On Efficient Domination for Some Classes of H-Free Chordal Graphs

Andreas Brandstädt
Institut für Informatik, Universität Rostock, D-18051 Rostock, Germany
andreas.brandstaedt@uni-rostock.de
Raffaele Mosca
Dipartimento di Economia, Universitá degli Studi "G. D'Annunzio", Pescara 65121, Italy
r.mosca@unich.it

Abstract

A vertex set D in a finite undirected graph G is an efficient dominating set (e.d.s. for short) of G if every vertex of G is dominated by exactly one vertex of D. The Efficient Domination (ED) problem, which asks for the existence of an e.d.s. in G, is known to be $\mathbb{N P}$-complete even for very restricted graph classes such as for $2 P_{3}$-free chordal graphs while it is solvable in polynomial time for P_{6}-free chordal graphs (and even for P_{6}-free graphs). A standard reduction from the $\mathbb{N P}$-complete Exact Cover problem shows that ED is $\mathbb{N P}$-complete for a very special subclass of chordal graphs generalizing split graphs. The reduction implies that ED is $\mathbb{N} \mathbb{P}$-complete e.g. for double-gem-free chordal graphs while it is solvable in linear time for gem-free chordal graphs (by various reasons such as bounded clique-width, distance-hereditary graphs, chordal square etc.), and ED is $\mathbb{N P}$-complete for butterfly-free chordal graphs while it is solvable in linear time for $2 P_{2}$-free graphs.

We show that (weighted) ED can be solved in polynomial time for H-free chordal graphs when H is net, extended gem, or $S_{1,2,3}$.

Keywords: Weighted efficient domination; H-free chordal graphs; $\mathbb{N P}$-completeness; net-free chordal graphs; extended-gem-free chordal graphs; $S_{1,2,3}$-free chordal graphs; polynomial time algorithm; cliquewidth.

1 Introduction

Let $G=(V, E)$ be a finite undirected graph. A vertex v dominates itself and its neighbors. A vertex subset $D \subseteq V$ is an efficient dominating set (e.d.s. for short) of G if every vertex of G is dominated by exactly one vertex in D; for any e.d.s. D of $G,|D \cap N[v]|=1$ for every $v \in V$ (where $N[v]$ denotes the closed neighborhood of v). Note that not every graph has an e.d.s.; the Efficient Dominating Set (ED) problem asks for the existence of an e.d.s. in a given graph G.

The Exact Cover problem asks for a subset \mathcal{F}^{\prime} of a set family \mathcal{F} over a ground set, say V, containing every vertex in V exactly once. In particular, this means that the elements of \mathcal{F}^{\prime} form a partition of V, i.e., for every two distinct elements $U, W \in \mathcal{F}^{\prime}, U \cap W=\emptyset$ and $\bigcup_{X \in \mathcal{F}^{\prime}}=V$. Thus, Exact Cover is a partition problem since it asks for a subset \mathcal{F}^{\prime} of \mathcal{F} which forms a partition of V (however, in [21, the problem Partition is a distinct problem [SP12]). As shown by Karp [23], Exact Cover is $\mathbb{N P}$-complete even for set families containing only 3 -element subsets of V (see problem X3C [SP2] in [21).

Clearly, ED is Exact Cover for the closed neighborhood hypergraph of G. The notion of efficient domination was introduced by Biggs 3 under the name perfect code. The ED problem is motivated by various applications, including coding theory and resource allocation in parallel computer networks; see e.g. [1] 3, 16, 24, 26, 29, 30, 32, 33].

In [1,2], it was shown that the ED problem is $\mathbb{N P}$-complete. Moreover, ED is $\mathbb{N P}$-complete for $2 P_{3}$-free chordal unipolar graphs [18, 31, 33].

In this paper, we will also consider the following weighted version of the ED problem:

Weighted Efficient Domination (WED)

Instance: A graph $G=(V, E)$, vertex weights $\omega: V \rightarrow \mathbb{N} \cup\{\infty\}$.
Task: Find an e.d.s. of minimum finite total weight, or determine that G contains no such e.d.s.

The relationship between WED and ED is analyzed in [7].
For a set \mathcal{F} of graphs, a graph G is called \mathcal{F}-free if G contains no induced subgraph isomorphic to a member of \mathcal{F}. In particular, we say that G is H-free if G is $\{H\}$-free. Let $H_{1}+H_{2}$ denote the disjoint union of graphs H_{1} and H_{2}, and for $k \geq 2$, let $k H$ denote the disjoint union of k copies of H. For $i \geq 1$, let P_{i} denote the chordless path with i vertices, and let K_{i} denote the complete graph with i vertices (clearly, $P_{i}=K_{i}$ for $i=1,2$). For $i \geq 4$, let C_{i} denote the chordless cycle with i vertices.

For indices $i, j, k \geq 0$, let $S_{i, j, k}$ denote the graph with vertices $u, x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{j}$, z_{1}, \ldots, z_{k} such that the subgraph induced by u, x_{1}, \ldots, x_{i} forms a $P_{i+1}\left(u, x_{1}, \ldots, x_{i}\right)$, the subgraph induced by u, y_{1}, \ldots, y_{j} forms a $P_{j+1}\left(u, y_{1}, \ldots, y_{j}\right)$, and the subgraph induced by u, z_{1}, \ldots, z_{k} forms a $P_{k+1}\left(u, z_{1}, \ldots, z_{k}\right)$, and there are no other edges in $S_{i, j, k}$. Thus, claw is $S_{1,1,1}$, chair is $S_{1,1,2}$, and P_{k} is isomorphic to $S_{0,0, k-1}$. Claw will also be denoted by $K_{1,3}$, and its midpoint is the vertex with degree 3 in the claw.
H is a linear forest if every component of H is a chordless path, i.e., H is claw-free and cycle-free.
H is a co-chair if it is the complement graph of a chair. H is a P if H has five vertices such that four of them induce a C_{4} and the fifth is adjacent to exactly one of the C_{4}-vertices. H is a co- P if H is the complement graph of a $P . H$ is a bull if H has five vertices such that four of them induce a P_{4} and the fifth is adjacent to exactly the two mid-points of the $P_{4} . H$ is a net if H has six vertices such that five of them induce a bull and the sixth is adjacent to exactly the vertex of the bull with degree 2. H is a diamond if H has four vertices such that only two of them are nonadjacent. The diamond will also be denoted by $K_{4}-e . H$ is a gem if H has five vertices such that four of them induce a P_{4} and the fifth is adjacent to all of the P_{4} vertices. H is a co-gem if H is the complement graph of a gem.

For a vertex $v \in V, N(v)=\{u \in V: u v \in E\}$ denotes its (open) neighborhood, and $N[v]=\{v\} \cup N(v)$ denotes its closed neighborhood. A vertex v sees the vertices in $N(v)$ and misses all the others. The non-neighborhood of a vertex v is $\bar{N}(v):=V \backslash N[v]$. For $U \subseteq V$, $N(U):=\bigcup_{u \in U} N(u) \backslash U$ and $\bar{N}(U):=V \backslash(U \cup N(U))$.

We say that for a vertex set $X \subseteq V$, a vertex $v \notin X$ has a join (resp., co-join) to X if $X \subseteq N(v)$ (resp., $X \subseteq \bar{N}(v)$). Join (resp., co-join) of v to X is denoted by $v(1) X$ (resp., $v(0 X)$. Correspondingly, for vertex sets $X, Y \subseteq V$ with $X \cap Y=\emptyset, X(1) Y$ denotes $x(1) Y$ for all $x \in X$ and $X(0) Y$ denotes $x(0) Y$ for all $x \in X$. A vertex $x \notin U$ contacts U if x has a neighbor in U. For vertex sets U, U^{\prime} with $U \cap U^{\prime}=\emptyset, U$ contacts U^{\prime} if there is a vertex in U contacting U^{\prime}.

If $v \notin X$ but v has neither a join nor a co-join to X, then we say that v distinguishes X. A set H of at least two vertices of a graph G is called homogeneous if $H \neq V(G)$ and every
vertex outside H is either adjacent to all vertices in H, or to no vertex in H. Obviously, H is homogeneous in G if and only if H is homogeneous in the complement graph \bar{G}. A graph is prime if it contains no homogeneous set. In [8, 12], it is shown that the WED problem can be reduced to prime graphs.

A graph G is chordal if it is C_{i}-free for any $i \geq 4 . \quad G=(V, E)$ is unipolar if V can be partitioned into a clique and the disjoint union of cliques, i.e., there is a partition $V=A \cup B$ such that $G[A]$ is a complete subgraph and $G[B]$ is P_{3}-free. G is a split graph if G and its complement graph are chordal. Equivalently, G can be partitioned into a clique and an independent set. It is well known that G is a split graph if and only if it is $\left(2 P_{2}, C_{4}, C_{5}\right)$-free [19].

It is well known that ED is $\mathbb{N P}$-complete for claw-free graphs (even for $\left(K_{1,3}, K_{4}-e\right)$-free perfect graphs [28]) as well as for bipartite graphs (and thus for triangle-free graphs) [29] and for chordal graphs [18, 31, 33]. Thus, for the complexity of ED on H-free graphs, the most interesting cases are when H is a linear forest. Since $(\mathrm{W}) E D$ is $\mathbb{N P}$-complete for $2 P_{3}$-free graphs and polynomial for $\left(P_{5}+k P_{2}\right)$-free graphs [8, 9 , the class of P_{6}-free graphs was the only open case. It was finally solved in [13, 14 by a direct polynomial time approach (and in [27] by an indirect one).

It is well known that for a graph class with bounded clique-width, ED can be solved in polynomial time [17]. Thus we only consider ED on H-free chordal graphs for which the cliquewidth is unbounded. For example, the clique-width of H-free chordal graphs is unbounded for claw-free chordal graphs while it is bounded if $H \in\{$ bull, gem, co-gem, co-chair $\}$. In [4], the clique-width of H-free chordal graphs is classified for all but two stubborn cases.

For graph $G=(V, E)$, let $d_{G}(x, y)$ denote the distance between x and y (i.e., the shortest length of a path between x and y) in G. The square G^{2} has the same vertex set V as G, and two vertices $x, y \in V, x \neq y$, are adjacent in G^{2} if and only if $d_{G}(x, y) \leq 2$. The WED problem on G can be reduced to Maximum Weight Independent Set (MWIS) on G^{2} (see [7, 10, 12, 30]).

While the complexity of ED for $2 P_{3}$-free chordal graphs is $\mathbb{N P}$-complete (as mentioned above), it was shown in [5] that WED is solvable in polynomial time for P_{6}-free chordal graphs, since the square of every P_{6}-free chordal graph G with e.d.s. is also chordal.

It is well known [20] that MWIS is solvable in linear time for chordal graphs.
However, there are still many cases of graphs H for which the complexity of WED in H-free chordal graphs is open.

2 WED is $\mathbb{N P}$-Complete for Chordal Hereditary Satgraphs

It is well known [15] that WED is solvable in linear time for split graphs. In this section, we show that ED is $\mathbb{N P}$-complete for a slight generalization of split graphs, namely a subclass of chordal hereditary satgraphs: A graph G is called a satgraph (described by Zverovich in [34]) if there exists a partition $A \cup B=V(G)$ such that
(i) A induces a complete subgraph (possibly, $A=\emptyset$),
(ii) $G[B]$ is an induced matching (possibly, $B=\emptyset$), and
(iii) there are no triangles $\left(a, b, b^{\prime}\right)$, where $a \in A$ and $b, b^{\prime} \in B$.

In [34, Zverovich characterized the class of hereditary satgraphs as the class of $\mathcal{Z}_{S A T}$-free graphs where the set $\mathcal{Z}_{S A T}$ consists of the graphs $F_{1}, F_{2}, \ldots, F_{21}$ shown in Figure 3 of [34]. Hereby, F_{i} for $i \in\{1,2,4,7,8,13,14,15,16,18,19,20,21\}$ contain C_{4}, C_{5}, C_{6} or C_{7}.

The eight remaining F_{i}, namely $F_{3}, F_{5}, F_{6}, F_{9}, F_{10}, F_{11}, F_{12}, F_{17}$ are presented in Figure 1.

Figure 1: $2 P_{3}, K_{3}+P_{3}, 2 K_{3}$, butterfly, extended butterfly, extended co- P, extended chair, and double-gem

Lemma 1. ED is $\mathbb{N P}$-complete for $\left(2 P_{3}, K_{3}+P_{3}, 2 K_{3}\right.$, butterfly, extended butterfly, extended co-P, extended chair, double-gem)-free chordal and unipolar graphs.

