
BOOLEAN DIMENSION AND LOCAL DIMENSION
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Abstract. Dimension is a standard and well-studied measure of complexity of posets. Recent
research has provided many new upper bounds on the dimension for various structurally restricted
classes of posets. Bounded dimension gives a succinct representation of the poset, admitting
constant response time for queries of the form “is x < y?”. This application motivates looking
for stronger notions of dimension, possibly leading to succinct representations for more general
classes of posets. We focus on two: boolean dimension, introduced in the 1980s and revisited in
recent research, and local dimension, a very new one. We determine precisely which values of
dimension/boolean dimension/local dimension imply that the two other parameters are bounded.

1. Introduction

Dimension. The dimension of a poset P = (X,6) is the minimum number of linear extensions
of 6 on X the intersection of which gives 6. More precisely, a realizer of a poset P = (X,6) is
a set {61, . . . ,6d} of linear extensions of 6 on X such that

x 6 y ⇐⇒ (x 61 y) ∧ · · · ∧ (x 6d y), for any x, y ∈ X,
and the dimension is the minimum size of a realizer. The concept of dimension was introduced by
Dushnik and Miller [8] and has been widely studied since. There are posets with arbitrarily large
dimension: the standard example Sk = ({a1, . . . , ak, b1, . . . , bk},6), where a1, . . . , ak are minimal
elements, b1, . . . , bk are maximal elements, and ai < bj if and only if i 6= j, has dimension k
when k > 2 [8]. On the other hand, the dimension of a poset is at most the width [12], and it is
at most n

2 when n > 4, where n denotes the number of elements [12].
The cover graph of a poset P = (X,6) is the graph on X with edge set {xy : x < y and there is

no z with x < z < y}. A poset is planar if its cover graph has a non-crossing upward drawing in the
plane, which means that every cover graph edge xy with x < y is drawn as a curve that goes mono-
tonically up from x to y. Planar posets that contain a least element and a greatest element are
well known to have dimension at most 2 [1]. By contrast, spherical posets (i.e. posets with upward
non-crossing drawings on a sphere) with least and greatest elements can have arbitrarily large di-
mension [24]. Trotter and Moore [25] proved that planar posets that contain a least element have
dimension at most 3 (and so do posets whose cover graphs are forests) and asked whether all planar
posets have bounded dimension. The answer is no—Kelly [17] constructed
planar posets with arbitrarily large dimension (pictured). Another property
of Kelly’s posets is that their cover graphs have path-width and tree-
width 3. Recent research brought a plethora of new bounds on dimension
for structurally restricted posets. In particular, dimension is bounded for
• posets with height 2 and planar cover graphs [9],
• posets with bounded height and planar cover graphs [23],
• posets with bounded height and cover graphs of bounded tree-width [14],
• posets with bounded height and cover graphs excluding a topological minor [27],
• posets with bounded height and cover graphs of bounded expansion [16],
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• posets with cover graphs of path-width 2 [3],
• posets with cover graphs of tree-width 2 [15],
• posets with planar cover graphs excluding two incomparable chains of bounded length [13].

Boolean dimension. The boolean dimension of a poset P = (X,6) is the minimum number of
linear orders on X a boolean combination of which gives 6. More precisely, a boolean realizer of P
is a set {61, . . . ,6d} of linear orders on X for which there is a d-ary boolean formula φ such that
(1) x 6 y ⇐⇒ φ

(
(x 61 y), . . . , (x 6d y)

)
for any x, y ∈ X,

and the boolean dimension is the minimum size of a boolean realizer. The boolean dimension is
at most the dimension, because a realizer is a boolean realizer for the formula φ(α1, . . . , αd) =
α1 ∧ · · · ∧ αd. Beware that the relation 6 defined by (1) from arbitrary linear orders 61, . . . ,6d

on X and formula φ is not necessarily a partial order.
Boolean dimension was first considered by Gambosi, Nešetřil, and Talamo [10] and by Nešetřil

and Pudlák [22]. The definition above follows [22]. That in [10] allows only formulas φ of the form
φ(α1, . . . , αd) = αi ∧ ψ(α1, . . . , αi−1, αi+1, . . . , αd) for some i. The purpose of this restriction
is unclear—it guarantees antisymmetry but not transitivity of the relation 6 defined by (1).
Under that modified definition, it is proved in [10] that boolean dimension d and dimension d are
equivalent for d ∈ {1, 2, 3} (we redo that proof in section 2 with no restriction on φ). The standard
examples Sk with k > 4 have boolean dimension 4 [10] (see section 2). Easy counting shows that
there are posets on n elements with boolean dimension Θ(logn) [22]. This is optimal—every n-
element poset has boolean dimension O(logn) witnessed by a formula of length O(n2 logn) [22].

