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Abstract

We show the hardness of the geodetic hull number for chordal graphs.
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1 Introduction

One of the most well studied convexity notions for graphs is the shortest path convexity or geodetic
convezity, where a set X of vertices of a graph G is considered convez if no vertex outside of S lies
on a shortest path between two vertices inside of S. Defining the convex hull of a set S of vertices
as the smallest convex set containing S, a natural parameter of G is its hull number h(G) [7], which
is the minimum order of a set of vertices whose convex hull is the entire vertex set of G. The hull
number is NP-hard for bipartite graphs [2], partial cubes [I], and Py-free graphs [5], but it can be
computed in polynomial time for cographs [4], (q,q — 4)-graphs [2], {paw, Ps}-free graphs [3] [5], and
distance-hereditary graphs [9]. Bounds on the hull number are given in [2 6, [7].

In [9] Kanté and Nourine present a polynomial time algorithm for the computation of the hull
number of chordal graphs. Unfortunately, their correctness proof contains a gap described in detail
at the end of the present paper. As our main result we show that computing the hull number of a
chordal graph is NP-hard, which most likely rules out the existence of a polynomial time algorithm.

Before we proceed to our results, we collect some notation and terminology. We consider finite,
simple, and undirected graphs. A graph G has vertex set V(G) and edge set E(G). A graph G is
chordal if it does not contain an induced cycle of order at least 4. A clique in G is the vertex set of a
complete subgraph of G. A vertex of a graph G is simplicial in G if its neighborhood is a clique. The
distance distg(u,v) between two vertices u and v in G is the minimum number of edges of a path in
G between u and v. The diameter diam(G) of G is the maximum distance between any two vertices
of G. The eccentricity eq(u) of a vertex u of G is the maximum distance between u and any other
vertex of G. For a positive integer k, let [k] be the set of the positive integers at most k.

Let G be a graph, and let S be a set of vertices of G. The interval I;(S) of S in G is the set of all
vertices of G that lie on shortest paths in G between vertices from S. Note that S C I¢(S), and that
S is conver in G if I(S) = S. The set S is concave in G if V(G)\ S is convex. Note that S is concave
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if and only if S N Ig({v,w}) = 0 for every two vertices v and w in V(G) \ S. The hull H(S) of S in
G, defined as the smallest convex set in G that contains S, equals the intersection of all convex sets
that contain S. The set S is a hull set if Hg(S) = V(G), and the hull number h(G) of G [5, [7] is the

smallest order of a hull set of G.

2 Result

We immediately proceed to our main result.

Theorem 2.1. For a given chordal graph G, and a given integer k, it is NP-complete to decide whether
the hull number h(G) of G is at most k.

Proof. Since the hull of a set of vertices of G can be computed in polynomial time, the considered
decision problem belongs to NP. In order to prove NP-completeness, we describe a polynomial reduc-
tion from a restricted version of SATISFIABILITY. Therefore, let C be an instance of SATISFIABILITY
consisting of m clauses C4,...,C,, over n boolean variables x1,...,x, such that every clause in C
contains at most three literals, and, for every variable z;, there are exactly two clauses in C, say C I
and C. @ that contain the literal z;, and exactly one clause in C, say Cj(s), that contains the hteral xl,
and these three clauses are distinct. Using a polynomial reduction from [LO1] [8], it has been shown

in [5] that SATISFIABILITY restricted to such instances is still NP-complete.
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Figure 1: The vertices and edge added for the variable x;, where ji( ) = 7, ]Z(Q) =k, and j(3) =/.
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Let the graph GG be constructed as follows starting with the empty graph:

e For every j € [m], add a vertex c;.

e For every i € [n], add three y;, g;, and z;.

e Add edges such that BU Z is a clique, where

B = {c¢j:jem]}u{yi:ien]fu{y: icn]}and
Z = {z :i€n]}, and

e For every i € [n], add 9 vertices and 25 edges to obtain the subgraph indicated in Figure [2



Note that distg(w;, Z) = distg(Z;, #i1) = 3 for every i in [n]. Since every vertex of G has a neighbor
in the clique B U Z, the diameter of G is 3. Furthermore, since no vertex is universal, all vertices in
B U Z have eccentricity 2.

Let k£ = 4n.

Note that the order of G is 12n + m.

It remains to show that G is chordal, and that C is satisfiable if and only if h(G) < k.

In order to show that G is chordal, we indicate a perfect elimination ordering, which is a linear ordering
U1y ..., V12n+m Of its vertices such that v; is simplicial in G — {v1,...v;—1} for every i in [12n + m].

Such an ordering is obtained by
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e starting with the vertices z}, /2, and #/ for all i € [n] (in any order),

e continuing with the vertices z},z?, and &’ for all i € [n],

e continuing with the vertices ) for all i € [n],
e continuing with the vertices z; and z; for all i € [n], and
e ending with the vertices in the clique B U Z.

Now, let § be a satisfying truth assignment for C.
Let
S=J {af, 2,2} U U {z;} U U {z:}.
i€[n] 1€[n]: z; true in S i€[n]: z; false in S
Clearly, |S| = k = 4n. For every i in [n], we have {z;, %} C Ig({xi,2/}), {z:,vi} € Ia({Zi, 211}),
yi € Ic({gi,2'}), and §; € Ig({yi,z}), which implies {z;,vi,7:} € He(S). Since S is a satisfying

truth assignment, for every j in [m], there is a neighbor, say v, of ¢; in

U {;} U U {7}

i€[n]: z; true in S i€[n): z; false in S

Ifve U {z;}, then ¢; € Ig({v,7}}), otherwise ¢; € Ig({v,2/'}). Hence, BUZ C Hg(S).
i€[n]: z; true in S

Now, for some i in [n], let ¢;, ¢k, and ¢, be the neighbors in B\ {y;, %} of z}, x?