Proof. The reduction from X3C to Efficient Domination will show that ED is $\mathbb{N P}$-complete for this special subclass of chordal graphs.

Let $H=(V, \mathcal{E})$ with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\mathcal{E}=\left\{e_{1}, \ldots, e_{m}\right\}$ be a hypergraph with $\left|e_{i}\right|=3$ for all $i \in\{1, \ldots, m\}$. Let G_{H} be the following reduction graph:
$V\left(G_{H}\right)=V \cup X \cup Y$ such that $X=\left\{x_{1}, \ldots, x_{m}\right\}, Y=\left\{y_{1}, \ldots, y_{m}\right\}$ and V, X, Y are pairwise disjoint. The edge set of G_{H} consists of all edges $v_{i} x_{j}$ whenever $v_{i} \in e_{j}$. Moreover V is a clique in G_{H}, X is an independent subset in G_{H}, and every $y_{i}, i=1, \ldots, m$, is only adjacent to x_{i}.

Clearly, $H=(V, \mathcal{E})$ has an exact cover if and only if G_{H} has an e.d.s. D : For an exact cover \mathcal{E}^{\prime} of H, every $e_{i} \in \mathcal{E}^{\prime}$ corresponds to vertex $x_{i} \in D$, and every $e_{i} \notin \mathcal{E}^{\prime}$ corresponds to vertex $y_{i} \in D$. Conversely, let D be an e.d.s. in G_{H}. If $D \cap V \neq \emptyset$, say without loss of generality, $v_{1} \in V \cap D$ and $v_{1} \in e_{1}$ then v_{1} dominates x_{1} and y_{1} cannot be dominated which is a contradiction. Thus, we have $D \cap V=\emptyset$, and now, $D \cap X$ corresponds to an exact cover of H.

Clearly, G_{H} is chordal and unipolar. Since any induced P_{3} or K_{3} in G_{H} has a vertex in V, the reduction shows that G_{H} is not only $2 P_{3}$-free but also F-free for various other graphs F such as $K_{3}+P_{3}, 2 K_{3}$, butterfly, extended butterfly, extended co- P, extended chair, and double-gem as shown in Figure 1 .

The reduction implies that WED is NP-complete e.g. for double-gem-free chordal graphs while it is solvable in linear time for gem-free chordal graphs (since gem-free chordal graphs are distance-hereditary and thus, their clique-width is at most 3 as shown in [22]), and WED is $\mathbb{N} \mathbb{P}$-complete for butterfly-free chordal graphs while it is solvable in linear time for $2 P_{2}$-free graphs [12].

Figure 2: $K_{1,5}$ and $K_{3}(1) 3 K_{1}$

Lemma 2. $E D$ is $\mathbb{N P}$-complete for $K_{1,5}$-free chordal graphs and for $K_{3}(1) 3 K_{1}$-free chordal graphs.

Proof. The Exact Cover problem remains $\mathbb{N P}$-complete if no element occurs in more than three subsets (see X3C [SP2] in [21]). With respect to the standard reduction, recall that $V\left(G_{H}\right)=V \cup X \cup Y, V$ is a clique in G_{H}, for each hyperedge $e_{i} \in \mathcal{E}$, there is exactly one vertex $x_{i} \in X$ that corresponds to e_{i}, X is independent in G_{H}, and for every $y_{i} \in Y, x_{i}$ is the only neighbor of y_{i} in G_{H}.

We first claim that every midpoint of a claw in G_{H} is in V : Let a, b, c, d induce a claw in G_{H} with midpoint a. Then obviously, $a \notin Y$, at most one of b, c, d is in V, and if $a \notin V$, i.e., $a \in X$ then two of b, c, d are in V which is a contradiction.

Now G_{H} is $K_{1,5}$-free since for $K_{1,5}$, say with vertices a, b, c, d, e, f and midpoint a, we have $a \in V$ and at most one of b, c, d, e, f is in V, say $b \in V$ but then $c, d, e, f \in X$ which is a contradiction to the Exact Cover condition that no element occurs in more than three subsets.

Finally, we claim that G_{H} is $K_{3}(1) 3 K_{1}$-free: Let a, b, c, d, e, f induce a $K_{3}(1) 3 K_{1}$ such that a, b, c induce a K_{3} and d, e, f induce a $3 K_{1}$. Then each of a, b, c are midpoint of a claw, and thus, $a, b, c \in V$. Moreover, at most one of d, e, f is in V, say $e, f \in X$ but now, e and f have a join to the same hyperedge $\{a, b, c\}$ which is a contradiction to the standard reduction.

$3 \quad G^{2}$-Approach For Net-Free and Extended-Gem-Free Chordal Graphs

Motivated by the G^{2} approach in [5, 6, and the result of Milanič [30] showing that for ($S_{1,2,2}$, net)free graphs G, its square G^{2} is claw-free, we show in this section that G^{2} is chordal for H-free chordal graphs with e.d.s. when H is a net or an extended gem (see Figure 3- extended gem generalizes $S_{1,2,2}$ and some other subgraphs), and thus, WED is solvable in polynomial time for these two graph classes.

Figure 3: net and extended gem

Claim 3.1. Let G be a chordal graph, and let $v_{1}, \ldots, v_{k}, k \geq 4$, induce a C_{k} in G^{2} with $d_{G}\left(v_{i}, v_{i+1}\right) \leq 2$ and $d_{G}\left(v_{i}, v_{j}\right) \geq 3, i, j \in\{1, \ldots, k\},|i-j|>1$ (index arithmetic modulo k). Then we have:
(i) For each $i \in\{1, \ldots, k\}, d_{G}\left(v_{i}, v_{i+1}\right)=2$.
(ii) Let x_{i} be a common neighbor of v_{i} and v_{i+1} in G (an auxiliary vertex). Then for each $i, j \in\{1, \ldots, k\}, i \neq j$, we have $x_{i} \neq x_{j}$, and $x_{i} x_{i+1} \in E(G)$.

Proof. (i): Suppose without loss of generality that $d_{G}\left(v_{1}, v_{2}\right)=1$. Then, since $d_{G}\left(v_{1}, v_{3}\right) \geq 3$ and $d_{G}\left(v_{k}, v_{2}\right) \geq 3$, we have $d_{G}\left(v_{2}, v_{3}\right)=2$ and $d_{G}\left(v_{k}, v_{1}\right)=2$; let x_{2} be a common neighbor of v_{2}, v_{3} and x_{k} be a common neighbor of v_{k}, v_{1}. Clearly, $x_{2} \neq x_{k}$ since $d_{G}\left(v_{k}, v_{2}\right) \geq 3$. Moreover,
$x_{2} v_{1} \notin E$ since $d_{G}\left(v_{1}, v_{3}\right) \geq 3$ and $x_{k} v_{2} \notin E$ since $d_{G}\left(v_{k}, v_{2}\right) \geq 3$. Now, $x_{k} x_{2} \notin E$ since otherwise $x_{k}, v_{1}, v_{2}, x_{2}$ would induce a C_{4} in G but now in any case, the P_{4} induced by $x_{k}, v_{1}, v_{2}, x_{2}$ leads to a chordless cycle in G which is a contradiction.
(ii): Clearly, as above, we have $x_{i} \neq x_{j}$ for any $i \neq j$. Without loss of generality, suppose to the contrary that there is a non-edge $x_{k} x_{1} \notin E$. Then, if x_{k} and x_{1} have a common neighbor $x_{i}, i \neq k, 1$, then $x_{k}, v_{1}, x_{1}, x_{i}$ would induce a C_{4} in G which is a contradiction, and if x_{k} and x_{1} do not have have any common neighbor $x_{i}, i \neq k, 1$, then a shortest path between x_{1} and x_{k} in $G\left[\left\{x_{1}, v_{2}, x_{2}, v_{3}, \ldots, x_{k-1}, v_{k}, x_{k}\right\}\right]$ together with v_{1} would again lead to a chordless cycle in G which is a contradiction.

Theorem 1. If G is a net-free chordal graph with e.d.s. then G^{2} is chordal.
Proof. Let $G=(V, E)$ be a net-free chordal graph and assume that G has an e.d.s. D. We first show that G^{2} is C_{4}-free:

Suppose to the contrary that G^{2} contains a C_{4}, say with vertices $v_{1}, v_{2}, v_{3}, v_{4}$ such that $d_{G}\left(v_{i}, v_{i+1}\right) \leq 2$ and $d_{G}\left(v_{i}, v_{i+2}\right) \geq 3, i \in\{1,2,3,4\}$ (index arithmetic modulo 4). By Claim 3.1, we have $d_{G}\left(v_{i}, v_{i+1}\right)=2$ for each $i \in\{1,2,3,4\}$; let x_{i} be a common neighbor of v_{i}, v_{i+1}. By Claim 3.1, $x_{i} \neq x_{j}$ for $i \neq j$. Since G is chordal, $x_{1}, x_{2}, x_{3}, x_{4}$ either induce a diamond or K_{4} in G.

Assume first that $x_{1}, x_{2}, x_{3}, x_{4}$ induce a diamond in G, say with $x_{1} x_{3} \in E$ and $x_{2} x_{4} \notin E$. We claim:

$$
\begin{equation*}
D \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=\emptyset . \tag{1}
\end{equation*}
$$

Proof. First suppose to the contrary that $x_{1} \in D$. Then by the e.d.s. property, we have $v_{3}, v_{4}, x_{2}, x_{3}, x_{4} \notin D$. Since v_{3} and v_{4} have to be dominated by D, let $d_{3} \in D$ with $d_{3} v_{3} \in E$ and $d_{4} \in D$ with $d_{4} v_{4} \in E$. Clearly, $d_{3} \neq x_{2}, x_{3}$ and $d_{4} \neq x_{3}, x_{4}$. By the e.d.s. property, d_{3} and d_{4} are nonadjacent to the neighbors $v_{1}, v_{2}, x_{2}, x_{3}, x_{4}$ of x_{1}. Thus, $d_{3} \neq d_{4}$ since otherwise $x_{1}, x_{2}, v_{3}, d_{3}, v_{4}, x_{4}$ would induce a C_{6} in the chordal graph G. This implies $d_{3} v_{4} \notin E$ but now, $v_{2}, x_{2}, v_{3}, d_{3}, x_{3}, v_{4}$ induce a net in G which is a contradiction. Thus, $x_{1} \notin D$ and correspondingly, $x_{3} \notin D$.

Now suppose to the contrary that $x_{2} \in D$. Then by the e.d.s. property, $v_{1}, v_{4}, x_{1}, x_{3}, x_{4} \notin D$. Since v_{1} and v_{4} have to be dominated by D, let $d_{1} \in D$ with $d_{1} v_{1} \in E$ and $d_{4} \in D$ with $d_{4} v_{4} \in E$. Clearly, $d_{1} \neq x_{1}, x_{4}$ and $d_{4} \neq x_{3}, x_{4}$. By the e.d.s. property, d_{1} and d_{4} are nonadjacent to the neighbors $v_{2}, v_{3}, x_{1}, x_{3}$ of x_{2}. Thus, $d_{1} v_{4} \notin E$ since otherwise $d_{1}, v_{1}, x_{1}, x_{3}, v_{4}$ would induce a C_{5} in the chordal graph G, and analogously, $d_{4} v_{1} \notin E$. Now, if $d_{1} x_{4} \notin E$ then $d_{1}, v_{1}, x_{1}, v_{2}, x_{4}, v_{4}$ induce a net in G, and if $d_{1} x_{4} \in E$ then by the e.d.s. property, $d_{4} x_{4} \notin E$ and thus, $d_{4}, v_{4}, x_{3}, v_{3}, x_{4}, v_{1}$ induce a net in G, which is a contradiction. Thus, $x_{2} \notin D$ and correspondingly, $x_{4} \notin D$, and claim (1) is shown. \diamond

Next we claim:

$$
\begin{equation*}
D \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\emptyset . \tag{2}
\end{equation*}
$$

Proof. Without loss of generality, suppose to the contrary that $v_{1} \in D$. Then by the e.d.s. property, we have $v_{2}, v_{4}, x_{1}, x_{2}, x_{3}, x_{4} \notin D$. Since v_{2} and v_{4} have to be dominated by D, let $d_{2} \in D$ with $d_{2} v_{2} \in E$ and $d_{4} \in D$ with $d_{4} v_{4} \in E$. Since $d_{G}\left(v_{2}, v_{4}\right)>2$, we have $d_{2} \neq d_{4}$.

