Lemmas 5.2, 5.3, and 5.4, we prove that the expected savings for
each vertex v is larger than εGap(v), as follows.

Lemma 5.5. Let α = β = 1
50 and ρ = 1− e−1α/(1 + α). For each vertex v ∈ V (G),

E
[

savingsv,0,≺
]

≥ 1.01εGap(v).

Proof. By Theorem 4.3,

|E(G[Egal(v)])| ≥
(

1

4
− ε(4 + β + 2α)

2(1− ε)

)

Gap(v)d(v) −
(

1

2
− ε(1 + β)

2(1− ε)

)

d(v)|NEgal(v)|

−
(

1

4
− ε(2 + β)

2(1− ε)

)

Gap(v)|WEgal(v)|. (20)

By Lemmas 5.2 and 5.3, we may assume that

(1− ρ)|Subserv(v)|+ Kα

1 + α

(

|Lord(v)|+ Gap(v)

d(v)
|WEgal(v)|

)

≤ 1.01ε ·Gap(v).

Subject to this inequality, since 1 − ρ ≥ Kα
1+α and 1

2 − ε(1+β)
2(1−ε) ≥ 1

4 − ε(2+β)
2(1−ε) , the right side of (20)

is at least as large as the case when |Subserv(v)| = |WEgal(v)| = 0 and |Lord(v)| ≤ 1.01ε(1 +
α)Gap(v)/(Kα), that is

|E(G[Egal(v)])| ≥ Gap(v)d(v)

(

1

4
− ε(4 + β + 2α)

2(1− ε)
− 1.01ε

1 + α

αK

(

1

2
− ε(1 + β)

2(1− ε)

))

.

Therefore, since Gap(v), |L(v)| ≤ d(v) ≤ |L(v)|/(1− ε), by Lemma 5.4, we have

E
[

savingsv,0,≺
]

≥ min
i∈{1,2}

K

(

K

(1 + α)2
− (2 · sparsityi(α, β, ε))1/2

3(1− ε)

)

Gap(v) · sparsityi(α, β, ε),

(21)
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where sparsity1(α, β, ε) =
1
4 − ε(4+β+2α)

2(1−ε) − 1.01ε 1+α
αK

(

1
2 − ε(1+β)

2(1−ε)

)

and sparsity2(α, β, ε) = 1/2.

Since α = β = 1/50, ε = 1/330, and K = .999ρe−330ρ/329, the right side of (21) is at least
1.01εGap(v), as required.

Finally we can prove Theorem 1.7.

Proof of Theorem 1.7. Actually we prove Theorem 5.1. Recall that we assume G is L-critical, and
we assume (L,M) is a total correspondence assignment for G such that an (L,M)-coloring is an
L-coloring. We will apply Theorem 3.11 with ξ1 = 1.01, ξ2 = ε, ρ = 1 − 1/(50e(1 + 1/50)), and
σ = 0 to show that G is (L,M)-colorable, contradicting that G is L-critical.

Let v ∈ V (G). Since G is L-critical, d(v) ≥ |L(v)| ≥ log10(∆). Hence we may assume that G
has minimum degree at least δ(ε). By Lemma 5.5, since Gap(v) − Save(v) ≥ log10(∆),

E
[

savingsv,0,≺
]

≥ ξ2 log
10 ∆,

and since Save(v) ≤ εGap(v),
E
[

savingsv,0,≺
]

≥ ξ1Save(v).

Therefore by Theorem 3.11, G is (L,M)-colorable, a contradiction.

6 Concentrations

In this section we prove Lemma 3.14. Recall that ε, σ ∈ [0, 1), ρ ∈ [0, 1], G is a graph with
correspondence-assignment (L,M) satisfying the assumptions of Definition 3.8, G has maximum
degree at most ∆, maxv |L(v)| ≤ ∆, and ∆ is sufficiently large.

We prove Lemma 3.14 using Talagrand’s Inequality. Instead of applying Talagrand’s Inequality
in its original form (see Theorem A.3), it is common to derive from it a “concentration inequality”.
The following theorem is such an example; it appears in the book of Molloy and Reed [15, Chapter
10].

Theorem 6.1 (“Talagrand’s Inequality II” [15]). Let X be a non-negative random variable, not
identically 0, which is determined by n independent trials T1, . . . , Tn, and satisfying the following
for some c, r > 0:

1. changing the outcome of any one trial can affect X by at most c, and
2. for any s, if X ≥ s then there is a set of at most rs trials whose outcomes certify that X ≥ s,

then for any 0 ≤ t ≤ E [X ],

P

[

|X − E [X ] | > t+ 60c
√

rE [X ]
]

≤ 4 exp

(

− t2

8c2rE [X ]

)

.

Remark 2. As we explain in Appendix A, Molloy and Reed’s [15] proof of Theorem 6.1 is flawed,
and we correct this flaw. After submitting the initial version of this paper, we discovered that
Molloy and Reed [16] later published a corrected version of Theorem 6.1, but they did not mention
that the initial version is incorrect nor did they explain the flaw. We discuss this correction further
later in this section in Remark 3 and also in Appendix A. We remark that all applications of
Theorem 6.1 that we know of follow from the version in [16] as well as Theorem 6.3.
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Unfortunately Theorem 6.1 is too restrictive for us. In our situation, changing the outcome of
a trial is changing either whether or not a vertex is activated, the color assigned to a vertex, or
the outcome of an “equalizing coin flip,” and this affects the value of our random variables if many
vertices are randomly assigned the same color. For example, if G is ∆-regular and v is a vertex,
then we may sample a naive partial coloring (φ, U) such that u /∈ U and φ(u) /∈ V (Muv) for each
u ∈ N(v). In this case, the value of unmatchedv,σ is ∆; however, if there is a vertex w such that
N(w) = N(v), then changing the outcome of the trial determining φ(w) could make unmatchedv,σ

become 0 (if every u ∈ N(v) is assigned a color corresponding to φ(w)). Therefore in order to apply
Theorem 6.1 to unmatchedv,σ, the value of c needs to be at least d(v), and we do not get a useful
bound.