Nešetřil and Pudlák [22] asked whether boolean dimension is bounded for planar posets. It
was proved already in [10] that posets with height 2 and planar cover graphs have bounded
boolean dimension. Spherical posets with a least element also have bounded boolean dimension
[6], contrary to ordinary dimension. This and the recent progress on dimension of structurally
restricted posets have motivated revisiting boolean dimension in current research.

Local dimension. A partial linear extension of a partial order 6 on X is a linear extension of
the restriction of 6 to some subset of X. A local realizer of P of width d is a set {61, . . . ,6t} of
partial linear extensions of 6 such that every element of X occurs in at most d of 61, . . . ,6t and
(2) x 6 y ⇐⇒ there is no i ∈ {1, . . . , t} with x >i y, for any x, y ∈ X.
The local dimension of P is the minimum width of a local realizer of P . Thus, instead of the size
of a local realizer, we bound the number of times any element of X occurs in it. A set of linear
extensions of 6 is a local realizer if and only if it is a realizer. In particular, the local dimension
is at most the dimension. For arbitrary partial linear extensions 61, . . . ,6t of 6 on subsets of X,
the relation 6 defined by (2) is not necessarily a partial order—it may fail to be antisymmetric or
transitive. It is antisymmetric, for example, if one of 61, . . . ,6t is a linear extension of 6 on X.

The concept of local dimension was proposed very recently by Ueckerdt [26] and originates
from concepts studied in [4, 19]. Ueckerdt [26] also noticed that the standard examples Sk with
k > 3 have boolean dimension 3.

Results. Extending the results on boolean dimension from [10], for each d, we determine whether
posets with dimension/boolean dimension/local dimension d have the other two parameters
bounded or unbounded. Here is the full picture:
A. Boolean dimension d and dimension d are equivalent for d ∈ {1, 2, 3} [10].
B. Local dimension d and dimension d are equivalent for d ∈ {1, 2}.
C. The standard examples Sk have boolean dimension 4 when k > 4 [10], local dimension 3

when k > 3 [26], and dimension k when k > 2 [8].
D. There are posets with boolean dimension 4 and unbounded local dimension.
E. Posets with local dimension 3 have bounded boolean dimension.
F. There are posets with local dimension 4 and unbounded boolean dimension.



BOOLEAN DIMENSION AND LOCAL DIMENSION 3

We present proofs of A–F in the next section.
Other new results concern boolean dimension and local dimension of structurally restricted

posets. In particular, posets with cover graphs of bounded path-width have bounded boolean
dimension [21] and bounded local dimension [2], while local dimension is unbounded for posets
with cover graphs of tree-width 3 [2, 5] and for planar posets [5]. It remains open whether
boolean dimension is bounded for posets with cover graphs of bounded tree-width (in particular,
tree-width 3) and for planar posets. There are n-element posets with local dimension Θ(

√
n) [2],

and conceivably the right bound is (1
2 − o(1))n.

2. Proofs

A. Boolean dimension d and dimension d are equivalent for d ∈ {1, 2, 3}.

Proof. We basically repeat the argument given in [10] but avoiding the restriction on functions
φ imposed therein. Let P = (X,6) be a poset with boolean dimension d and {61, . . . ,6d} be
its boolean realizer for a formula φ. Reflexivity of 6 implies φ(1, . . . , 1) = 1. Without loss of
generality, assume φ(α) = 0 when φ(α) is never used by (1). This and antisymmetry of 6 imply
φ(α) = 0 or φ(α) = 0 for every α ∈ {0, 1}d. In particular, φ(α) = 1 for at most half of the tuples α.