Moreover, $d_{2} x_{3} \notin E$ since otherwise, $d_{2}, v_{2}, x_{1}, x_{3}$ induce a C_{4} in G. This implies $d_{2} v_{3} \notin E$ since otherwise, $d_{2}, v_{3}, x_{3}, x_{1}, v_{2}$ induce a C_{5} in G.

Now, if $d_{2} x_{2} \notin E$ then $d_{2}, v_{2}, x_{2}, v_{3}, x_{1}, v_{1}$ induce a net, and if $d_{2} x_{2} \in E$ then $d_{2}, x_{2}, x_{1}, x_{3}, v_{1}, v_{4}$ induce a net, which is a contradiction.

Thus, $v_{1} \notin D$, and correspondingly, $v_{2}, v_{3}, v_{4} \notin D$, and claim (2) is shown. \diamond

Let $d_{i} \in D$ be the D-neighbor of v_{i}. By (11) and (2) and the distance properties, we have $d_{i} \neq v_{j}, x_{j}, i, j \in\{1,2,3,4\}$. Next we claim that $d_{1}, d_{2}, d_{3}, d_{4}$ are pairwise distinct:

$$
\begin{equation*}
\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right|=4 \tag{3}
\end{equation*}
$$

Proof. Since $d_{G}\left(v_{1}, v_{3}\right)>2$ and $d_{G}\left(v_{2}, v_{4}\right)>2$, we have $d_{1} \neq d_{3}$ and $d_{2} \neq d_{4}$. Thus, $\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right| \geq 2$.

If without loss of generality, $d_{1}=d_{4}$, i.e., $d_{1} v_{1} \in E$ and $d_{1} v_{4} \in E$ then, since $d_{1}, v_{1}, x_{1}, x_{3}, v_{4}$ do not induce a C_{5} in G, we have $d_{1} x_{1} \in E$ or $d_{1} x_{3} \in E$, and if without loss of generality, $d_{1} x_{1} \in E$ and $d_{1} x_{3} \notin E$ then $d_{1}, x_{1}, x_{3}, v_{4}$ induce a C_{4} in G. Thus, $d_{1} x_{1} \in E$ and $d_{1} x_{3} \in E$.

This shows that if $d_{1} v_{1} \in E$ and $d_{1} v_{4} \in E$ then $d_{2} \neq d_{3}$, and thus $\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right| \geq 3$.
Now assume that $\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right|=3$, i.e., $d_{1} v_{1} \in E$ and $d_{1} v_{4} \in E, d_{2} v_{3} \notin E$ and $d_{3} v_{2} \notin E$. Recall $d_{1} x_{1} \in E$ and $d_{1} x_{3} \in E$. Thus, $d_{2} x_{1} \notin E, d_{2} x_{3} \notin E, d_{3} x_{1} \notin E, d_{3} x_{3} \notin E$.

If $d_{2} x_{2} \notin E$ then $d_{2}, v_{2}, x_{1}, v_{1}, x_{2}, v_{3}$ induce a net in G, and if $d_{2} x_{2} \in E$ then $d_{3} x_{2} \notin E$ and thus, $d_{3}, v_{3}, x_{2}, v_{2}, x_{3}, v_{4}$ induce a net in G which is a contradiction. Thus, $d_{1}, d_{2}, d_{3}, d_{4}$ are pairwise distinct, and claim (3) is shown. \diamond

If $d_{1} x_{1} \notin E$ and $d_{1} x_{4} \notin E$ then $d_{1}, v_{1}, x_{1}, x_{4}, v_{2}, v_{4}$ induce a net in G, and correspondingly by symmetry, a similar statement can be made about $d_{i}, x_{i-1}, x_{i}, i \neq 1$. Thus, we can assume that for each $i \in\{1, \ldots, 4\}, d_{i}$ sees at least one of x_{i-1}, x_{i} (index arithmetic modulo 4).

If $d_{1} x_{1} \in E$ and $d_{1} x_{4} \in E$ then clearly, $d_{2} x_{1} \notin E$ and $d_{4} x_{4} \notin E$ and thus, by the above, we can assume that $d_{2} x_{2} \in E$ and $d_{4} x_{3} \in E$ but now, $d_{2}, x_{2}, v_{3}, x_{3}, d_{3}, d_{4}$ induce a net in G.

Thus, assume that d_{1} is adjacent to exactly one of x_{1}, x_{4}, say $d_{1} x_{1} \in E$ (which implies $\left.d_{2} x_{1} \notin E\right)$ and $d_{1} x_{4} \notin E$. By symmetry, this holds for d_{2}, d_{3}, d_{4} as well, i.e., $d_{2} x_{2} \in E$, $d_{3} x_{3} \in E$, and $d_{4} x_{4} \in E$. Then $d_{1}, x_{1}, d_{2}, x_{2}, d_{3}, x_{3}$ induce a net in G.

Thus, when $x_{1}, x_{2}, x_{3}, x_{4}$ induce a diamond in G, then G^{2} does not contain a C_{4} with vertices $v_{1}, v_{2}, v_{3}, v_{4}$.

Now assume that $x_{1}, x_{2}, x_{3}, x_{4}$ induce a K_{4} in G. The proof is very similar as above. Again we claim:

$$
\begin{equation*}
D \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=\emptyset \tag{4}
\end{equation*}
$$

Proof. By symmetry, suppose to the contrary that $x_{1} \in D$. Then by the e.d.s. property, we have $v_{3}, v_{4}, x_{2}, x_{3}, x_{4} \notin D$. Since v_{3} and v_{4} have to be dominated by D, let $d_{3} \in D$ with $d_{3} v_{3} \in E$ and $d_{4} \in D$ with $d_{4} v_{4} \in E$. By the e.d.s. property, d_{3} and d_{4} are nonadjacent to the neighbors $v_{1}, v_{2}, x_{2}, x_{3}, x_{4}$ of x_{1}. Thus, $d_{3} \neq d_{4}$ since otherwise $x_{2}, v_{3}, d_{3}, v_{4}, x_{4}$ would induce a C_{5} in the chordal graph G. This implies $d_{3} v_{4} \notin E$ but now, $v_{2}, x_{2}, v_{3}, d_{3}, x_{3}, v_{4}$ induce a net in G which is a contradiction. Thus, $x_{1} \notin D$ and correspondingly, $x_{2}, x_{3}, x_{4} \notin D$, and claim (4) is shown. \diamond

Next we claim:

$$
\begin{equation*}
D \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\emptyset \tag{5}
\end{equation*}
$$

Proof. Without loss of generality, suppose to the contrary that $v_{1} \in D$. Then by the e.d.s. property, we have $v_{2}, v_{4}, x_{1}, x_{2}, x_{3}, x_{4} \notin D$. Since v_{2} and v_{4} have to be dominated by D, let $d_{2} \in D$ with $d_{2} v_{2} \in E$ and $d_{4} \in D$ with $d_{4} v_{4} \in E$. Since $d_{G}\left(v_{2}, v_{4}\right)>2$, we have $d_{2} \neq d_{4}$.

Moreover, $d_{2} x_{3} \notin E$ since otherwise, $d_{2}, v_{2}, x_{1}, x_{3}$ induce a C_{4} in G. This implies $d_{2} v_{3} \notin E$ since otherwise, $d_{2}, v_{3}, x_{3}, x_{1}, v_{2}$ induce a C_{5} in G.

Now, if $d_{2} x_{2} \notin E$ then $d_{2}, v_{2}, x_{2}, v_{3}, x_{1}, v_{1}$ induce a net, and if $d_{2} x_{2} \in E$ then $d_{2}, x_{2}, x_{1}, x_{3}, v_{1}, v_{4}$ induce a net, which is a contradiction.

Thus, $v_{1} \notin D$, and correspondingly, $v_{2}, v_{3}, v_{4} \notin D$, and claim (5) is shown. \diamond

Again, let $d_{i} \in D$ be the D-neighbor of v_{i}. By (4) and (5) and the distance properties, we have $d_{i} \neq v_{j}, x_{j}, i, j \in\{1,2,3,4\}$. Next we claim that $d_{1}, d_{2}, d_{3}, d_{4}$ are pairwise distinct:

$$
\begin{equation*}
\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right|=4 \tag{6}
\end{equation*}
$$

Proof. Since $d_{G}\left(v_{1}, v_{3}\right)>2$ and $d_{G}\left(v_{2}, v_{4}\right)>2$, we have $d_{1} \neq d_{3}$ and $d_{2} \neq d_{4}$. Thus, $\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right| \geq 2$.

If without loss of generality, $d_{1}=d_{4}$, i.e., $d_{1} v_{1} \in E$ and $d_{1} v_{4} \in E$ then, since $d_{1}, v_{1}, x_{1}, x_{3}, v_{4}$ do not induce a C_{5} in G, we have $d_{1} x_{1} \in E$ or $d_{1} x_{3} \in E$, and if without loss of generality, $d_{1} x_{1} \in E$ and $d_{1} x_{3} \notin E$ then $d_{1}, x_{1}, x_{3}, v_{4}$ induce a C_{4} in G. Thus, $d_{1} x_{1} \in E$ and $d_{1} x_{3} \in E$.

This shows that if $d_{1} v_{1} \in E$ and $d_{1} v_{4} \in E$ then $d_{2} \neq d_{3}$, and thus $\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right| \geq 3$.
Now assume that $\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right|=3$, i.e., $d_{1} v_{1} \in E$ and $d_{1} v_{4} \in E, d_{2} v_{3} \notin E$ and $d_{3} v_{2} \notin E$. Recall $d_{1} x_{1} \in E$ and $d_{1} x_{3} \in E$. Thus, $d_{2} x_{1} \notin E, d_{2} x_{3} \notin E, d_{3} x_{1} \notin E, d_{3} x_{3} \notin E$.

If $d_{2} x_{2} \notin E$ then $d_{2}, v_{2}, x_{1}, v_{1}, x_{2}, v_{3}$ induce a net in G, and if $d_{2} x_{2} \in E$ then $d_{3} x_{2} \notin E$ and thus, $d_{3}, v_{3}, x_{2}, v_{2}, x_{3}, v_{4}$ induce a net in G which is a contradiction. Thus, $d_{1}, d_{2}, d_{3}, d_{4}$ are pairwise distinct, and claim (6) is shown.

If $d_{1} x_{1} \notin E$ and $d_{1} x_{4} \notin E$ then $d_{1}, v_{1}, x_{1}, x_{4}, v_{2}, v_{4}$ induce a net in G, and correspondingly by symmetry, a similar statement can be made about $d_{i}, x_{i-1}, x_{i}, i \neq 1$. Thus, we can assume that for each $i \in\{1, \ldots, 4\}, d_{i}$ sees at least one of x_{i-1}, x_{i}.

If $d_{1} x_{1} \in E$ and $d_{1} x_{4} \in E$ then clearly, $d_{2} x_{1} \notin E$ and $d_{4} x_{4} \notin E$ and thus, by the above, we can assume that $d_{2} x_{2} \in E$ and $d_{4} x_{3} \in E$ but now, $d_{2}, x_{2}, v_{3}, x_{3}, d_{3}, d_{4}$ induce a net in G.

Thus, assume that d_{1} is adjacent to exactly one of x_{1}, x_{4}, say $d_{1} x_{1} \in E$ (which implies $d_{2} x_{1} \notin E$) and $d_{1} x_{4} \notin E$. By symmetry, this holds for d_{2}, d_{3}, d_{4} as well, i.e., $d_{2} x_{2} \in E$, $d_{3} x_{3} \in E$, and $d_{4} x_{4} \in E$. Then $d_{1}, x_{1}, d_{2}, x_{2}, d_{3}, x_{3}$ induce a net in G.

Thus, when $x_{1}, x_{2}, x_{3}, x_{4}$ induce a K_{4} in G, then G^{2} does not contain a C_{4} with vertices $v_{1}, v_{2}, v_{3}, v_{4}$.