However, it is very unlikely that every neighbor of v is assigned a color corresponding to φ(w). It
is possible to derive a concentration inequality from Talagrand’s Inequality with conditions similar
to Theorem 6.1 that apply for all but an unlikely set of exceptional outcomes. One example is
“Talagrand’s Inequality V” in the book of Molloy and Reed [15, Chapter 20]; another example was
proved by Bruhn and Joos [3, Theorem 12]. These results are also not enough for us to prove
Lemma 3.14, as we discuss later. Now we need some definitions in order to state our concentration
inequality.

Definition 6.2. Let ((Ωi,Σi,Pi))
n
i=1 be probability spaces, let (Ω,Σ,P) be their product space, let

Ω∗ ⊆ Ω be a set of exceptional outcomes, and let X : Ω → R≥0 be a non-negative random variable.
Let r, d ≥ 0.

• If ω = (ω1, . . . , ωn) ∈ Ω and s > 0, an (r, d)-certificate for X,ω, s, and Ω∗ is an index set
I ⊆ {1, . . . , n} of size at most rs such that for all k ≥ 0, we have that

X(ω′) ≥ s− kd,

for all ω′ = (ω′
1, . . . , ω

′
n) ∈ Ω \ Ω∗ such that ωi 6= ω′

i for at most k values of i ∈ I.
• If for every s > 0 and ω ∈ Ω \ Ω∗ such that X(ω) ≥ s, there exists an (r, d)-certificate for
X,ω, s, and Ω∗, then X is (r, d)-certifiable with respect to Ω∗.

Note that if Ω∗ = ∅, then a random variable being (r, d)-certifiable with respect to Ω∗ is similar
to it satisfying the conditions of Theorem 6.1 with c = d (we use d because later we use c to denote
a color). We introduce k into the definition of (r, d)-certificates rather than consider changing the
outcome of only one trial because it is necessary in order to apply the original form of Talagrand’s
Inequality, for reasons we will see in Appendix A.

Now we state our concentration inequality, as follows.

Theorem 6.3. Let ((Ωi,Σi,Pi))
n
i=1 be probability spaces, let (Ω,Σ,P) be their product space, let

Ω∗ ⊆ Ω be a set of exceptional outcomes, and let X : Ω → R≥0 be a non-negative random variable.
Let r, d ≥ 0.

IfX is (r, d)-certifiable with respect to Ω∗, then for any t > 96d
√

rE [X ]+128rd2+8P [Ω∗] (supX),

P [|X − E [X ] | > t] ≤ 4 exp

( −t2

8d2r(4E [X ] + t)

)

+ 4P [Ω∗] .

Theorem 6.3 is similar to Theorem 12 of Bruhn and Joos [3]. Bruhn and Joos defined upward
(s, c)-certificates. If a random variable is (r, d)-certifiable with respect to a set of exceptional
outcomes Ω∗, then it has upward (s, c)-certificates with c = d and s = r · supX , and for the random
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variables with which we are concerned, they have upward (s, c)-certificates only if s ≥ supX . The
important difference between the bounds supplied by their result and Theorem 6.3 is that we have
r(4E [X ]+t) whereas they simply have s. Bruhn and Joos [3] apply their concentration inequality to
random variables for which E [X ] = Ω(supX), so this difference does not concern them. However,
as mentioned, in our situation it is possible that supX = ∆ and yet E [X ] = log10 ∆. Thus, we
are unable to use the result of Bruhn and Joos to prove Lemma 3.14. “Talagrand’s Inequality V”
in [15] has essentially the same problem, with D taking the role of s. We prove Theorem 6.3 in
Appendix A; our proof is similar to the proof of Bruhn and Joos.

Remark 3. We should expect Theorem 6.1 to effectively follow from Theorem 6.3 in the case when
Ω∗ = ∅, but this is not the case due to the presence of the 128rd2 term in the lower bound on
t in the hypothesis. Molloy and Reed’s [16] corrected version of Theorem 6.1 similarly introduces
a 64rc2 term inside of the probability that X deviates from its expectation. Fortunately, in all
applications of Theorem 6.1 that we know of, we can still apply Theorem 6.3 with this additional
term. Indeed, in most applications r and d are constants and t is arbitrarily large, and almost
always rd2 = o (E [X ]), in which case this term is subsumed by the 96d

√

rE [X ] term. In this

paper, d may be log3 ∆ and E [X ] may be small, but we always apply Theorem 6.3 with t ≥ log9 ∆.

The exceptional outcomes we consider when applying Theorem 6.3 will involve many neighbors
of a vertex v receiving the same color (from some vertex w’s perspective), so we need this to be
unlikely. This explains why we need σ < 1 to apply Theorem 6.3 to unmatchedv,σ, pairsv,σ, and
tripsv,σ. In the extreme case, a vertex v could have many neighbors with only two available colors,
one of which does not correspond to a color in L(v) and one of which corresponds to the same
color for v. Switching the color of a vertex may cause many neighbors of v to become uncolored
(or colored), which will significantly affect either pairsv,σ and tripsv,σ or unmatchedv,σ, or all
three. However, it is unlikely that many σ-egalitarian neighbors of v receive the same color, as long
as |L(v)| is large.