If d = 1, then φ(1) = 1 and φ(0) = 0, so {61} is a realizer of P . This shows that boolean
dimension 1 and dimension 1 are equivalent.

Now, let d ∈ {2, 3}. If φ(α) = φ(α) = 0 for at most one pair α, α (as it is for d = 2), then
the strict partial order ≺ on X defined by x ≺ y ⇐⇒

(
(x <1 y), . . . , (x <d y)

)
= α for distinct

x, y ∈ X is a transitive orientation of the incomparability graph of P , so P has dimension at
most 2 [8, Theorem 3.61]. This shows that boolean dimension 2 and dimension 2 are equivalent.

For d = 3, to complete the proof that boolean dimension 3 and dimension 3 are equivalent,
we consider the three cases (up to symmetry) in which φ(α) = 1 for at most two tuples α.
1. If φ(α) = 1 for α = (1, 1, 1) only, then {61,62,63} is a realizer of P .
2. If φ(α) = 1 for α ∈ {(1, 1, 0), (1, 1, 1)} only, then {61,62} is a realizer of P .
3. If φ(α) = 1 for α ∈ {(0, 0, 1), (1, 1, 1)} only, then the strict partial order ≺ on X defined by
x ≺ y ⇐⇒

(
(x <1 y) ∧ (x >2 y)

)
for distinct x, y ∈ X is a transitive orientation of the

incomparability graph of P , so P has dimension at most 2 [8, Theorem 3.61]. �

B. Local dimension d and dimension d are equivalent for d ∈ {1, 2}.

Proof. If a poset P = (X,6) has local dimension 1, then a local realizer of P of width 1 must
consist of a single full linear order on X, because antisymmetry of 6 requires that every pair
x, y ∈ X occurs in at least one partial linear extension.

Now, let P = (X,6) be a poset with local dimension 2, and consider a local realizer of P
of width 2. If x, y ∈ X are incomparable in 6, then both occurrences of x and y are in the
same two partial linear extensions, where x < y in one and x > y in the other. Therefore, the
subposet of P induced on every connected component C of the incomparability graph of P is
witnessed by two partial linear extensions, which restricted to C form a realizer of that subposet.
These realizers stacked according to the order 6 form a realizer of P of size 2. �

C. The standard examples Sk have boolean dimension 4 when k > 4, local dimension 3 when
k > 3, and dimension k when k > 2.

Proof. It was observed in [10] that the standard example Sk has boolean dimension 4 (when
k > 4), witnessed by the formula φ(α) = α1 ∧α2 ∧ (α3 ∨α4) and the following four linear orders:

a1 < · · · < ak < b1 < · · · < bk, b1 < a1 < · · · < bk < ak,

ak < · · · < a1 < bk < · · · < b1, bk < ak < · · · < b1 < a1.

Ueckerdt [26] observed that Sk has local dimension 3 (when k > 3), witnessed by the two
linear extensions above on the left and k partial linear extensions each of the form bi < ai.
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Only one pair ai, bi can be ordered as bi < ai in a single linear extension, so the dimension of
Sk is at least k. A realizer of size exactly k can be constructed easily when k > 2, see [8]. �

D. There are posets with boolean dimension 4 and unbounded local dimension.

Proof. Another well-known construction of posets with arbitrarily large dimension involves
incidence posets of complete graphs: Pn = (V ∪ E,6), where V = {v1, . . . , vn} are the minimal
elements, E = {v1v2, v1v3, . . . , vn−1vn} are the maximal elements, and the only comparable pairs
are vi < vivj and vj < vivj for i 6= j. The dimension of Pn is at least log2 log2 n [8, Theorem 4.22].
The boolean dimension of Pn is at most 4, witnessed by the formula φ(α) = (α1 ∧α2)∨ (α3 ∧α4)
and the following four linear orders:

A1 < · · · < An, where each Ai has form vi < vivi+1 < · · · < vivn,

Bn < · · · < B1 , where each Bi has form vi < vivn < · · · < vivi+1,

C1 < · · · < Cn, where each Ci has form vi < v1vi < · · · < vi−1vi,

Dn < · · · < D1, where each Di has form vi < vi−1vi < · · · < v1vi.