Now suppose to the contrary that G^{2} contains $C_{k}, k \geq 5$, say with vertices v_{1}, \ldots, v_{k} such that $d_{G}\left(v_{i}, v_{i+1}\right) \leq 2$ and $d_{G}\left(v_{i}, v_{j}\right) \geq 3, i, j \in\{1, \ldots, k\},|i-j|>1$ (index arithmetic modulo k). By Claim 3.1, we have $d_{G}\left(v_{i}, v_{i+1}\right)=2$ for each $i \in\{1, \ldots, k\}$; let x_{i} be a common neighbor of v_{i}, v_{i+1}. Again, by Claim [3.1, the auxiliary vertices x_{1}, \ldots, x_{k} are pairwise distinct and $x_{i} x_{i+1} \in E$ for each $i \in\{1, \ldots, k\}$.

Let x_{i}, x_{j}, x_{l} induce a triangle in G. We first claim:
(i) If $j=i+1$ but $|i-l| \geq 2$ and $|j-l| \geq 2$ then $x_{i}, x_{j}, x_{l}, v_{i}, v_{j+1}, v_{l}$ induce a net in G.
(ii) If $|i-j| \geq 2,|i-l| \geq 2$, and $|j-l| \geq 2$ then $x_{i}, x_{j}, x_{l}, v_{i}, v_{j}, v_{l}$ induce a net in G.

Since G is chordal, there is a p.e.o. σ of G, and without loss of generality, assume that x_{1} is the leftmost vertex of x_{1}, \ldots, x_{k} in σ. Then $x_{2} x_{k} \in E$ since the neighborhood of x_{1} in x_{2}, \ldots, x_{k} is a clique.

First assume that $k=5$, and in this case, $x_{2} x_{5} \in E$. Since $x_{2}, x_{3}, x_{4}, x_{5}$ do not induce a C_{4} in G, we have $x_{2} x_{4} \in E$ or $x_{3} x_{5} \in E$; without loss of generality, assume that $x_{2} x_{4} \in E$. But then, x_{2}, x_{4}, x_{5} induce a triangle as in case (i) of the previous claim, which would lead to a net, which is a contradiction. Next assume that $k=6$, and in this case, $x_{2} x_{6} \in E$. Then for the cycle $x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ (which is no C_{5} in G), the same argument works as for $k=5$. Analogously, for every $k \geq 7$, it can be reduced to the case $k-1$ as for $k=6$.

Note that for $k \geq 5$, we do not need the existence of an e.d.s. in G.
Thus, Theorem \square is shown.
In a very similar way, we can show:

Theorem 2. If G is an extended-gem-free chordal graph with e.d.s. then G^{2} is chordal.
Proof. Let $G=(V, E)$ be an extended-gem-free chordal graph and assume that G has an e.d.s. D. We first show that G^{2} is C_{4}-free:

Suppose to the contrary that G^{2} contains a C_{4}, say with vertices $v_{1}, v_{2}, v_{3}, v_{4}$ such that $d_{G}\left(v_{i}, v_{i+1}\right) \leq 2$ and $d_{G}\left(v_{i}, v_{i+2}\right) \geq 3, i \in\{1,2,3,4\}$ (index arithmetic modulo 4). By Claim 3.1. we have $d_{G}\left(v_{i}, v_{i+1}\right)=2$ for each $i \in\{1,2,3,4\}$; let x_{i} be a common neighbor of v_{i}, v_{i+1}. By Claim 3.1, $x_{i} \neq x_{j}$ for $i \neq j$. Since G is chordal, $x_{1}, x_{2}, x_{3}, x_{4}$ either induce a diamond or K_{4} in G.

Assume first that $x_{1}, x_{2}, x_{3}, x_{4}$ induce a diamond in G, say with $x_{1} x_{3} \in E$ and $x_{2} x_{4} \notin E$. We claim:

$$
\begin{equation*}
D \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=\emptyset \tag{7}
\end{equation*}
$$

Proof. First suppose to the contrary that $x_{1} \in D$. Then by the e.d.s. property, we have $v_{3}, v_{4}, x_{2}, x_{3}, x_{4} \notin D$. Since v_{3} and v_{4} have to be dominated by D, let $d_{3} \in D$ with $d_{3} v_{3} \in E$ and $d_{4} \in D$ with $d_{4} v_{4} \in E$. Clearly, $d_{3} \neq x_{2}, x_{3}$ and $d_{4} \neq x_{3}, x_{4}$. By the e.d.s. property, d_{3} and d_{4} are nonadjacent to the neighbors $v_{1}, v_{2}, x_{2}, x_{3}, x_{4}$ of x_{1}. Thus, $d_{3} \neq d_{4}$ since otherwise $x_{1}, x_{2}, v_{3}, d_{3}, v_{4}, x_{4}$ would induce a C_{6} in the chordal graph G. This implies $d_{3} v_{4} \notin E$ but now, $v_{1}, x_{1}, x_{3}, v_{4}, x_{4}, v_{2}, v_{3}, d_{3}$ induce an extended gem which is a contradiction. Thus, $x_{1} \notin D$ and correspondingly, $x_{3} \notin D$. Now suppose to the contrary that $x_{2} \in D$. Then by the e.d.s. property, we have $v_{1}, v_{4}, x_{1}, x_{3}, x_{4} \notin D$. Since v_{1} and v_{4} have to be dominated by D, let $d_{1} \in D$ with $d_{1} v_{1} \in E$ and $d_{4} \in D$ with $d_{4} v_{4} \in E$. Clearly, $d_{1} \neq x_{1}, x_{4}$ and $d_{4} \neq x_{3}, x_{4}$. By the e.d.s. property, d_{1} and d_{4} are nonadjacent to the neighbors $v_{2}, v_{3}, x_{1}, x_{3}$ of x_{2}. Thus, $d_{1} v_{4} \notin E$ since otherwise $d_{1}, v_{1}, x_{1}, x_{3}, v_{4}$ would induce a C_{5} in the chordal graph G, and analogously, $d_{4} v_{1} \notin E$. Now, $d_{1}, v_{1}, x_{1}, v_{2}, x_{2}, v_{3}, x_{3}, v_{4}$ induce an extended gem which is a contradiction. Thus, $x_{2} \notin D$ and correspondingly, $x_{4} \notin D$, and claim (7) is shown. \diamond

Next we claim:

$$
\begin{equation*}
D \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\emptyset \tag{8}
\end{equation*}
$$

Proof. Without loss of generality, suppose to the contrary that $v_{1} \in D$. Then by the e.d.s. property, we have $v_{2}, v_{4}, x_{1}, x_{2}, x_{3}, x_{4} \notin D$. Since v_{2} and v_{4} have to be dominated by D, let $d_{2} \in D$ with $d_{2} v_{2} \in E$ and $d_{4} \in D$ with $d_{4} v_{4} \in E$. Since $d_{G}\left(v_{2}, v_{4}\right)>2$, we have $d_{2} \neq d_{4}$.

Moreover, $d_{2} x_{3} \notin E$ since otherwise, $d_{2}, v_{2}, x_{1}, x_{3}$ induce a C_{4} in G. This implies $d_{2} v_{3} \notin E$ since otherwise, $d_{2}, v_{3}, x_{3}, x_{1}, v_{2}$ induce a C_{5} in G. But now, $v_{1}, x_{1}, x_{3}, v_{4}, x_{4}, v_{3}, v_{2}, d_{2}$ induce an extended gem which is a contradiction. Thus, claim (8) is shown, i.e., $D \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\emptyset$. \diamond

Let $d_{i} \in D$ be the D-neighbor of $v_{i}, i=1, \ldots, 4$. By (7) and (8), we have $d_{i} \neq v_{j}, x_{j}$, $i, j \in\{1,2,3,4\}$. Next we claim that $d_{1}, d_{2}, d_{3}, d_{4}$ are pairwise distinct:

$$
\begin{equation*}
\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right|=4 \tag{9}
\end{equation*}
$$

Proof. Since $d_{G}\left(v_{1}, v_{3}\right)>2$ and $d_{G}\left(v_{2}, v_{4}\right)>2$, we have $d_{1} \neq d_{3}$ and $d_{2} \neq d_{4}$. Thus, $\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right| \geq 2$.

If without loss of generality, $d_{1}=d_{4}$, i.e., $d_{1} v_{1} \in E$ and $d_{1} v_{4} \in E$ then, since $d_{1}, v_{1}, x_{1}, x_{3}, v_{4}$ do not induce a C_{5} in G, we have $d_{1} x_{1} \in E$ or $d_{1} x_{3} \in E$, and if without loss of generality, $d_{1} x_{1} \in E$ and $d_{1} x_{3} \notin E$ then $d_{1}, x_{1}, x_{3}, v_{4}$ induce a C_{4} in G. Thus, $d_{1} x_{1} \in E$ and $d_{1} x_{3} \in E$.

This shows that if $d_{1} v_{1} \in E$ and $d_{1} v_{4} \in E$ then $d_{2} \neq d_{3}$, and thus $\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right| \geq 3$.
Now assume that $\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right|=3$, i.e., $d_{1} v_{1} \in E$ and $d_{1} v_{4} \in E, d_{2} v_{3} \notin E$ and $d_{3} v_{2} \notin E$. Recall $d_{1} x_{1} \in E$ and $d_{1} x_{3} \in E$. Thus, $d_{2} x_{1} \notin E, d_{2} x_{3} \notin E, d_{3} x_{1} \notin E, d_{3} x_{3} \notin E$. Then $v_{1}, x_{1}, x_{3}, v_{4}, d_{1}, v_{2}, d_{2}, v_{3}$ induce an extended gem which is a contradiction.

Thus, $d_{1}, d_{2}, d_{3}, d_{4}$ are pairwise distinct, and claim (9) is shown. \diamond

If $d_{1} x_{1} \notin E$ and $d_{1} x_{4} \notin E$ then, since $d_{1}, v_{1}, x_{1}, x_{2}$ do not induce a C_{4} in G, we have $d_{1} x_{2} \notin E$, and accordingly, since $d_{1}, v_{1}, x_{4}, x_{3}$ do not induce a C_{4} in G, we have $d_{1} x_{3} \notin E$, but now $d_{1}, v_{1}, x_{1}, v_{2}, x_{2}, v_{3}, x_{3}, v_{4}$ induce an extended gem in G which is a contradiction.

Thus, we can assume that for each $i \in\{1, \ldots, 4\}, d_{i}$ sees at least one of x_{i-1}, x_{i} (index arithmetic modulo 4).

If $d_{1} x_{1} \in E$ and $d_{1} x_{4} \in E$ then clearly, $d_{2} x_{1} \notin E$ and $d_{4} x_{4} \notin E$ and thus, by the above, we can assume that $d_{2} x_{2} \in E$ and $d_{4} x_{3} \in E$ but now, $v_{2}, x_{1}, v_{1}, x_{4}, v_{4}, x_{3}, v_{3}, d_{3}$ induce an extended gem in G.

Thus, assume that d_{1} is adjacent to exactly one of x_{1}, x_{4}, say $d_{1} x_{1} \in E$ (which implies $d_{2} x_{1} \notin E$) and $d_{1} x_{4} \notin E$. By symmetry, this holds for d_{2}, d_{3}, d_{4} as well, i.e., $d_{2} x_{2} \in E$, $d_{3} x_{3} \in E$, and $d_{4} x_{4} \in E$. Then $v_{1}, x_{1}, v_{2}, x_{2}, v_{3}, x_{3}, v_{4}, d_{4}$ induce an extended gem in G.

Now assume that $x_{1}, x_{2}, x_{3}, x_{4}$ induce a K_{4} in G. The proof is very similar as above. Again we claim:

$$
\begin{equation*}
D \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=\emptyset . \tag{10}
\end{equation*}
$$

Proof. By symmetry, suppose to the contrary that $x_{1} \in D$. Then by the e.d.s. property, we have $v_{3}, v_{4}, x_{2}, x_{3}, x_{4} \notin D$. Since v_{3} and v_{4} have to be dominated by D, let $d_{3} \in D$ with $d_{3} v_{3} \in E$ and $d_{4} \in D$ with $d_{4} v_{4} \in E$. By the e.d.s. property, d_{3} and d_{4} are nonadjacent to the neighbors $v_{1}, v_{2}, x_{2}, x_{3}, x_{4}$ of x_{1}. Thus, $d_{3} \neq d_{4}$ since otherwise $x_{2}, v_{3}, d_{3}, v_{4}, x_{4}$ would induce a C_{5} in the chordal graph G. This implies $d_{3} v_{4} \notin E$ but now, $v_{2}, x_{2}, x_{4}, v_{1}, x_{1}, v_{3}, d_{3}, v_{4}$ induce an extended gem in G which is a contradiction. Thus, $x_{1} \notin D$ and correspondingly, $x_{2}, x_{3}, x_{4} \notin D$, and claim (10) is shown. \diamond

Next we claim:

$$
\begin{equation*}
D \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\emptyset . \tag{11}
\end{equation*}
$$

Proof. Without loss of generality, suppose to the contrary that $v_{1} \in D$. Then by the e.d.s. property, we have $v_{2}, v_{4}, x_{1}, x_{2}, x_{3}, x_{4} \notin D$. Since v_{2} and v_{4} have to be dominated by D, let $d_{2} \in D$ with $d_{2} v_{2} \in E$ and $d_{4} \in D$ with $d_{4} v_{4} \in E$. Since $d_{G}\left(v_{2}, v_{4}\right)>2$, we have $d_{2} \neq d_{4}$.