We always apply Theorem 6.3 with t = max{E [X ]
5/6

, log9 ∆}, r ≤ 9, and d ≤ log3 ∆. Note
that, assuming ∆ is sufficiently large and P [Ω∗] is sufficiently small, t is large enough to apply
Theorem 6.3.

The following proposition will be useful.

Proposition 6.4. If X is a non-negative random variable and t = max{γ ·E [X ]
5/6

, log9 ∆} where
γ > 0, then

t2

4E [X ] + t
≥ log36/5 ∆

1 + 4/γ6/5
.

Proof. Since E [X ] ≤ (t/γ)6/5,

t2

4E [X ] + t
≥ t2

4(t/γ)6/5 + t
≥ t4/5

1 + 4/γ6/5
.

Since t ≥ log9 ∆, the result follows.

The following proposition bounds the probability that many non-subservient neighbors of a
vertex receive the same color.
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Proposition 6.5. For each v ∈ V (G), let Ω∗
v,σ be the set of events where there exists u ∈ V (G), c ∈

L(u), and a set X ⊂ (Egalσ(v) ∩ N(u)) of size at least log∆ such that for each w ∈ X, we have
that φ(w)c ∈ Mwu. Now

P
[

Ω∗
v,σ

]

≤ ∆4

(

e

(1− σ)(1 − ε) log∆

)log∆

.

Proof. For each u ∈ V (G) and c ∈ L(u), let

Yu,c = |{w ∈ (N(u) ∩ Egalσ(v)) : φ(w)c ∈ Mwu}|.

Now

P [Yu,c ≥ log∆] ≤
d(v)
∑

i=⌈log ∆⌉

(

d(v)

i

)

1

((1− σ)|L(v)|)i .

By applying the bound
(

d(v)
i

)

<
(

e·d(v)
i

)i

and using the fact that 1
|L(v)| ≤ 1

(1−ε)d(v) ,

P [Yu,c ≥ log∆] ≤
d(v)
∑

i=⌈log ∆⌉

(

e · d(v)
i

)i
1

(1− ε)id(v)i
=

d(v)
∑

i=⌈log ∆⌉

(

e

(1− σ)(1 − ε)i

)i

.

Since each term in the sum is at most
(

e
(1−σ)(1−ε) log∆

)log∆

and there are at most ∆ terms, it

follows that

P [Yu,c ≥ log∆] ≤ ∆

(

e

(1− σ)(1 − ε) log∆

)log∆

.

Since |N(u) ∩ Egalσ(v)| = 0 for all but ∆2 vertices u, and each has at most ∆ available colors,
by the Union Bound,

P
[

Ω∗
v,σ

]

≤ ∆4

(

e

(1− σ)(1 − ε) log∆

)log∆

,

as desired.

Observe that P
[

Ω∗
v,σ

]

= o(∆−4).
Now we can prove Lemma 3.14. For each v ∈ V (G), let (Ωv,1,Σv,1,Pv,1) be the probability

space where Ωv,1 = L(v), the sigma-algebra Σv,1 is the discrete sigma-algebra, and Pv,1 is the
uniform distribution (i.e. this probability space corresponds to assigning v a color from L(v) uni-
formly at random), let (Ωv,2,Σv,2,Pv,2) be the probability space where Ωv,2 = {heads, tails}, the
sigma-algebra Σv,2 is again discrete, and Pv,2[heads] = ρ (i.e. this probability space corresponds to
activating v with probability ρ), and for each c ∈ L(v), let (Ωv,c,Σv,c,Pv,c) be the probability space
where Ωv,c = {heads, tails}, the sigma-algebra Σv,c is again discrete, and Pv,c[heads] = 1−Kε,ρ/p,
where p is the probability that v is not uncolored after an application of the local naive random
coloring procedure with activation probability ρ, conditioned on the event that v is assigned color
c (i.e. this probability space corresponds to an ε-equalizing coin-flip for v and c). Let (Ω,Σ,P) be
the product space of (Ωv,i,Σv,i,Pv,i)v∈V (G),i∈{1,2} and (Ωv,c,Σv,c,Pv,c)v∈V (G),c∈L(v). In order to
sample a naive partial coloring using the local naive random coloring procedure with activation
probability ρ and ε-equalizing coin flips, we sample from Ω. If ω is an outcome in Ω, then we let
(φω , Uω) be the corresponding naive partial coloring and let Aω be the set of activated vertices. We
prove each random variable is ∆-concentrated individually, as follows.
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Proof that inactivev,≺ is ∆-concentrated. We claim that inactivev,≺ is (r, d)-certifiable with re-
spect to Ω∗ = ∅, where r = 1 and d = 1. Let s > 0 and let ω ∈ Ω such that inactivev,≺(ω) ≥ s.
We show that there is an (r, d)-certificate, I, for inactivev,≺, ω, s, and ∅.

Since inactivev,≺(ω) ≥ s, there is a set S of s neighbors u of v such that u ≺ v and u /∈ Aω.
Thus,

inactivev,≺(ω) ≥ |S| = s. (22)

We let I index the trials determining if u ∈ Aω for the u ∈ S, so |I| = s.
We claim that I is an (r, d)-certificate for inactivev,≺, ω, s, and ∅. To that end, let ω′ ∈ Ω and

k ≥ 0 such that ω and ω′ differ for at most k trials indexed by I. Let T = S \Aω′ . Note that

inactivev,≺(ω
′) ≥ |T |. (23)

Since ω and ω′ differ in at most k trials indexed by I,

|S \ T | ≤ k. (24)

Therefore by (22), (23), and (24), inactivev,≺(ω′) ≥ s − kd, so I is an (r, d)-certificate for
inactivev,≺, ω, s, and ∅, as claimed. Thus, inactivev,≺ is (r, d)-certifiable with respect to ∅,

as claimed, and we can apply Theorem 6.3. We choose t = max{E [inactivev,≺]
5/6 , log9 ∆}, so by

Proposition 6.4 and Theorem 6.3, for some constant γ1 > 0,

P [|inactivev,≺ − E [inactivev,≺] | > t] ≤ 4 exp(−γ1(log
26/5(∆))).