The local dimension of Pn is unbounded as n → ∞. For suppose Pn has a local realizer of
width d. Enumerate the occurrences of each element of V ∪ E in the local realizer from 1 to
(at most) d. Each triple vivjvk (i < j < k) can be assigned a color (p, q) so that vivk < vj in
a partial linear extension containing the pth occurrence of vj and the qth occurrence of vivk.
By Ramsey’s theorem, if n is large enough compared to d, then there is a quadruple vivjvkv`

(i < j < k < `) with all four triples of the same color (p, q). It follows that the pth occurrences
of vj and vk and the qth occurrences of viv`, vivk, and vjv` are all in the same partial linear
extension, which therefore contains a cycle vj < vjv` < vk < vivk < vj , a contradiction. �

E. Posets with local dimension 3 have bounded boolean dimension.

Proof. Let P = (X,6) be a poset with a local realizer of width 3 consisting of partial linear
extensions that we call gadgets. We construct a boolean realizer {6?,61,6′1, . . . ,6d,6′d} for a
formula of the form α?∧ (α1∨α′1)∧ · · · ∧ (αd∨α′d). The order 6? is an arbitrary linear extension
of 6 on X. Each pair of orders 6i,6′i is defined by X1 <i · · · <i Xt and Xt <

′
i · · · <′i X1, where

{X1, . . . , Xt} is some partition of X into blocks such that every block Xj is completely ordered
by some gadget and that order is inherited by 6i and 6′i. Then, we have x < y for the relation
6 defined by (1) if and only if x <? y and x < y in every block containing both x and y. It
remains to construct a bounded number of partitions of X into blocks so that for any x, y ∈ X,
if x <? y and x > y in some gadget, then x > y in some block in at least one of the partitions.

Without loss of generality, assume that each element x ∈ X has exactly 3 occurrences in
the gadgets—enumerate them as x1, x2, x3 according to a fixed order of the gadgets. For each
p ∈ {1, 2, 3}, form a partition of X by restricting every gadget to elements of the form xp. These
three partitions witness all comparabilities of the form xp > yp within gadgets.

Now, let G be a graph on X where xy (with x <? y) is an edge if and only if xp > yq (p 6= q)
in some gadget. Thus G is a subgraph of the incomparability graph of P . Suppose χ(G) > 38. It
follows that G has an edge uv such that χ(G[Xuv]) > 19, where Xuv = {x ∈ X : u <? x <? v} [20,
Lemma 2.1]. Let Xu = {x ∈ Xuv : u 66 x} and Xv = {x ∈ Xuv : x 66 v}. Thus Xuv = Xu∪Xv, as
u 66 v. Let a color of x ∈ Xu be a quadruple (p, q, r, s) with p < q and r < s, where either xp < uq

and xr > us or xp > uq and xr < us in some gadgets. There are 9 possible colors (quadruples).
The coloring of G[Xu] thus obtained is proper—whenever x, y ∈ Xu have the same color, xp and
yp are in the same gadget, as well as xr and yr are in the same gadget; this contradicts the
fact that the edge xy of G is witnessed by some xi and yj with i 6= j occurring in the same
gadget (this is where we use the bound 3 on the number of occurrences). Thus χ(G[Xu]) 6 9,
and similarly χ(G[Xv]) 6 9, which yields χ(G[Xuv]) 6 18. This contradiction shows χ(G) 6 38.

Let c be a proper 38-coloring of G. For 1 6 p < q 6 3 and any distinct colors a, b, form a
partition of X by restricting every gadget to elements of the form xp with c(x) = a and yq with
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c(y) = b (adding singletons if necessary to obtain a full partition of X). The 4218 partitions
thus obtained have the desired property. The resulting boolean realizer of P has size 8443. �

F. There are posets with local dimension 4 and unbounded boolean dimension.

Proof. When (V,E) is an acyclic digraph, v ∈ V , and X,Y ⊆ V , let E(X, v) = {xv ∈ E : x ∈ X},
E(v, Y ) = {vy ∈ E : y ∈ Y }, and E(X,Y ) = {xy ∈ E : x ∈ X and y ∈ Y } (xy denotes a directed
edge from x to y). For every k > 1, we construct an acyclic digraph G = (V,E) with χ(G) > k,
a poset P = (E,6), and a local realizer {6A,6B} ∪ {6v : v ∈ V } of P of width 4, where
(i) 6A is a linear extension of 6 on E such that E(V, v) <A E(v, V ) for every v ∈ V ,
(ii) 6B is a linear extension of 6 on E such that E(V, v) <B E(v, V ) and E(v, V ) occurs as a

contiguous block in 6B for every v ∈ V ,
(iii) 6v is a gadget—a partial linear extension of the form E(v, V ) <v E(V, v) for every v ∈ V .