Moreover, $d_{2} x_{3} \notin E$ since otherwise, $d_{2}, v_{2}, x_{1}, x_{3}$ induce a C_{4} in G. This implies $d_{2} v_{3} \notin E$ since otherwise, $d_{2}, v_{3}, x_{3}, x_{1}, v_{2}$ induce a C_{5} in G.

Now, $v_{1}, x_{1}, x_{3}, v_{4}, x_{4}, v_{2}, d_{2}, v_{3}$ induce an extended gem which is a contradiction. Thus, $v_{1} \notin D$, and correspondingly $v_{2}, v_{3}, v_{4} \notin D$, and claim (11) is shown. \diamond

Again, let $d_{i} \in D$ be the D-neighbor of $v_{i}, i=1, \ldots, 4$. By (10) and (11), we have $d_{i} \neq v_{j}, x_{j}$, $i, j \in\{1,2,3,4\}$. Next we claim that $d_{1}, d_{2}, d_{3}, d_{4}$ are pairwise distinct:

$$
\begin{equation*}
\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right|=4 \tag{12}
\end{equation*}
$$

Proof. Since $d_{G}\left(v_{1}, v_{3}\right)>2$ and $d_{G}\left(v_{2}, v_{4}\right)>2$, we have $d_{1} \neq d_{3}$ and $d_{2} \neq d_{4}$. Thus, $\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right| \geq 2$.

If without loss of generality, $d_{1} v_{1} \in E$ and $d_{1} v_{4} \in E$ then, since $d_{1}, v_{1}, x_{1}, x_{3}, v_{4}$ do not induce a C_{5} in G, we have $d_{1} x_{1} \in E$ or $d_{1} x_{3} \in E$, and if $d_{1} x_{1} \in E$ and $d_{1} x_{3} \notin E$ then $d_{1}, x_{1}, x_{3}, v_{4}$ induce a C_{4} in G. Thus, $d_{1} x_{1} \in E$ and $d_{1} x_{3} \in E$.

This shows that if $d_{1} v_{1} \in E$ and $d_{1} v_{4} \in E$ then $d_{2} \neq d_{3}$, and thus $\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right| \geq 3$.
Now assume that $\left|\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}\right|=3$, i.e., $d_{1} v_{1} \in E$ and $d_{1} v_{4} \in E, d_{2} v_{3} \notin E$ and $d_{3} v_{2} \notin E$. Since $d_{1} x_{1} \in E$ and $d_{1} x_{3} \in E, v_{1}, x_{1}, x_{3}, v_{4}, d_{1}, v_{2}, d_{2}, v_{3}$ induce an extended gem in G which is a contradiction. Thus, $d_{1}, d_{2}, d_{3}, d_{4}$ are pairwise distinct, and claim (12) is shown. \diamond

If $d_{1} x_{1} \notin E$ then, since $d_{1}, v_{1}, x_{1}, x_{2}$ do not induce a C_{4} in G, we have $d_{1} x_{2} \notin E$, and analogously, $d_{1} x_{3} \notin E$. But now $v_{2}, x_{1}, x_{3}, v_{3}, x_{2}, v_{1}, d_{1}, v_{4}$ induce an extended gem in G which is a contradiction. Thus, $d_{1} x_{1} \in E$ and by symmetry, $d_{1} x_{4} \in E$ but now, by the e.d.s. property,
$d_{2} x_{1} \notin E$ and $d_{2} x_{4} \notin E$, and since $d_{2}, v_{2}, x_{1}, x_{3}$ do not induce a C_{4}, we have $d_{2} x_{3} \notin E$. But now, $v_{1}, x_{1}, x_{3}, v_{4}, x_{4}, v_{2}, d_{2}, v_{3}$ induce an extended gem in G which is a contradiction.

Thus, when $x_{1}, x_{2}, x_{3}, x_{4}$ induce a diamond or K_{4} in G, then G^{2} does not contain a C_{4} with vertices $v_{1}, v_{2}, v_{3}, v_{4}$.

Now suppose to the contrary that G^{2} contains $C_{k}, k \geq 5$, say with vertices v_{1}, \ldots, v_{k} such that $d_{G}\left(v_{i}, v_{i+1}\right) \leq 2$ and $d_{G}\left(v_{i}, v_{j}\right) \geq 3, i, j \in\{1, \ldots, k\},|i-j|>1$ (index arithmetic modulo $k)$. By Claim 3.1, we have $d_{G}\left(v_{i}, v_{i+1}\right)=2$ for each $i \in\{1, \ldots, k\}$; let x_{i} be a common neighbor of v_{i}, v_{i+1}. Again, by Claim 3.1, the auxiliary vertices x_{1}, \ldots, x_{k} are pairwise distinct and $x_{i} x_{i+1} \in E$ for each $i \in\{1, \ldots, k\}$.

Clearly, since G is chordal, there is an edge $x_{i} x_{i+2} \in E$. We claim:

$$
\begin{equation*}
\text { If } x_{i} x_{i+2} \in E \text { then } x_{i}, x_{i+1}, x_{i+2} \notin D \text { and } v_{i+1}, v_{i+2} \notin D \tag{13}
\end{equation*}
$$

Proof. Without loss of generality, let $x_{1} x_{3} \in E$. If $x_{2} \in D$ then clearly, $v_{1} \notin D$ and $x_{k}, x_{1} \notin$ D; let $d_{1} \in D$ be a new vertex with $d_{1} v_{1} \in E$. Clearly, $d_{1}(0)\left\{x_{1}, v_{2}, x_{2}, v_{3}, x_{3}, v_{4}\right\}$ but now, $x_{1}, v_{2}, x_{2}, v_{3}, x_{3}, v_{4}, v_{1}, d_{1}$ induce an extended gem. Thus, $x_{2} \notin D$.

If $x_{1} \in D$ then clearly, $v_{4} \notin D$ and $x_{3}, x_{4} \notin D$; let $d_{4} \in D$ be a new vertex with $d_{4} v_{4} \in E$. Clearly, $d_{4}(0)\left\{v_{1}, x_{1}, v_{2}, x_{2}, v_{3}, x_{3}\right\}$ but now, $v_{1}, x_{1}, v_{2}, x_{2}, v_{3}, x_{3}, v_{4}, d_{4}$ induce an extended gem. Thus, $x_{1} \notin D$ and correspondingly, $x_{3} \notin D$ by symmetry.

If $v_{2} \in D$ then clearly, $v_{1} \notin D$ and $x_{k}, x_{1} \notin D$; let $d_{1} \in D$ be a new vertex with $d_{1} v_{1} \in E$. As before, $d_{1}(0)\left\{x_{1}, v_{2}, x_{2}, v_{3}, x_{3}, v_{4}\right\}$ but now, $d_{1}, v_{1}, x_{1}, v_{2}, x_{2}, v_{3}, x_{3}, v_{4}$ induce an extended gem. Thus, $v_{2} \notin D$ and correspondingly, $v_{3} \notin D$ by symmetry which shows (13). \diamond

Next we claim:

$$
\begin{equation*}
\text { If } x_{i} x_{i+2} \in E \text { then } x_{i+2} x_{i+4} \notin E \text { and } x_{i-2} x_{i} \notin E . \tag{14}
\end{equation*}
$$

Proof. Without loss of generality, let $x_{1} x_{3} \in E$ and suppose to the contrary that $x_{3} x_{5} \in E$. Then by (13), there are new vertices $d_{3}, d_{4}, d_{5} \in D, d_{3}, d_{4}, d_{5} \notin\left\{v_{3}, v_{4}, v_{5}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$, with $d_{3} v_{3} \in E, d_{4} v_{4} \in E$ and $d_{5} v_{5} \in E$. We first claim that $d_{3} \neq d_{4}$:

Suppose to the contrary that $d_{3}=d_{4}$. If $x_{2} x_{4} \in E$ then, since $d_{3}, v_{3}, x_{2}, x_{4}, v_{4}$ do not induce a chordless cycle, we have $d_{3} x_{2} \in E$ and $d_{3} x_{4} \in E$, but now, $v_{3}, x_{2}, x_{4}, v_{4}, d_{3}, v_{2}, v_{5}, d_{5}$ induce an extended gem. Thus, let $x_{2} x_{4} \notin E$.

Since $v_{2}, x_{1}, x_{3}, v_{3}, x_{2}, v_{1}, x_{4}, v_{5}$ do not induce an extended gem, we have $x_{1} x_{4} \in E$. Since $d_{3}, v_{3}, x_{2}, x_{1}, x_{4}, v_{4}$ do not induce a chordless cycle, we have $d_{3} x_{2} \in E, d_{3} x_{1} \in E$, and $d_{3} x_{4} \in E$. Thus, by the e.d.s. property, $d_{5} x_{1} \notin E, d_{5} x_{4} \notin E$, and thus, $d_{5} v_{1} \notin E$ since $d_{5}, v_{1}, x_{1}, x_{4}, v_{5}$ do not induce a C_{5}. But now, $x_{2}, x_{1}, x_{4}, v_{4}, d_{3}, v_{1}, v_{5}, d_{5}$ induce an extended gem which is a contradiction. Thus, $d_{3} \neq d_{4}$ is shown.

By the e.d.s. property, $d_{3} x_{3} \notin E$ or $d_{4} x_{3} \notin E$. Recall that $x_{3} x_{5} \in E$ was supposed, and thus, say without loss of generality, $d_{4} x_{3} \notin E$. Then by the chordality of $G, d_{4} x_{2} \notin E$ and $d_{4} x_{1} \notin E$, and clearly, $d_{4}(0)\left\{v_{1}, v_{2}, v_{3}\right\}$ but now, $v_{1}, x_{1}, v_{2}, x_{2}, v_{3}, x_{3}, v_{4}, d_{4}$ induce an extended gem. Thus, (14) is shown. \diamond

For a C_{5} in G^{2}, fact (14) leads to a C_{4} in G induced by $x_{1}, x_{3}, x_{4}, x_{5}$ if $x_{1} x_{3} \in E$. Thus, from now on, let $k \geq 6$. We claim:

$$
\begin{equation*}
\text { If } x_{i} x_{i+2} \in E \text { then } x_{i+1} x_{i+3} \notin E \text { and } x_{i-1} x_{i+1} \notin E \tag{15}
\end{equation*}
$$

Proof. Without loss of generality, let $x_{1} x_{3} \in E$ and suppose to the contrary that $x_{2} x_{4} \in E$. Then by (14), $x_{3} x_{5} \notin E$ and $x_{4} x_{6} \notin E$ as well as $x_{1} x_{k-1} \notin E$ and $x_{2} x_{k} \notin E$, and since G is chordal, $x_{3} x_{6} \notin E$ and $x_{2} x_{k-1} \notin E$.

Since $v_{2}, x_{2}, v_{3}, x_{3}, v_{4}, x_{4}, x_{5}, v_{6}$ does not induce an extended gem, we have $x_{2} x_{5} \in E$. For $k=6$ this contradicts the fact that $x_{2} x_{k-1} \notin E$, i.e., $x_{2} x_{5} \notin E$. Thus, from now on, let $k \geq 7$.

Since $v_{2}, x_{2}, x_{3}, x_{4}, v_{5}, x_{5}, x_{6}, v_{7}$ do not induce an extended gem, we have $x_{2} x_{6} \in E$ (recall $x_{3} x_{5} \notin E, x_{3} x_{6} \notin E$ and $\left.x_{4} x_{6} \notin E\right)$. For $k=7$, this implies that $x_{1}, x_{2}, x_{6}, x_{7}$ induce a C_{4} which is a contradiction. Thus, let $k \geq 8$ but now, $x_{2}, v_{3}, x_{3}, v_{4}, x_{4}, v_{5}, x_{6}, v_{6}$ induce an extended gem. Thus, (15) is shown. \diamond

Recall that $k \geq 6$; without loss of generality, let $x_{1} x_{3} \in E$. Then by (14) and (15), we have $x_{2} x_{4} \notin E, x_{k} x_{2} \notin E$, and $x_{3} x_{5} \notin E, x_{k-1} x_{1} \notin E$. Since G is chordal, we have $x_{2} x_{5} \notin E$.