Since ∆ is sufficiently large, the result follows.

Proof that unmatchedv,σ is ∆-concentrated. We cannot show that unmatchedv,σ is (r, d)-certifiable
with respect to any appropriate set of exceptional outcomes, but we can express unmatchedv,σ

as the difference of two random variables that are. To that end, we define the following random
variables in which (φ, U) is a random naive partial coloring:

unmatchedtot
v = |{u ∈ Egalσ(v) : φ(u) /∈ V (Muv)}|, and

unmatched
uncol
v = |{u ∈ Egalσ(v) ∩ U : φ(u) /∈ V (Muv)}|.

Note that unmatched
tot
v is (r, d)-certifiable with respect to Ω∗ = ∅, where r, d = 1, by the same

argument as in the proof that inactivev,≺ is ∆-concentrated. Note also that E [unmatchedv,σ] =

Kε,ρ·E
[

unmatchedtot
v

]

= Kε,ρ·E
[

unmatcheduncol
v

]

/(1−Kε,ρ). Let t = max{E [unmatchedv,σ]
5/6

,

log9 ∆}, so by Proposition 6.4 and Theorem 6.3, for some constant γ2 > 0,

P
[

|unmatchedtot
v − E

[

unmatchedtot
v

]

| > t
]

≤ 4 exp(−γ2(log
36/5(∆))). (25)

Now we show that unmatcheduncol
v is (r, d)-certifiable with exceptional outcomes Ω∗

v,σ from

Proposition 6.5 with r = 3 and d = log∆. Let s > 0 and let ω ∈ Ω\Ω∗
v,σ such that unmatcheduncol

v (ω) ≥
s. Since unmatched

uncol
v (ω) ≥ s, there is a set S1 of s σ-egalitarian neighbors u of v such that

φ(u) /∈ V (Muv) and u ∈ U . Each such vertex u ∈ S1 either has a neighbor u′ ∈ Aω such that
|L(u′)| ≥ |L(u)| and φω(u)φω(u

′) ∈ Muu′ , is itself not in Aω, or is uncolored by an ε-equalizing
coin-flip. In the first case, we choose precisely one such neighbor u′ of u, let u′ be in the set S2,
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and let u be in the set Su′ . In the second case, let u ∈ S′
1, and in the third case, we let u ∈ S′′

1 . By
the definition of these sets,

unmatcheduncol
v (ω) ≥ |S′

1|+ |S′′
1 |+

∑

u∈S2

|Su| = s. (26)

We let I index the trials determining if u ∈ Aω for the u ∈ S′
1 ∪ S2, we let I index the trial for

the ε-equalizing coin flip for u and φω(u) for each u ∈ S′′
1 , and for each u ∈ S1 \ (S′

1 ∪ S′′
1 ), there

exists u′ ∈ N(u)∩S2, and we let I index the trial determining φω(u
′). We also let I index the trial

determining φω(u) for each u ∈ S1. Note that |I| ≤ 3s.
We claim that I is an (r, d)-certificate for unmatcheduncol

v , ω, s, and Ω∗
v,σ. To that end, let

ω′ ∈ Ω\Ω∗
v,σ and k ≥ 0 such that ω and ω′ differ for at most k trials indexed by I. We say a vertex

keeps its color if φω(u) = φω′(u). Let T ′
1 be the set of vertices in S′

1 \ Aω′ that keep their color,
let T ′′

1 be the set of vertices in S′′
1 that keep their color and are also uncolored by an ε-equalizing

coin-flip in the outcome ω′, let T2 be the set of vertices in S2 ∩ Aω′ that keep their color, and for
each u ∈ T2, let Tu be the set of vertices in Su that keep their color. Note that

unmatcheduncol
v (ω′) ≥ |T ′

1|+ |T ′′
1 |+

∑

u∈T2

|Tu|. (27)

Moreover, the sets in the above inequality are pairwise disjoint. Since ω and ω′ differ in at most k
trials indexed by I,

|S′
1 \ T ′

1|+ |S′′
1 \ T ′′

1 |+ |S2 \ T2|+ | ∪u∈T2
Su \ Tu| ≤ k. (28)

Since ω /∈ Ω∗
v,σ, for each u ∈ S2, we have that |Su| ≤ log∆ = d. Therefore by (26), (27), and (28),

unmatcheduncol
v (ω′) ≥ s − kd, so I is an (r, d)-certificate for unmatcheduncol

v , ω, s, and Ω∗
v,σ, as

claimed.
By Proposition 6.4 and Theorem 6.3, for some constant γ3 > 0,

P

[

|unmatcheduncol
v − E

[

unmatcheduncol
v

]

| > t
]

≤ 4 exp(−γ3(log
26/5(∆))) + 4P [Ω∗

v] . (29)

Since unmatchedv,σ = unmatchedtot
v − unmatcheduncol

v , it follows from (25), (29), and
Proposition 6.5 that unmatchedv,σ is ∆-concentrated, as desired.