The construction is an adaptation of the well-known construction of triangle-free graphs with
arbitrarily large chromatic number from [7, 18]. For k = 1, let V = {u, v}, E = {uv}, and
6A,6B,6u,6v be trivial orders on E. Now, suppose that k > 2 and the construction can be
performed for k − 1. Let r be the number of vertices in that construction, s = k(r − 1) + 1,
and n =

(s
r

)
. For 1 6 i 6 n, let Gi = (V i, Ei), P i = (Ei,6i), and {6i

A,6
i
B} ∪ {6i

v : v ∈ V i}
be separate instances of the construction for k − 1. Let X = {x1, . . . , xs} be yet a separate set
of s vertices. Let X1, . . . , Xn be the r-element subsets of X. Let V = X ∪ V 1 ∪ · · · ∪ V n and
E =

⋃n
i=1
(
{xi

1v
i
1, . . . , x

i
rv

i
r} ∪ Ei

)
, where

• xi
1, . . . , x

i
r are the vertices in Xi in the same order as in the sequence x1, . . . , xs,

• vi
1, . . . , v

i
r are the vertices in V i ordered so that Ei(vi

1, V
i) <i

B · · · <i
B Ei(vi

r, V
i).

Let G = (V,E). Clearly, G is an acyclic digraph. The assumption that χ(Gi) > k − 1 for all i
implies χ(G) > k [7, 18]. Indeed, in any proper k-coloring of G, at least one of the sets Xi

would be monochromatic, which would yield χ(Gi) 6 k − 1, a contradiction. For 1 6 j 6 s, let
Nj = {v ∈ V : xjv ∈ E}. Let 6A and 6B be linear orders on V such that
• E(X1, V 1) <A E1 <A · · · <A E(Xn, V n) <A En and the restriction of 6A to each Ei is 6i

A,
• E(x1, V ) <B E(N1, V ) <B · · · <B E(xs, V ) <B E(Ns, V ).
The latter property implies that the restriction of 6B to each Ei is 6i

B. Finally, for every x ∈ X,
let 6x be a new gadget on E(x, V ), and for v ∈ V i and 1 6 i 6 n, let 6v be 6i

v with E(X, v)
(which is just one edge) added on top. This guarantees properties (i)–(iii). Let 6 be the relation
on E defined from {6A,6B} ∪ {6v : v ∈ V } by (2). It follows that the restriction of 6 to each
Ei is 6i. It remains to show that the relation 6 is a partial order, so that P = (E,6) is a poset
and {6A,6B} ∪ {6v : v ∈ V } is its local realizer.

Reflexivity and antisymmetry of 6 are clear. For transitivity, suppose e, f, g ∈ E, e < f , and
f < g, but e 66 g. The assumption that e < f and f < g implies e <A f <A g and e <B f <B g.
Since e 66 g, the edges e and g must occur as e > g in some gadget. We consider four cases.
1. If e, g ∈ Ei for some i, then the definition of 6A implies f ∈ Ei, so e <i f <i g. This and

the assumption that e 66 g contradict the fact that 6i is the restriction of 6 to Ei.
2. If e, g ∈ E(x, V ) for some x ∈ X, then the definition of 6B implies f ∈ E(x, V ). This yields
e <x f <x g, and the only gadget containing both e and g fails to witness e 66 g.

3. If e = xjv and g = uv for some xj ∈ X and u, v ∈ V r X, then u, v ∈ V i for some i.
The definition of E implies that there is an edge xj′u ∈ E, where j′ < j, and therefore
g ∈ E(Nj′ , V ) <B E(xj , V ) 3 e, a contradiction.