Since $v_{2}, x_{1}, x_{3}, v_{3}, x_{2}, x_{4}, v_{5}, v_{1}$ do not induce an extended gem, we have $x_{1} x_{4} \in E$.
Since $x_{2}, x_{1}, x_{4}, v_{4}, x_{3}, x_{5}, v_{6}, v_{1}$ do not induce an extended gem, we have $x_{1} x_{5} \in E$ (which, for $k=6$ contradicts the fact that $x_{k-1} x_{1} \notin E$) but now, $v_{2}, x_{1}, x_{3}, v_{3}, x_{2}, x_{5}, v_{5}, v_{4}$ induce an extended gem.

Thus, Theorem 2 is shown.
In the case of net-free chordal graphs, Theorem 1 generalizes the corresponding result for AT-free chordal graphs (i.e., interval graphs-see e.g. [11]).

By [7], and since MWIS is solvable in linear time for chordal graphs [20], we obtain:
Corollary 1. WED is solvable in time $\mathcal{O}\left(n^{3}\right)$ for net-free chordal graphs and for extended-gemfree chordal graphs.

Theorems 1 and 2 and the subsequent lemma imply further polynomial cases for WED:
Lemma 3 ([8, 9]). If WED is solvable in polynomial time for F-free graphs then WED is solvable in polynomial time for $\left(P_{2}+F\right)$-free graphs.

This clearly implies the corresponding fact for $\left(P_{1}+F\right)$-free graphs.
Recall Lemma for $H \in\left\{2 P_{3}, K_{3}+P_{3}, 2 K_{3}\right.$, butterfly, extended butterfly, extended co- P, extended chair, double-gem $\}$. Now we consider induced subgraphs $H^{\prime}=H-x$ of H which are the following:
$-H=2 P_{3}: H^{\prime} \in\left\{P_{2}+P_{3}, P_{3}+2 P_{1}\right\}$
$-H=K_{3}+P_{3}: H^{\prime} \in\left\{P_{2}+P_{3}, K_{3}+P_{2}, K_{3}+2 P_{1}\right\}$
$-H=2 K_{3}: H^{\prime}=P_{2}+K_{3}$

- $H=$ butterfly: $H^{\prime} \in\left\{2 P_{2}\right.$, paw $\}$
$-H=$ extended butterfly: $H^{\prime} \in\left\{K_{3}+P_{2}\right.$, co-P $\}$
$-H=$ extended co-P: $H^{\prime} \in\left\{K_{3}+P_{2}, P_{5}\right.$, paw $+P_{1}$, co-P $\}$
- $H=$ extended chair: $H^{\prime} \in\left\{K_{3}+2 P_{1}, P_{2}+P_{3}\right.$,chair,co-P $\}$
$-H=$ double-gem: $H^{\prime} \in\{$ co-P,gem $\}$
Corollary 2. For every proper induced subgraph H^{\prime} of any graph $H \in\left\{2 P_{3}, K_{3}+P_{3}, 2 K_{3}\right.$, butterfly, extended butterfly, extended co-P, extended chair, double-gem $\}$, WED is solvable in polynomial time for H^{\prime}-free chordal graphs.

Proof. By 4], the clique-width of co-chair-free chordal graphs is bounded, and by [22], the clique-width of gem-free chordal graphs is bounded. By Theorem 2. WED is solvable in polynomial time for chair-free chordal graphs since chair is an induced subgraph of extended gem, and similarly, for co- P-free chordal graphs. By Lemma 3 WED is solvable in polynomial time for $\left(K_{3}+P_{2}\right)$-free chordal graphs and since the clique-width of K_{3}-free chordal graphs is bounded. In all other cases, we can use Lemma 3 and the fact that WED is solvable in polynomial time (even in linear time) for P_{5}-free graphs (and thus also for $2 P_{2}$-free graphs).

4 WED for $S_{1,2,3}$-Free Chordal Graphs - a Direct Approach

By Lemma and since $S_{1,1,4}$ as well as $S_{1,3,3}$ contain $2 P_{3}$ as an induced subgraph, WED is $\mathbb{N P}$-complete for $S_{1,1,4}$-free chordal as well as for $S_{1,3,3}$-free chordal graphs. In this section, we give a polynomial-time solution for WED on $S_{1,2,3}$-free chordal graphs by a direct approach.

This generalizes WED for $S_{1,2,2}$-free chordal graphs as well as for $S_{1,1,3}$-free chordal graphs ($S_{1,2,2}$ and $S_{1,1,3}$ are induced subgraphs of extended gem-see Figure 3 and recall Theorem [2) and for P_{6}-free chordal graphs (recall [5, 6]).

Throughout this section, let $G=(V, E)$ be a prime $S_{1,2,3}$-free chordal graph; recall that WED for G can be reduced to prime graphs [8, 9, 12]. For any vertex $v \in V$, let

$$
\begin{aligned}
Z^{+}(v) & :=\{u \in V: N[v] \subset N[u]\}, \text { and } \\
Z^{-}(v) & :=\{u \in V: N[u] \subset N[v]\} .
\end{aligned}
$$

Let us say that a vertex $v \in V$ is a maximal vertex of G if $Z^{+}(v)=\emptyset$. Clearly, G has at least one maximal vertex.

Lemma 4. Let $v \in V$ be a maximal vertex of G. Then a minimum (finite) weight e.d.s. D with $v \in D$ (if D exists) can be computed in polynomial time.

Proof. Assume that D is a (possible) e.d.s. of finite weight of G with $v \in D$. Recall that G is prime (and thus, connected); then, by excluding the trivial case in which $V=\{v\}, G$ is not a clique. As usual, let $N_{0}=\{v\}$ and let N_{1}, \ldots, N_{t} (for some natural t) denote the distance levels of v in G. Then $\left.N_{0}, N_{1}, \ldots, N_{t}\right\}$ is a partition of V. Clearly, since $v \in D,\left(N_{1} \cup N_{2}\right) \cap D=\emptyset$. Since G is chordal, we have:

Claim 4.1. For every $i \in\{1, \ldots, t\}$ and every vertex $x \in N_{i}, N(x) \cap N_{i-1}$ is a clique, and in particular, x contacts exactly one component of $G\left[N_{i-1}\right]$.

Claim 4.2.

(i) For any vertex $u_{1} \in N_{1}$, there is a vertex $z_{1} \in N_{1}$ with $z_{1} u_{1} \notin E$.
(ii) For any vertex $u_{2} \in N_{2}$, with neighbor $u_{1} \in N_{1}$, there is a vertex $z_{1} \in N_{1}$ with $z_{1} u_{1} \notin E$ and $z_{1} u_{2} \notin E$.
(iii) For any vertex $u_{i} \in N_{i}, i \geq 2$, there is a chordless path $P_{u_{i} v}$ with at least four vertices including u_{i} and v.

Proof. Statement (i) holds since v is a maximal vertex of G and since the prime graph G is not a clique. Statement (ii) holds by (i) and since G is chordal. If $i \geq 3$ then statement (iii) trivially holds by construction. If $i=2$ then it easily follows by (i) and $(i i)$. \diamond

Claim 4.3. For any fixed $i, i \in\{2, \ldots, t-1\}$, let
$X:=\left\{x \in N_{i}: x\right.$ has a neighbor in $\left.D \cap N_{i+1}\right\}$, let
$\mathcal{C}_{X}:=\left\{Y_{1}, \ldots, Y_{q}\right\}$ (for some natural q) be the family of connected components of $G\left[N_{i+1}\right]$ contacting X, and let
$X_{i}:=\left\{x \in X: x\right.$ contacts $\left.Y_{i}\right\}, i=1, \ldots, q$.
Then the following statements hold:
(i) For every $x \in X, x$ contacts exactly one of Y_{1}, \ldots, Y_{q}, and thus, for $i \neq j, X_{i} \cap X_{j}=\emptyset$, i.e., X admits a partition $\left\{X_{1}, \ldots, X_{q}\right\}$ such that for $h, k \in\{1, \ldots, q\}, k \neq h, Y_{h}$ contacts X_{h} and does not contact X_{k}.
(ii) For every $h \in\{1, \ldots, q\},\left|D \cap Y_{h}\right|=1$, say $D \cap Y_{h}=\left\{d_{h}\right\}$, and d_{h} dominates $X_{h} \cup Y_{h}$, i.e., $X_{h} \cup Y_{h} \subseteq N\left[d_{h}\right]$.

Proof. (i): First we prove that for any $x \in X, x$ contacts exactly one of Y_{1}, \ldots, Y_{q} : Without loss of generality, suppose to the contrary that x contacts Y_{1} and Y_{2}, and assume that the neighbor of x in $D \cap N_{i+1}$, say d, belongs to Y_{1}. Then let y be a neighbor of x in Y_{2} : By the e.d.s. property, y has a neighbor in D, say d^{\prime}, with $d^{\prime} \neq d$. Clearly, by the e.d.s. property and by definition of X, we have $d^{\prime} \notin X$ and $x d^{\prime} \notin E$ and thus, by Claim 4.1, $d^{\prime} \notin N_{i}$.

Thus, $d^{\prime} \in N_{i+1} \cup N_{i+2}$. Then d^{\prime}, y, d, x, and three further vertices of the path $P_{x v}$ found by Claim 4.2 (iii) induce an $S_{1,2,3}$, which is a contradiction.

Thus, for $i \neq j, X_{i} \cap X_{j}=\emptyset$, and (i) follows directly by the above and by definition of X, X_{i} and \mathcal{C}_{X}.
(ii): First we prove that $\left|D \cap Y_{h}\right|=1$ (note that $D \cap Y_{h} \neq \emptyset$, by the proof of statement (i) of this claim: Suppose to the contrary that there are $d, d^{\prime} \in D \cap Y_{h}, d \neq d^{\prime}$. Since G is connected and by definition of X, there are $x \in X$ with $x d \in E$ and $x^{\prime} \in X$ with $x^{\prime} d^{\prime} \in E$. By the e.d.s. property, the shortest path, say P, in Y_{h} from d to d^{\prime} has at least two internal vertices, i.e., there exist $a, b \in P$ with $d a \in E$ and $b d^{\prime} \in E$. Since G is $S_{1,2,3}-$ free, by Claim 4.2 (iii) and by the e.d.s. property, x is nonadjacent to all vertices of $P \backslash\{d, a\}$, while x^{\prime} is nonadjacent to all vertices of $P \backslash\left\{b, d^{\prime}\right\}$, which contradicts the fact that G is chordal. Thus, $\left|D \cap Y_{h}\right|=1$; let $D \cap Y_{h}=\left\{d_{h}\right\}$.

Next we claim that d_{h} dominates X_{h} : This follows by definition of X, by statement (i) of this claim, and by the e.d.s. property. By the way, by Claim 4.1, X_{h} is a clique.

Finally we claim that d_{h} dominates Y_{h} : Suppose to the contrary that there is a vertex $y \in Y_{h}$ with $y d_{h} \notin E$. Since $D \cap Y_{h}=\left\{d_{h}\right\}$, we have $y \notin D$. Then there is $d \in D, d \neq d_{h}$, with $y d \in E$. Let P^{\prime} be a shortest path in Y_{h} between d_{h} and y, and let $x \in X$ be adjacent to d_{h} (by the above, d_{h} dominates X_{h}). Clearly, by the e.d.s. property, $x d \notin E$.

If $x y \in E$ then by Claim 4.1, $d \notin N_{i}$, i.e., $d \in N_{i+1} \cup N_{i+2}$; then d, y, d_{h}, x, and three further vertices of the path $P_{x v}$ found by Claim 4.2 (iii) induce an $S_{1,2,3}$ which is a contradiction. Thus $x y \notin E$.

If $d \in N_{i}$ then, by considering the (not necessarily induced) path formed by vertices $x, d_{h}, P^{\prime}, y, d$, we get a contradiction to the fact that G is chordal. Thus, $d \in N_{i+1} \cup N_{i+2}$. Then let y^{\prime} be a neighbor of y in N_{i}; clearly, by the e.d.s. property, $y^{\prime} \notin D$.