Proof that pairsv,σ and tripsv,σ are ∆-concentrated. As in the proof that unmatchedv,σ is ∆-
concentrated, we do not show that pairsv,σ and tripsv,σ are (r, d)-certifiable with respect to some
set of exceptional outcomes. Instead, we express pairsv,σ and tripsv,σ as differences of such random
variables and apply Theorem 6.3 to each of these new random variables. If H is a graph, recall that
T (H) denotes the set of triangles in H . We define the following random variables in which (φ, U)
is a random naive partial coloring:

pairs
tot
v,σ = |{x, y ∈ Egalσ(v), c ∈ L(v) : φ(x)c ∈ Mxv and φ(y)c ∈ Myv}|,

tripstotv,σ = |{x, y, z ∈ Egalσ(v), c ∈ L(v) : φ(x)c ∈ Mxv, φ(y)c ∈ Myv, and φ(z)c ∈ Mzv}|,
pairsuncolv,σ = |{x, y ∈ Egalσ(v), c ∈ L(v) : {x, y} ∩ U 6= ∅,

φ(x)c ∈ Mxv and φ(y)c ∈ Myv}|, and

tripsuncolv,σ = |{x, y, z ∈ Egalσ(v), c ∈ L(v), c ∈ L(v) : {x, y, z} ∩ U 6= ∅,

φ(x)c ∈ Mxv, φ(y)c ∈ Myv, and φ(z)c ∈ Mzv}|.
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Note that pairsv,σ = pairstotv,σ − pairsuncolv,σ and tripsv,σ = tripstotv,σ − tripsuncolv,σ . Note also

that E
[

pairsv,σ
]

= Θ(E
[

pairstotv,σ

]

) = Θ(E
[

pairsuncolv,σ

]

) and E
[

tripsv,σ
]

= Θ(E
[

tripstotv,σ

]

) =

Θ(E
[

tripsuncolv,σ

]

).

We claim that pairstotv,σ and pairsuncolv,σ are (r, d)-certifiable with respect to exceptional outcomes

Ω∗
v,σ from Proposition 6.5, where r = 6 and d = log2 ∆. We only provide a proof for pairsuncolv,σ ,

since the proof for pairstotv,σ is easier. Let s > 0 and let ω /∈ Ω∗
v,σ such that pairsuncolv,σ (ω) ≥ s. We

show that there is an (r, d)-certificate, I, for pairsuncolv,σ , ω, s, and Ω∗
v,σ.

For each c ∈ L(v), define Sc,1 as follows. If the set of uncolored σ-egalitarian neighbors u of v
such that φω(u)c ∈ Muv has size at least two, then let that set be Sc,1. Otherwise, let Sc,1 = ∅.
For each c ∈ L(v), each vertex u ∈ Sc,1 either has a neighbor u′ ∈ Aω such that |L(u′)| ≥ |L(u)|
and φω(u)φω(u

′) ∈ Muu′ , is itself not in Aω , or is uncolored by an ε-equalizing coin-flip. In the first
case, we choose precisely one such neighbor u′ of u, let u′ be in the set Sc,2, and let u be in the set
Sc,u′ . In the second case, we let u ∈ S′

c,1, and in the third case, we let u ∈ S′′
c,1. By the definition

of these sets,

pairsuncolv,σ (ω) =
∑

c∈L(v)

(|Sc,1|
2

)

(30)

and

Sc,1 = S′
c,1 ∪ S′′

c,1 ∪





⋃

u∈Sc,2

Sc,u



 .

Since ω /∈ Ω∗
v,σ, for each c ∈ L(v), we have that |Sc,1| ≤ log∆, and for each u ∈ Sc,2, we have that

| ∪c′∈L(v) Sc′,u| ≤ log∆.
For each c ∈ L(v), we let Ic index the trials determining φω(u) for the u ∈ Sc,1 ∪ Sc,2, for each

u ∈ S′
c,1 ∪ S2, we let Ic index the trial determining if u ∈ Aω , and for each u ∈ S′′

c,1, the vertex u is
uncolored by an ε-equalizing coin flip, and we also let Ic index this trial. We let I = ∪c∈L(v)Ic.

We claim that I is an (r, d)-certificate for pairsuncolv,σ , ω, s, and Ω∗
v,σ. To that end, let ω

′ ∈ Ω\Ω∗
v,σ

and k ≥ 0 such that ω and ω′ differ for at most k trials indexed by I. We say a vertex u keeps its
color if φω(u) = φω′(u). For each c ∈ L(v), let T ′

c,1 be the set of vertices in S′
c,1 \ Aω′ that keep

their color, let T ′′
c,1 be the set of vertices in S′′

c,1 that keep their color and are also uncolored by an
ε-equalizing coin-flip in the outcome ω′, let Tc,2 be the set of vertices in Sc,2 ∩ Aω′ that keep their
color, and for each u ∈ Tc,2 , let Tc,u be the set of vertices in Sc,u that keep their color. For each

c ∈ L(v), let Tc,1 = T ′
c,1 ∪ T ′′

c,1 ∪
(

⋃

u∈Tc,2
Tc,u

)

. Note that

pairs
uncol
v,σ (ω′) ≥

∑

c∈L(v)

(|Tc,1|
2

)

. (31)

and
∑

c∈L(v)

((|Sc,1|
2

)

−
(|Tc,1|

2

))

=
∑

c∈L(v)

|Sc,1 \ Tc,1|(|Sc,1|+ |Tc,1| − 1)/2. (32)

Recall that for each c ∈ L(v) and u ∈ Sc,2, we have that | ∪c′∈L(v) Sc′,u| ≤ log∆. Since ω and ω′

differ for at most k trials indexed by I, it follows that
∑

c∈L(v) |Sc,1 \ Tc,1| ≤ k log∆. Also note
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that |Sc,1| + |Tc,1| − 1)/2 ≤ log∆. Therefore by (30), (31), and (32), pairsuncolv,σ (ω′) ≥ s − kd, as
required.