4. If e = xjv and g = vw for some xj ∈ X and v, w ∈ V r X, then v, w ∈ V i for some i.
The definitions of 6A and 6B imply

f ∈
(
E(Xi, V i) ∪ Ei) ∩ (E(xj , V ) ∪ E(Nj , V )

)
= {xjv} ∪ E(v, V i).

This yields e <v f <v g, and the only gadget containing both e and g fails to witness e 66 g.
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This shows that 6 is transitive, thus completing the proof of correctness of the construction.
Let k = 222d

. We show that the poset P resulting from the construction above has boolean
dimension greater than d. For suppose {61, . . . ,6d} is a boolean realizer of P for a formula φ.
Let G′ = (E,A) be the arc digraph of G, and let G′′ = (A,B) be the arc digraph of G′. That
is, A = {uvw : uv, vw ∈ E} and B = {uvwx : uvw, vwx ∈ A} = {uvwx : uv, vw,wx ∈ E}. It
follows that χ(G′) > log2 χ(G) and χ(G′′) > log2 χ(G′) [11, Theorem 9], and thus χ(G′′) > 2d.
For uvw ∈ A, let α(uvw) =

(
(uv <1 vw), . . . , (uv <d vw)

)
∈ {0, 1}d; the fact that uv >v vw

implies uv 66 vw and thus φ(α(uvw)) = 0. Let uvwx ∈ B. We have uv <A vw <A wx and
uv <B vw <B wx, which implies uv < wx, because no gadget contains both uv and wx. If
α(uvw) = α(vwx) = α, then transitivity of 61, . . . ,6d implies

(
(uv <1 wx), . . . , (uv <d wx)

)
=

α. This, φ(α) = 0, and uv < wx result in a contradiction. Therefore, α : A→ {0, 1}d is a proper
2d-coloring of G′′. This contradicts the fact that χ(G′′) > 2d. �

References
[1] Kirby A. Baker, Peter C. Fishburn, and Fred S. Roberts, Partial orders of dimension 2, Networks 2 (1),

11–28, 1972.
[2] Fidel Barrera Cruz, Thomas Prag, Heather C. Smith, Libby Taylor, and William T. Trotter, Local dimension,

dimension and topological graph theory, manuscript.
[3] Csaba Biró, Mitchel T. Keller, and Stephen J. Young, Posets with cover graph of pathwidth two have bounded

dimension, Order 33 (2), 195–212, 2016.
[4] Thomas Bläsius, Peter Stumpf, and Torsten Ueckerdt, Local and union boxicity, arXiv:1609.09447.
[5] Bartłomiej Bosek, Jarosław Grytczuk, and William T. Trotter, Local dimension is unbounded for planar

posets, manuscript.
[6] Graham R. Brightwell and Paolo G. Franciosa, On the Boolean dimension of spherical orders, Order 13 (3),

233–243, 1996.
[7] Blanche Descartes, Solution to advanced problem 4526, Amer. Math. Monthly 61 (5), 352–353, 1954.
[8] Ben Dushnik and Edwin W. Miller, Partially ordered sets, Amer. J. Math. 63 (3), 600–610, 1941.
[9] Stefan Felsner, Ching Man Li, and William T. Trotter, Adjacency posets of planar graphs, Discrete Math.

310 (5), 1097–1104, 2010.
[10] Giorgio Gambosi, Jaroslav Nešetřil, and Maurizio Talamo, On locally presented posets, Theor. Comput. Sci.

70 (2), 251–260, 1990.
[11] Charles C. Harner and Roger C. Entringer, Arc colorings of digraphs, J. Combin. Theory Ser. B 13 (3),

219–225, 1972.
[12] Toshio Hiraguchi, On the dimension of partially ordered sets, Sci. Rep. Kanazawa Univ. 1 (2), 77–94, 1951.
[13] David M. Howard, Noah Streib, William T. Trotter, Bartosz Walczak, and Ruidong Wang, The dimension of

posets with planar cover graphs excluding two long incomparable chains, arXiv:1608.08843.
[14] Gwenaël Joret, Piotr Micek, Kevin G. Milans, William T. Trotter, Bartosz Walczak, and Ruidong Wang,