Note that $y^{\prime} d_{h} \notin E$ (else d_{h}, y^{\prime}, y, d, and three further vertices of the path $P_{y^{\prime} v}$ found by Claim 4.2 (iii) induce an $S_{1,2,3}$) and $y^{\prime} x \in E$, else by considering the (not necessarily induced) path formed by $x, d_{h}, P^{\prime}, y, y^{\prime}$, we get a contradiction since G is chordal.

Then there is $d^{\prime} \in D$ adjacent to y^{\prime}. Clearly, $d^{\prime} \neq d_{h}$ by the above. Furthermore $d^{\prime} \neq d$: Otherwise, if $y^{\prime} d \in E$ then $d \in N_{i+1}$, and then by considering the path between d_{h} and d in N_{i+1} (consisting of path P^{\prime} in Y_{h} between d_{h} and y and additionally d) we get a contradiction to the fact that G is chordal by an argument similar to the one above for showing that $\left|D \cap Y_{h}\right|=1$.

If $d^{\prime} \in N_{i-1}$ then, since $D \cap\left(N_{1} \cup N_{2}\right)=\emptyset, i \geq 4$, and d_{h}, x, y, y^{\prime}, and three further vertices of the path $P_{y^{\prime} v}$ found by Claim 4.2 (iii) containing d^{\prime} induce an $S_{1,2,3}$ which is a contradiction.

If $d^{\prime} \in N_{i}$ then $i \geq 3$ since $D \cap\left(N_{1} \cup N_{2}\right)=\emptyset$. Since G is chordal, y^{\prime} and d^{\prime} have a common neighbor in N_{i-1}, say z, and then $z x \in E$ since otherwise d_{h}, x, y, y^{\prime}, and three further vertices of the path $P_{y^{\prime} v}$ found by Claim 4.2 (iii) containing z induce an $S_{1,2,3}$. Now, since $x z \in E$, the vertices d^{\prime}, d_{h}, x, z, and three further vertices of the path $P_{z v}$ found by Claim 4.2 (iii) induce an $S_{1,2,3}$, which is a contradiction.

Finally if $d^{\prime} \in N_{i+1}$ then $d, y, d^{\prime}, y^{\prime}$, and three further vertices of the path $P_{y^{\prime} v}$ found by Claim 4.2 (iii) induce an $S_{1,2,3}$, which is a contradiction.

Thus, Claim 4.3 is shown. \diamond
Claim 4.4. For every component K of $G\left[N_{i}\right], i \in\{3, \ldots, t\}$, we have
(i) $|D \cap K| \leq 1$, and
(ii) if $|D \cap K|=1$, say $D \cap K=\{d\}$ then d dominates K.

Proof. (i): It can be proved similarly to the first paragraph of the proof of Claim 4.3 (ii).
(ii): It follows by Claim 4.3 (ii) since d (and thus K) contacts a set of vertices of N_{i-1} which consequently have a neighbor in $D \cap N_{i}$. \diamond

Now let us consider the problem of checking whether such an e.d.s. D of G with $v \in D$ does exist. According to Claim 4.1, graph G can be viewed as a tree T rooted at $\{v\}$, whose nodes are the connected components of $G\left[N_{i}\right]$ for $i \in\{0,1, \ldots, t\}$ (recall $N_{0}:=\{v\}$), such that two nodes are adjacent if and only if the corresponding connected components contact each other.

Then for any connected component K of $G\left[N_{i}\right], i \in\{0,1, \ldots, t\}$, let $T(K)$ denote the vertex set of the induced subgraph of G corresponding to the subtree of T rooted at K. In particular N_{0} has a unique connected component (recall $N_{0}:=\{v\}$), say K_{0}, so that $T\left(K_{0}\right)=V$.

According to Claim 4.4, let us say that a vertex d of G of finite weight, belonging to a connected component say K of $G\left[N_{i}\right], i \in\{0,1, \ldots, t\}$, is a D-candidate (or equivalently let us say that K admits a D-candidate d) if
(i) d dominates K, and
(ii) there is an e.d.s. in $G[T(K)]$ containing d.

Claim 4.5. An e.d.s. D of G with $v \in D$ does exist if and only if v is a D-candidate.
Proof. It directly follows by the above. \diamond
Claim 4.6. Let K be a connected component of $G\left[N_{i}\right]$, for any fixed $i \in\{1, \ldots, t\}$, and let $d \in V(K)$ be a vertex of finite weight. Then let $H_{j}:=T(K) \cap N_{j}$ for $i+1 \leq j \leq t$, and let
$A:=\left\{x \in H_{i+1}: x d \notin E\right\} ;$
$\mathcal{C}_{A}=\left\{A_{1}^{\prime}, \ldots, A_{q}^{\prime}\right\}$ be the family of connected components of $G\left[H_{i+2}\right]$ contacting A;
B be the vertex set of connected components of $G\left[H_{i+2}\right]$ not contacting A;
$\mathcal{C}_{B}=\left\{B_{1}^{\prime}, \ldots, B_{q^{\prime}}^{\prime}\right\}$ be the family of connected components of $G\left[H_{i+3}\right]$ contacting B.
Then the following statements hold:
(i) If $A=B=\emptyset$ then d is a D-candidate if and only if d dominates K.
(ii) If $A \neq \emptyset$ and $B=\emptyset$ then d is a D-candidate if and only if d dominates K, Claim 4.3 (i) holds for A and for \mathcal{C}_{A}, and according to the notation of Claim 4.3, A admits a partition $\left\{A_{1}, \ldots, A_{q}\right\}$, and each member A_{h}^{\prime} of \mathcal{C}_{A} admits a D-candidate which dominates $A_{h} \cup A_{h}^{\prime}$ and does not contact $N(d) \cap H_{i+1}$.
(iii) If $A=\emptyset$ and $B \neq \emptyset$ then B admits a partition $\left\{B_{1}, \ldots, B_{q}\right\}$, d is a D-candidate if and only if d dominates K, Claim 4.3 (i) holds for B and for \mathcal{C}_{B}, and according to the notation of Claim 4.3, each member B_{h}^{\prime} of \mathcal{C}_{B} admits a D-candidate which dominates $B_{h} \cup B_{h}^{\prime}$.
(iv) If $A \neq \emptyset$ and $B \neq \emptyset$ then d is a D-candidate if and only if d dominates K, Claim 4.3 (i) holds for A and for \mathcal{C}_{A}, and according to the notation of Claim 4.3, each member A_{h}^{\prime} of \mathcal{C}_{A} admits a D-candidate which dominates $A_{h} \cup A_{h}^{\prime}$ and does not contact $N(d) \cap H_{i+1}$, Claim 4.3 (i holds for B and for \mathcal{C}_{B}, and according to the notation of Claim 4.3, each member B_{h}^{\prime} of \mathcal{C}_{B} admits a D-candidate which dominates $B_{h} \cup B_{h}^{\prime}$.

Proof. It follows by definition of D-candidate, by the e.d.s. property, by Claim 4.3, and by Claim4.4, in particular by construction, each vertex of A contacts $V(K) \backslash\{d\}$, each vertex of B contacts $N(d) \cap H_{i+1}$ and no member of \mathcal{C}_{A}, and then each member of \mathcal{C}_{A} contacts no member of \mathcal{C}_{B} by Claim 4.1 \diamond

Then by Claims 4.5 and 4.6, one can check if e.d.s. D with $v \in D$ does exist by the following procedure which can be executed in polynomial time:

Procedure 4.1 (v-Maximal-WED).
Input: A maximal vertex v of G.
Task: A minimum weight e.d.s. D of G containing v (if it exists).

begin

Let $N_{0}, N_{1}, \ldots, N_{t}($ for some natural $t)$, with $N_{0}=\{v\}$, be the distance levels of v in G.
for $i=t, t-1, \ldots, 1,0$ do

begin

for each component K of $G\left[N_{i}\right]$, detect all D-candidates in K, and for each D candidate in K, say u, store (iteratively by the possible D-candidates in C_{A} and in C_{B}) any minimum weight e.d.s. of $G[T(K)]$ containing u;

end

if v is a D-candidate then return " D does exist"
else return " D does not exist".
end
This completes the proof of Lemma (4)
Theorem 3. For $S_{1,2,3}$-free chordal graphs, WED is solvable in polynomial time.

Proof. Let us observe that, if all vertices of G are maximal, then by Lemma 4, the WED problem can be solved for G by computing a minimum finite weight e.d.s. D with $v \in D$ (if D exists), for all $v \in V$.

Then let us focus on those vertices x which are not maximal, i.e., there is a vertex y with $N[x] \subset N[y]$ (which means $x \in Z^{-}(y)$). Thus, there is a maximal vertex v such that $x \in Z^{-}(v)$. In particular removing such maximal vertices v leads to new maximal vertices in the reduced graph. Recall that for any graph $G=(V, E)$ and any e.d.s. D of $G,|D \cap N[x]|=1$ for every $x \in V$.

Fact 1. Let $v \in V$ be a maximal vertex of G, with $Z^{-}(v) \neq \emptyset$, and let $x \in Z^{-}(v)$. If G has an e.d.s., say D, then $D \cap(N(v) \backslash N(x))=\emptyset$.

Define a reduced weighted graph G^{*} from G as follows:
(i) For each vertex $x \in Z^{-}(v)$, assign weight ∞ to all vertices in $N(v) \backslash N(x)$, and
(ii) remove v, i.e., $V\left(G^{*}\right)=V \backslash\{v\}$ (and reduce G^{*} to its prime connected components; recall that WED can be reduced to prime graphs).

Then the problem of checking if G has a finite (minimum weight) e.d.s. not containing v can be reduced to that of checking if G^{*} has a finite (minimum weight) e.d.s.

Proof. The reduction is correct by the e.d.s. property and by definition of $Z^{-}(v)$. Moreover, by the e.d.s. property, by definition of $Z^{-}(v)$ and by construction of G^{*}, every (possible) e.d.s. of finite weight of G^{*} contains exactly one vertex which is a neighbor of v in G since $|D \cap N[x]|=1$ for a vertex $x \in Z^{-}(v)$.

Since the above holds in a hereditary way for any subgraph of G, and since WED for any graph H can be reduced to the same problem for the connected components of H, let us introduce a possible algorithm to solve WED for G in polynomial time.

Algorithm 4.1 (WED- $S_{1,2,3}$-Free-Chordal-Graphs).
Input: Graph $G=(V, E)$.
Task: A minimum (finite) weight e.d.s. of G (if it exists).
begin
Set $W:=\emptyset$;
while $V \neq W$ do
begin
take any maximal vertex of G, say $v \in V$, and set $W:=W \cup\{v\}$;
compute a minimum (finite) weight e.d.s. containing v in the connected component of $G[V]$ with v (if it exists) \{by Lemma 4 and Procedure 4.1\};
if $Z^{-}(v) \neq \emptyset$ then $\{$ by Fact 1$\}$
begin
for each vertex $x \in Z^{-}(v)$, assign weight ∞ to all vertices in $N(v) \backslash N(x)$;
remove v from V, i.e., set $V:=V \backslash\{v\}$
end
end
if there exist some e.d.s. of finite weight of G (in particular, for each resulting set of e.d.s. candidates, check whether this is an e.d.s. of G) then choose one of minimum weight, and return it else return " G has no e.d.s."
end
The correctness and the polynomial time bound of the algorithm is a consequence of the arguments above and in particular of Lemma 4 and Fact 1. This completes the proof of Theorem 3 .

It is still an open question how to generalize this approach. For example, the complexity of WED remains an open problem for $S_{2,2,3}$-free chordal as well as for $S_{2,2,2}$-free chordal graphs. However, for trees and forests T, there are only finitely many cases for the complexity of WED on T-free chordal graphs since WED on T-free chordal graphs is $\mathbb{N P}$-complete if T contains an induced $K_{1,5}$ or $2 P_{3}$. In Figure 4 , the maximum tree without induced $K_{1,5}$ and $2 P_{3}$ is shown.

Figure 4: The maximum tree T for which the complexity of ED for T-free chordal graphs is open.

5 Conclusion

The results described in Theorems [1, 2, and 3 are still far away from a dichotomy for the complexity of ED on H-free chordal graphs. For chordal graphs H with four vertices, all cases are solvable in polynomial time as described in Lemma 5 below.