Note that for each c ∈ L(v), we have that |Ic| ≤ 3|Sc,1|, and hence |Ic| ≤ 6
(|Sc,1|

2

)

. Therefore

|I| ≤ 6s, as required. It follows that I is an (r, d)-certificate for pairsuncolv,σ , ω, s, and Ω∗
v,σ, and hence

pairsuncolv,σ is (r, d)-certifiable with respect to Ω∗
v,σ, as claimed. Therefore we can apply Theorem 6.3.

We choose t = max{E
[

pairsv,σ
]5/6

, log9 ∆}, so by Proposition 6.4 and Theorem 6.3, for some
constant γ4 > 0,

P
[

|pairstotv,σ − E
[

pairstotv,σ

]

| > t
]

≤ 4 exp(−γ4(log
16/5(∆))) + 4P [Ω∗

v] , (33)

and
P

[

|pairsuncolv,σ − E

[

pairsuncolv,σ

]

| > t
]

≤ 4 exp(−γ4(log
16/5(∆))) + 4P [Ω∗

v] . (34)

It follows from (33), (34), and Proposition 6.5 that pairsv,σ is ∆-concentrated, as desired.

Similarly, we can apply Theorem 6.3 to tripstotv,σ and tripsuncolv,σ with exceptional outcomes Ω∗
v,σ,

r = 9, and d = log3 ∆. Letting t = max{E
[

tripsv,σ
]5/6

, log9 ∆}, we observe that for some constant
γ5 > 0,

P
[

|tripstotv,σ − E
[

tripstotv,σ

]

| > t
]

≤ 4 exp(−γ5(log
6/5(∆))) + 4P [Ω∗

v] , (35)

and
P

[

|tripsuncolv,σ − E

[

tripsuncolv,σ

]

| > t
]

≤ 4 exp(−γ5(log
6/5(∆))) + 4P [Ω∗

v] . (36)

It follows from (35), (36), and Proposition 6.5 that tripsv,σ is ∆-concentrated, as desired.

7 Critical Graphs and Maximum Average Degree

In this section we prove Theorems 1.13 and 1.15.

7.1 Proof of Theorem 1.13

We prove Theorem 1.13 by finding an appropriate induced subgraph G′ of the graph G, using the
criticality of G to L-color G − V (G′), and then using Theorem 1.7 to extend this coloring to an
L-coloring of G, contradicting the criticality of G. In order to extend the L-coloring of G− V (G′)
to one of G using Theorem 1.7, the vertices of G′ need to have few neighbors in G − V (G′). The
following lemma provides the existence of such a subgraph.

Lemma 7.1. For every 1 ≥ α > ε > 0, every graph H with ad(H) ≤ (1 + ε)δ(H) contains a
nonempty induced subgraph H ′ ⊆ H such that for every v ∈ V (H ′)

1. dH′(v) ≥
(

1−α
2

)

δ(H) and

2. dH(v) ≤
(

1 + 1+α
α−εε

)

δ(H).

Proof. We use the discharging method. For each v ∈ V (G), let the charge of v be ch(v) = d(v) −
ad(H). Note that

∑

v∈V (G) ch(v) = 0. LetX denote the set of vertices ofH with degree greater than
(

1 + 1+α
α−εε

)

δ(H). Note that X is a proper subset of the vertices of H since ad(H) ≤ (1 + ε)δ(H).

We may assume δ(H −X) <
(

1−α
2

)

δ(H) or else H −X is the desired induced subgraph.
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We redistribute the charges in the following way. Let every v ∈ X send ch(v)/d(v) charge to
each of its neighbors. Note that for every v ∈ X ,

ch(v)

d(v)
= 1− ad(H)

d(v)
> 1− ad(H)

(

1 + 1+α
α−εε

)

δ(H)
≥ ε

α
.

Therefore every vertex in X has zero charge, and every v ∈ V (H −X) has charge at least dH(v)−
ad(H) + ε

α (dH(v)− dH−X(v)). If dH(v)− dH−X(v) > 0, then the inequality is strict.
Now we claim we can iteratively remove vertices from H −X of minimum degree to obtain a

nonempty graph of minimum degree at least
(

1−α
2

)

δ(H). When we remove a vertex of H −X , we
add it to a new set X ′, and we let it send charge ε

α to every neighbor not in X ∪X ′. It suffices to
show that every vertex in X ′ has nonnegative charge and that at least one vertex in X ′ has positive
charge, because then the sum of the charges taken over vertices in H − (X ∪X ′) is negative, and
thus H ′ = H − (X ∪X ′) is nonempty.

Note that if v /∈ X ∪X ′ has degree at most
(

1−α
2

)

δ(H) in H − (X ∪ X ′), then v has at least
(

1+α
2

)

δ(H) neighbors in X ∪ X ′. Therefore v receives at least ε
α (

1+α
2 )δ(H) charge and sends at

most ε
α

(

1−α
2

)

δ(H) charge. Hence the difference in charge received and sent is at least εδ(H), and
if v has a neighbor in X , the inequality is strict. Therefore v has nonnegative charge, and since
at least one vertex of X ′ has a neighbor in X , there is a vertex of X ′ with positive charge, as
desired.

Now we can prove Theorem 1.13.

Proof of 1.13. Let α > 0, and let ε ≤ α2

1350 . LetG be an L-critical graph for some k-list-assignmentL
such that ω(G) ≤ (12−α)k. Note then that α < 1

2 . Suppose for a contradiction that ad(G) ≤ (1+ε)k.
Since G is L-critical, G has minimum degree at least k. By Lemma 7.1, there exists G′ ⊆ G such
that for every v ∈ V (G′),

1. dG′(v) ≥
(

1−α
2

)

δ(G), and

2. dG(v) ≤
(

1 + 1+α
α−εε

)

δ(G).