Tree-width and dimension, Combinatorica 36 (4), 431–450, 2016.
[15] Gwenaël Joret, Piotr Micek, William T. Trotter, Ruidong Wang, and Veit Wiechert, On the dimension of

posets with cover graphs of treewidth 2, Order, in press.
[16] Gwenaël Joret, Piotr Micek, and Veit Wiechert, Sparsity and dimension, in: 27th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 2016), pp. 1804–1813, SIAM, Philadelphia, 2016.
[17] David Kelly, On the dimension of partially ordered sets, Discrete Math. 35 (1–3), 135–156, 1981.
[18] John B. Kelly and Le Roy M. Kelly, Path and circuits in critical graphs, Amer. J. Math. 76 (4), 786–792, 1954.
[19] Kolja Knauer and Torsten Ueckerdt, Three ways to cover a graph, Discrete Math. 339 (2), 745–758, 2016.
[20] Sean McGuinness, On bounding the chromatic number of L-graphs, Discrete Math. 154 (1–3), 179–187, 1996.
[21] Piotr Micek and Bartosz Walczak, unpublished result.
[22] Jaroslav Nešetřil and Pavel Pudlák, A note on boolean dimension of posets, in: Gábor Halász and Vera

T. Sós (eds.), Irregularities of Partitions, vol. 8 of Algorithms Combin., pp. 137–140, Springer, Berlin, 1989.
[23] Noah Streib and William T. Trotter, Dimension and height for posets with planar cover graphs, European J.

Combin. 35, 474–489, 2014.
[24] William T. Trotter, Order preserving embeddings of aographs, in: Yousef Alavi and Don R. Lick (eds.),

Theory and Applications of Graphs, vol. 642 of Lecture Notes Math., pp. 572–579, Springer, Berlin, 1978.
[25] William T. Trotter and John I. Moore, The dimension of planar posets, J. Combin. Theory Ser. B 22 (1),

54–67, 1977.
[26] Torsten Ueckerdt, Order & Geometry Workshop, Gułtowy, 2016.
[27] Bartosz Walczak, Minors and dimension, J. Combin. Theory Ser. B 122, 668–689, 2017.

http://doi.org/10.1002/net.3230020103
http://doi.org/10.1002/net.3230020103
http://doi.org/10.1007/s11083-015-9359-7
http://doi.org/10.1007/s11083-015-9359-7
http://arxiv.org/abs/1609.09447
http://doi.org/10.1007/BF00338743
http://doi.org/10.1007/BF00338743
http://doi.org/10.2307/2307489
http://doi.org/10.2307/2371374
http://doi.org/10.1016/j.disc.2009.11.005
http://doi.org/10.1016/j.disc.2009.11.005
http://doi.org/10.1016/0304-3975(90)90125-2
http://doi.org/10.1016/0304-3975(90)90125-2
http://doi.org/10.1016/0095-8956(72)90057-3
http://doi.org/10.1016/0095-8956(72)90057-3
http://hdl.handle.net/2297/33696
http://arxiv.org/abs/1608.08843
http://arxiv.org/abs/1608.08843
http://doi.org/10.1007/s00493-014-3081-8
http://doi.org/10.1007/s00493-014-3081-8
http://doi.org/10.1007/s11083-016-9395-y
http://doi.org/10.1007/s11083-016-9395-y
http://doi.org/10.1137/1.9781611974331.ch125
http://doi.org/10.1137/1.9781611974331.ch125
http://doi.org/10.1016/0012-365X(81)90203-X
http://doi.org/10.2307/2372652
http://doi.org/10.1016/j.disc.2015.10.023
http://doi.org/10.1016/0012-365X(95)00316-O
http://doi.org/10.1007/978-3-642-61324-1_12
http://doi.org/10.1007/978-3-642-61324-1_12
http://doi.org/10.1016/j.ejc.2013.06.017
http://doi.org/10.1016/j.ejc.2013.06.017
http://doi.org/10.1007/bfb0070411
http://doi.org/10.1007/bfb0070411
http://doi.org/10.1016/0095-8956(77)90048-X
http://doi.org/10.1016/0095-8956(77)90048-X
http://doi.org/10.1016/j.jctb.2016.09.001

	1. Introduction
	Dimension
	Boolean dimension
	Local dimension
	Results

	2. Proofs
	References