Figure 5: All graphs H with four vertices

For chordal graphs H with five vertices, the complexity of ED on H-free chordal graphs is still open for the following graphs as described in Lemma ${ }^{5}$

Lemma 5.

(i) For every chordal graph H with exactly four vertices, WED is solvable in polynomial time for H-free chordal graphs.

Figure 6: Graphs H_{1}, \ldots, H_{4} with five vertices for which ED is open for H-free chordal graphs
(ii) For every chordal graph H with exactly five vertices, the four cases described in Figure 6 are the only ones for which the complexity of WED is open for H-free chordal graphs.

Proof. (i): It is well known (see [4) that for $H \in\left\{K_{4}, K_{4}-e, p a w, P_{4}\right\}$, the clique-width is bounded for H-free chordal graphs and thus, WED is solvable in polynomial time. By Theorem 2 as well as by Theorem 3, WED is solvable in polynomial time for claw-free chordal graphs.

By Lemma 3, WED is solvable in polynomial time for all other graphs H with four vertices (see Figure 5 for all such graphs; clearly, C_{4} is excluded).
(ii): For graphs H with five vertices, let v be one of its vertices. We consider the following cases for $N(v)$ (and clearly exclude the cases when H is not chordal):
Case 1. $|N(v)|=4$ (i.e., v is universal in H):
Clearly, if $H[N(v)]$ is a $2 P_{2}$ then H is a butterfly and thus, WED is $\mathbb{N P}$-complete. If $H[N(v)]$ is a K_{4}, or paw, or P_{4}, or $K_{3}+P_{1}$, then the clique-width is bounded [4]; in particular, if $H[N(v)$] is a paw or $K_{3}+P_{1}$ then H is an induced subgraph of $\overline{K_{1,3}+2 P_{1}}$, and according to Theorem 1 of [4, the clique-width is bounded. If $H[N(v)]$ is $P_{3}+P_{1}$ then it is a special case of Theorem 2, where it is shown that this case can be solved in polynomial time. The other cases correspond to graphs H_{1}, \ldots, H_{4} of Figure 6 (by Theorem 1 of [4], their clique-width is unbounded).
Case 2. $|N(v)|=0$ (i.e., v is isolated in H): By Lemma 3, and by Lemma 5 (i), WED is solvable in polynomial time.

In particular, for the same reason, WED is solvable in polynomial time whenever H is not connected (since in that case, at least one connected component of H has at most two vertices). Thus, from now on, we can assume that H is connected.
Case 3. $|N(v)|=3$ (and thus, $|\overline{N(v)}|=1$):
If v has exactly one non-neighbor in K_{4} then $H=H_{4}$. If v has exactly one non-neighbor in $K_{1,3}$ with midpoint w, namely one of degree 1 , then $H[N(w)]=P_{3}+P_{1}$ according to Case 1 (a special case of Theorem (2).

If v has exactly one non-neighbor in a diamond, namely one of degree 2 , or exactly one non-neighbor in a paw, namely one of degree 1 , then H is an induced subgraph of $\overline{K_{1,3}+2 P_{1}}$. Moreover, if v has exactly one non-neighbor in a paw, namely one of degree 2 , then H is a gem, and if v has exactly one non-neighbor in P_{4}, namely one of degree 1 , then H is a co-chair. If v has exactly one non-neighbor in $P_{1}+P_{3}$, namely one of degree 1 , then H is a bull. In all these cases, the clique-width is bounded according to Theorem 1 of [4].

In the remaining cases, H is a chair or co- P, and thus, WED is solvable in polynomial time. Case 4. $|N(v)|=2$ (and thus, $|\overline{N(v)}|=2$):

In one of the cases, namely if v is adjacent to the two vertices with degree 1 and with degree 3 in a paw, H is a butterfly and thus, WED is NPP-complete.

If v has exactly two neighbors in K_{4} or if v is adjacent to degree 2 and degree 3 vertices in diamond or if v is adjacent to the two degree 2 vertices in a paw or if v is adjacent to the two degree 2 vertices (midpoints) in a P_{4}, then by Theorem 1 of [4], the clique-width is bounded.

If v is adjacent to the two vertices of degree 3 of a diamond then $H=H_{3}$. If v is adjacent to degree 2 vertex u and degree 3 vertex w in a paw then for the degree 3 vertex $w, H[N(w)]=$ $P_{3}+P_{1}$ as above. If v is adjacent to degree 1 and degree 3 vertices in a claw then $H=H_{2}$.

In all other cases, H is a P_{5}, chair or co- P, and thus, WED is solvable in polynomial time (by Theorem 2 for co- P-free chordal graphs, and by Theorems 2 and 3, for P_{5}-free chordal graphs, and for chair-free chordal graphs).
Case 5. $|N(v)|=1$ (and thus, $|\overline{N(v)}|=3$):
Now v is adjacent to exactly one vertex of $V \backslash\{v\}$.
If v is adjacent to a degree 3 vertex w of a diamond then $H[N(w)]=P_{3}+P_{1}$ as above. If v is adjacent to a degree 3 vertex of a paw then $H=H_{2}$. If v is adjacent to a degree 3 vertex of a claw then $H=H_{1}$.

If v is adjacent to one vertex of K_{4} or one vertex of the diamond of degree 2 (co-chair) or one vertex of a paw of degree 2 (bull) then by Theorem 1 of [4], the clique-width is bounded.

In all other cases, H is a P_{5}, chair or co- P, and thus, WED is solvable in polynomial time as above.

Of course there are many larger examples of graphs H for which ED is open for H-free chordal graphs. In general, one can restrict H by various conditions such as diameter (if the diameter of H is at least 6 then H contains an induced $2 P_{3}$) and size of connected components (if H has at least two connected components of size at least 3 then H contains an induced $2 P_{3}$, $K_{3}+P_{3}$, or $2 K_{3}$). It would be nice to classify the open cases in a more detailed way.

Acknowledgment. We gratefully thank the anonymous reviewers for their comments and corrections. The second author would like to witness that he just tries to pray a lot and is not able to do anything without that - ad laudem Domini.

References

[1] D.W. Bange, A.E. Barkauskas, and P.J. Slater, Efficient dominating sets in graphs, in: R.D. Ringeisen and F.S. Roberts, eds., Applications of Discrete Math. (SIAM, Philadelphia, 1988) 189-199.
[2] D.W. Bange, A.E. Barkauskas, L.H. Host, and P.J. Slater, Generalized domination and efficient domination in graphs, Discrete Math. 159 (1996) 1-11.
[3] N. Biggs, Perfect codes in graphs, J. of Combinatorial Theory (B), 15 (1973) 289-296.
[4] A. Brandstädt, K.K. Dabrowski, S. Huang, and D. Paulusma, Bounding the clique-width of H-free chordal graphs, J. of Graph Theory 86 (2017) 42-77.
[5] A. Brandstädt, E. Eschen, and E. Friese, Efficient domination for some subclasses of P_{6}-free graphs in polynomial time, extended abstract in: Proceedings of WG 2015, E.W. Mayr, ed., LNCS 9224, pp. 78-89, 2015; full version in: CoRR arXiv:1503.00091, 2015.
[6] A. Brandstädt, E. Eschen, E. Friese, and T. Karthick, Efficient domination for classes of P_{6}-free graphs, Discrete Applied Math. 223 (2017) 15-27.
[7] A. Brandstädt, P. Fičur, A. Leitert, and M. Milanič, Polynomial-time algorithms for Weighted Efficient Domination problems in AT-free graphs and dually chordal graphs, Information Processing Letters 115 (2015) 256-262.
[8] A. Brandstädt and V. Giakoumakis, Weighted Efficient Domination for $\left(P_{5}+k P_{2}\right)$-Free Graphs in Polynomial Time, CoRR arXiv:1407.4593, 2014.
[9] A. Brandstädt, V. Giakoumakis, and M. Milanič, Weighted efficient domination for some classes of H-free and of $\left(H_{1}, H_{2}\right)$-free graphs, Discrete Applied Math. 250 (2018) 130-144.
[10] A. Brandstädt, A. Leitert, and D. Rautenbach, Efficient Dominating and Edge Dominating Sets for Graphs and Hypergraphs, extended abstract in: Conference Proceedings of ISAAC 2012, LNCS 7676, 2012, 267-277.
[11] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Math. Appl., Vol. 3, SIAM, Philadelphia (1999).
[12] A. Brandstädt, M. Milanič, and R. Nevries, New polynomial cases of the weighted efficient domination problem, extended abstract in: Conference Proceedings of MFCS 2013, LNCS 8087, 195-206. Full version: CoRR arXiv:1304.6255, 2013.
[13] A. Brandstädt and R. Mosca, Weighted efficient domination for P_{6}-free graphs in polynomial time, CoRR arXiv:1508.07733 2015
[14] A. Brandstädt and R. Mosca, Weighted efficient domination for P_{5}-free and P_{6}-free graphs, extended abstract in: Proceedings of WG 2016, P. Heggernes, ed., LNCS 9941, pp. 38-49, 2016. Full version: SIAM J. Discrete Math. 30, 4 (2016) 2288-2303.
[15] M.-S. Chang and Y.C. Liu, Polynomial algorithms for the weighted perfect domination problems on chordal graphs and split graphs, Information Processing Letters 48 (1993) 205-210.
[16] G.J. Chang, C. Pandu Rangan, and S.R. Coorg, Weighted independent perfect domination on cocomparability graphs, Discrete Applied Math. 63 (1995) 215-222.
[17] B. Courcelle, J.A. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory of Computing Systems 33 (2000) 125-150.
[18] E.M. Eschen and X. Wang, Algorithms for unipolar and generalized split graphs, Discrete Applied Mathematics 162 (2014) 195-201.
[19] S. Főldes and P.L. Hammer, Split graphs, Congressus Numerantium 19 (1977) 311-315.
[20] A. Frank, Some polynomial algorithms for certain graphs and hypergraphs, Proceedings of the 5th British Combinatorial Conf. (Aberdeen 1975), Congressus Numerantium XV (1976) 211-226.
[21] M.R. Garey and D.S. Johnson, Computers and Intractability-A Guide to the Theory of NP-completeness, Freeman, San Francisco, 1979.
[22] M.C. Golumbic and U. Rotics, On the Clique-Width of Some Perfect Graph Classes, Internat. J. Foundations of Computer Science 11 (2000) 423-443.
[23] R.M. Karp, Reducibility among combinatorial problems, In: Complexity of Computer Computations, Plenum Press, New York (1972) 85-103.
[24] Y.D. Liang, C.L. Lu, and C.Y. Tang, Efficient domination on permutation graphs and trapezoid graphs, in: Proceedings COCOON'97, T. Jiang and D.T. Lee, eds., Lecture Notes in Computer Science Vol. 1276 (1997) 232-241.
[25] Y.-L. Lin, Fast algorithms for independent domination and efficient domination in trapezoid graphs, in: Proceedings ISAAC'98, Lecture Notes in Computer Science Vol. 1533 (1998) 267-275.
[26] M. Livingston and Q. Stout, Distributing resources in hypercube computers, in: Proceedings 3rd Conf. on Hypercube Concurrent Computers and Applications (1988) 222-231.
[27] D. Lokshtanov, M. Pilipczuk, and E.J. van Leeuwen, Independence and Efficient Domination on P_{6}-Free Graphs, Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA) 2016, 1784-1803.
[28] C.L. Lu and C.Y. Tang, Solving the weighted efficient edge domination problem on bipartite permutation graphs, Discrete Applied Math. 87 (1998) 203-211.
[29] C.L. Lu and C.Y. Tang, Weighted efficient domination problem on some perfect graphs, Discrete Applied Math. 117 (2002) 163-182.
[30] M. Milanič, Hereditary Efficiently Dominatable Graphs, Journal of Graph Theory 73 (2013) 400-424.
[31] C.B. Smart and P.J. Slater, Complexity results for closed neighborhood order parameters, Congr. Numer. 112 (1995) 83-96.
[32] C.-C. Yen, Algorithmic aspects of perfect domination, Ph.D. Thesis, Institute of Information Science, National Tsing Hua University, Taiwan 1992.
[33] C.-C. Yen and R.C.T. Lee, The weighted perfect domination problem and its variants, Discrete Applied Math. 66 (1996) 147-160.
[34] I.E. Zverovich, Satgraphs and independent domination. Part 1, Theoretical Computer Science 352 (2006) 47-56.