Since G is L-critical, G− V (G′) is L-colorable. Let φ be an L-coloring of G− V (G′), and for each
v ∈ V (G′), let

L′(v) = L(v) \ {c ∈ L(v) : ∃u ∈ N(v) \ V (G′) : φ(u) = c}.
Note that G′ is not L′-colorable, because we can combine an L′-coloring of G′ with φ to obtain an
L-coloring of G.

Since dG′(v) ≥
(

1−α
2

)

δ(G), δ(G) ≥ k, and ω(v) ≤ ω(G) ≤ (12 − α)k for each v ∈ V (G′),

GapG′(v) ≥ α

2
k.

Since each v ∈ V (G′) has at most dG(v)− dG′(v) neighbors in V (G) \ V (G′),

SaveL′(v) ≤ dG(v)− k ≤
((

1 +
1 + α

α− ε
ε

)

(1 + ε)− 1

)

k.

Since ε ≤ α2

1350 and α < 1
2 ,

1 + α

α− ε
ε(1 + ε) + ε ≤ α

1350

(

(1 + α)(1 + α2/1350)

1− α/1350
+ α

)

≤ α

660
.
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Therefore SaveL′(v) ≤ α
660k. Now for every vertex v ∈ V (G′), SaveL′(v) ≤ 1

330GapG′(v) and for

sufficiently large k, GapG′(v)−SaveL′(v) ≥ log10(∆(G′)). Thus, by Theorem 1.7, G′ is L′-colorable,
a contradiction.

7.2 Proof of Theorem 1.15

In this subsection we prove Theorem 1.15. It follows fairly easily from Theorem 1.13.

Proof of Theorem 1.15. Given α > 0, we let ε > 0 be some constant chosen to be small enough to
satisfy certain inequalities throughout the proof. Let G be a graph such that ω(G) ≤ (12−α)mad(G),
and let

k = ⌈(1− ε)(mad(G) + 1) + εω(G)⌉ .
First we prove that there exists an integer k0 such that if mad(G) ≥ k0, then χℓ(G) ≤ k.

We choose k0 such that k is large enough to apply Theorem 1.13. Since k ≥ (1 − ε)mad(G) and
(12 − α)mad(G) ≥ ω(G), assuming ε is small enough, ω(G) ≤ (12 − α

2 )k.
Let ε′ > 0 according to Theorem 1.13 for α/2. We may assume L is a k-list-assignment for G

such that G is not L-colorable, or else χℓ(G) ≤ k, as desired. Therefore G contains an L-critical
subgraph G′, and by Theorem 1.13, ad(G′) ≥ (1 + ε′)k. Hence,

(1 + ε′)k ≤ mad(G) ≤ k

1− ε
.

But we may assume ε is sufficiently small so that (1 + ε′) > 1
1−ε , a contradiction. Therefore

χℓ(G) ≤ k if mad(G) ≥ k0.
It remains to show that χℓ(G) ≤ k if mad(G) < k0. If we choose ε to be less than 1

k0+2 , then

k ≥
⌈(

1− 1

mad(G) + 2

)

(mad(G) + 1)

⌉

=

⌈

mad(G) +
1

mad(G) + 2

⌉

≥ ⌊mad(G)⌋+ 1.

Therefore we can obtain an L-coloring of G for any k-list-assignment L by coloring greedily. Thus,
χℓ(G) ≤ k, as desired.
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A Proof of Theorem 6.3

In order to prove Theorem 6.3, we prove the following theorem which yields concentration around
the median under the same conditions.

Theorem A.1. If X is (r, d)-certifiable with respect to Ω∗, then for any t > 0,

P [|X −Med(X)| > t] ≤ 4 exp

(

− t2

4d2r(Med(X) + t)

)

+ 4P [Ω∗]

We then prove that the expectation and median are close as in the following lemma.

Lemma A.2. If X is (r, d)-certifiable with respect to Ω∗ and M = supX, then

|E [X ]−Med(X)| ≤ 48d
√

rE [X ] + 64rd2 + 4MP [Ω∗] .

Proof. Let Y = X + E [X ]. Note that E [Y ] −Med(Y ) = E [X ] − Med(X), Med(Y ) ≥ E [X ] > 0,
and E [Y ] ≤ 2E [X ]. Note also that

|E [Y ]−Med(Y )| ≤ E [|Y −Med(Y )|] .

Let L = ⌊M/(d
√

rMed(Y ))⌋, and note that |Y −Med(Y )| ≤ (L + 1)d
√

rMed(Y ). By parti-

tioning the possible values of |Y −Med(Y )| into intervals of length d
√

rMed(Y ), we get

E [|Y −Med(Y )|] ≤
L
∑

ℓ=0

d
√

rMed(Y )(ℓ + 1)
(

P

[

|Y −Med(Y )| ≥ ℓd
√

rMed(Y )
]

−P

[

|Y −Med(Y )| ≥ (ℓ+ 1)d
√

rMed(Y )
])

.

=
L
∑

ℓ=0

d
√

rMed(Y )
(

P

[

|Y −Med(Y )| ≥ ℓd
√

rMed(Y )
])

.

By applying Theorem A.1 with t = ℓd
√

rMed(Y ) to every summand,

E [|Y −Med(Y )|] ≤ 4d
√

rMed(Y )

L
∑

ℓ=0

(

exp

(

− ℓ2d2rMed(Y )

4d2r(Med(Y ) + ℓd
√

rMed(Y ))

)

+ P [Ω∗]

)

.

Note that for each ℓ ∈ {0, . . . , L},

exp

(

ℓ2d2rMed(Y )

4d2r(Med(Y ) + ℓd
√

rMed(Y ))

)

≤ exp

(

ℓ2d2rMed(Y )

8d2rmax{Med(Y ), ℓd
√

rMed(Y )}

)

≤ exp

(

ℓ2d2rMed(Y )

8d2rMed(Y )

)

+ exp

(

ℓ2d2rMed(Y )

8d3rℓ
√

rMed(Y )}

)

= exp
(

ℓ2/8
)

+ exp

(

ℓ
√

Med(Y )

8d
√
r

)

.

Note also that

4d
√

rMed(Y )
L
∑

ℓ=0

P [Ω∗] ≤ 4MP [Ω∗] .
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Therefore

E [|Y −Med(Y )|] ≤ 4d
√

rMed(Y )
∞
∑

ℓ=0

(

exp
(

−ℓ2/8
)

+ exp

(

− ℓ
√

Med(Y )

8d
√
r

))

+ 4MP [Ω∗] .

Note that
∑∞

ℓ=0 e
−ℓx = 1

1−e−x . Note also that x
2 ≤ 1− e−x if x < 3

2 . Since
1

1−e−x < 2 when x ≥ 3
2 ,

1
1−e−x ≤ max{2, 2

x}. Therefore
∞
∑

ℓ=0

exp

(

− ℓ
√

Med(Y )

8d
√
r

)

≤ max

{

2,
16d

√
r

√

Med(Y )

}

.

Note that
∑∞

ℓ=0 e
−ℓ2/8 < 4. Therefore

E [|Y −Med(Y )|] ≤ 4d
√

rMed(Y )

(

4 + max

{

2,
16d

√
r

√

Med(Y )

})

+ 4MP [Ω∗] .

Since the maximum of two numbers is at most their sum,

E [|Y −Med(Y )|] ≤ 24d
√

rMed(Y ) + 64rd2 + 4MP [Ω∗] .

Since Med(Y ) ≤ 2E [Y ] ≤ 4E [X ],

E [Y −Med(Y )|] ≤ 48d
√

rE [X ] + 64rd2 + 4MP [Ω∗] ,

as desired.

Lemma A.2 is similar to Fact 20.1 in [15]. However, the proof of Fact 20.1 is flawed, as we now

describe. Molloy and Reed upper bound P

[

|X −Med(X)| > ic
√

rMed(X)
]

by 4e−i2/8 for every

positive integer i using Talagrand’s Inequality I; however, Talagrand’s Inequality I only applies if
0 ≤ ic

√

rMed(X) ≤ Med(X). Our proof of Lemma A.2 avoids this flaw, since Theorem A.1 has no

restriction on t. However, for these large values of i, we bound this probability by exp

(

− ℓ
√

Med(Y )

8d
√
r

)

instead, which leads to the additional 64rd2 term.
Now we can prove Theorem 6.3 assuming Theorem A.1.

Proof of Theorem 6.3. Since t > 96d
√

rE [X ] + 128rd2 + 8MP [Ω∗] ,

t

2
> 48d

√

rE [X ] + 64rd2 + 4MP [Ω∗] . (37)

By applying Lemma A.2 and then (37),

P [|X − E [X ] | > t] ≤ P

[

|X −Med(X)| > t

2

]

.

Since Med(X) ≤ 2E [X ], Theorem A.1 implies that

P

[

|X −Med(X)| > t

2

]

≤ 4 exp

(

− (t/2)2

4d2r(2E [X ] + (t/2))

)

+ 4P [Ω∗] ,

= 4 exp

(

− t2

8d2r(4E [X ] + t)

)

+ 4P [Ω∗]

as desired.
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It remains to prove Theorem A.1.
Let ((Ωi,Σi,Pi))

n
i=1 be probability spaces and (Ω,Σ,P) their product space. For a set A ⊆ Ω

and event ω ∈ Ω, let

d(ω,A) = sup
||α||=1







τ :
∑

i:ωi 6=ω′

i

αi ≥ τ for all ω′ ∈ A







. (38)

We use the original version of Talagrand’s Inequality.

Theorem A.3 (Talagrand’s Inequality [22]). If A,B ⊆ Ω are measurable sets such that for all
ω ∈ B, d(ω,A) ≥ τ , then

P [A]P [B] ≤ e
−τ2

4 .

We can now prove Theorem A.1.

Proof of Theorem A.1. It suffices to show that

P [X ≤ Med(X)− t] ≤ 2 exp

(

− t2

8rd2(Med(X) + t)

)

+ 2P [Ω∗] (39)

and

P [X ≥ Med(X) + t] ≤ 2 exp

(

− t2

8rd2(Med(X) + t)

)

+ 2P [Ω∗] . (40)

Let

A = {ω ∈ Ω\Ω∗ : X(ω) ≥ Med(X) + t}, and

B = {ω ∈ Ω\Ω∗ : X(ω) ≤ Med(X)}.

We need to show the following.

Claim A.4. For all ω ∈ B, d(ω,A) ≥ t

c
√

r(Med(X)+t)
.

To that end, let ω′ ∈ A. Since X is (r, d)-certifiable, there exists an (r, d)-certificate, I, for
X,ω′,Med(X) + t, and Ω∗. Thus, the outcomes ω and ω′ differ in at least t/d coordinates of I.
Therefore if we set α = 1/

√

|I| · 1I where 1I is the characteristic vector of I, then ω and ω′ have

α-hamming distance at least t/(d
√

r(Med(X) + t)). Hence, the claim follows.
Now (40) follows from Claim A.4 and Theorem A.3. The proof of (39) is similar, so we omit

it.

The proof of Claim A.4 demonstrates why we introduce k into the definition of (r, d)-certificates,
rather than considering changing the outcome of only one trial. We may change the outcome of
one trial and obtain an exceptional outcome, in which case we need that changing the outcome of
yet another trial does not greatly affect X , or else the outcomes ω and ω′ may differ for only two
trials.
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