7, and 7},
respectively, similarly as in Figure 2l We have 2} € Io({z/},¢;}), 27 € Ic({22, er}), 2 € Io({z}, 2?}),
T, e Io({z}, cr}), xi € Ia({}, zi}), and @; € Io({Z}, zi}).

Altogether, we obtain that S is a hull set of G of order 4n.
Finally, let S be a hull set of G of order at most 4n.
Claim 1. For every i € [n], the set {z;,z;,T;} is concave.

Proof of Claim[I: For a contradiction, suppose that some vertex in S’ = {x;, z;, Z;} lies on a shortest
path P in G between two vertices v and w in V(G) \ S’. Since the diameter of G is 3, the path P
contains at most 2 vertices of S’. Since the neighbors outside of S of each vertex in S’ form a clique,
the path P contains exactly 2 adjacent vertices of S’, that is, either P = vx;z;w or P = vZ;z;w. In
both cases, the vertex w has eccentricity at least 3. However, every neighbor w of z; outside S’ belongs

to BU Z, and thus, has eccentricity 2, a contradiction. [J



Claim 2. For every j € [m], the set

Vi ={¢} U U {xl,x;,x}} U U {xl,x;,x?} U U {z,z}}
ien]:j=3" i€n]:j=3 iln]:j=5"

18 concave.

Proof of Claim[2: First, suppose that C; contains the positive literal z;. By symmetry, we may assume
that j = ji(l) and ji(2) = k for some k in [m]\ {7}

First, suppose that some shortest path P between two vertices v and w in V; = V/(G) \ V; contains
z;. Choosing P of minimum length, it follows that v and w are the only vertices of P in VJ Since
the diameter of G is 3, the length of P is at most 3, and we may assume that v is a neighbor of z;,
which implies v € {z;, ¢k, y;}. Since {z;, ¢k, y;} is a clique, the vertex w is not a neighbor of z;, and P
contains exactly one vertex u of V; different of z;, which implies P = vz;uw and u € {z},¢;}. Suppose
that u = z}. This implies w € {22, ¢k, y;}. Since ¢k, y; € Ng(z;), we obtain w = 27 and v = ;.
However, distg(z;,7?) = 2, which is a contradiction. Hence, u = cj and w € BU Z. However, every
vertex in B U Z has eccentricity 2, which is a contradiction. Hence, no shortest path between two
vertices in V] contains x;.

Next, suppose that some shortest path P between two vertices v and w in V] contains z}. Similarly
as above, we may assume that v and w are the only vertices of P in \7j, the length of P is at most
3, and v is a neighbor of 2/, which implies v € {27, y;,cx}. Since {z?,y;,cr} is a clique, the path P
contains exactly one vertex u of Vj different of , which implies P = vajuw and u € {Cﬂll, cj}, where we

n

use that P does not contain x;. Suppose that u = le This implies w € {z]

/1
i

,yi}. Since y; € Na(a}),
we obtain w = x;l and v = CCZQ However, distg(:c?,x ) = 2, which is a contradiction. Hence, u = ¢;
and w € BU Z. However, every vertex in B U Z has eccentricity 2, which is a contradiction. Hence,
no shortest path between two vertices in V] contains .

Next, suppose that some shortest path P between two vertices v and w in Vj contains xll Similarly

as above, we may assume that v and w are the only vertices of P in \7j, the length of P is at most 3,

1
i

,yi}. Since {z/!,y;} is a clique, the path P contains
1

i

and v is a neighbor of xil, which implies v € {z
exactly one vertex u of V; different of CE%, which implies P = vx;cjw and w € BUZ, where we use that

P does not contain z;. However, every vertex in B U Z has eccentricity 2, which is a contradiction.
1

Hence, no shortest path between two vertices in V] contains ;.

®3)

i .

Next, suppose that C; contains the negative literal Z;, that is, j = j

First, suppose that some shortest path P between two vertices v and w in VJ contains z;. Similarly
as above, we may assume that v and w are the only vertices of P in Vj, the length of P is at most
3, and v is a neighbor of Z;, which implies v € {z;,4;}. Since {z;,¥;} is a clique, the vertex w is not
a neighbor of z;, and P contains exactly one vertex u of V; different of Z;, which implies P = vz;uw
and u € {Z, ¢;}. Suppose that u = ;. This implies w € {z},y;}. Since y; € Ng(Z;), we obtain v = z;
and w = z;. However, distg(z;,Z]) = 2, which is a contradiction. Hence, u = ¢; and w € BU Z.
However, every vertex in B U Z has eccentricity 2, which is a contradiction. Hence, no shortest path
between two vertices in VJ contains ;.

Next, suppose that some shortest path P between two vertices v and w in V] contains z;. Similarly
as above, we may assume that v and w are the only vertices of P in \7j, the length of P is at most 3,
and v is a neighbor of z}, which implies v € {z/,y;}. Since {Z/,7;} is a clique, the path P contains

exactly one vertex u of Vj different of z;, which implies P = vZ}cjw and w € BU Z, where we use that



P does not contain z;. However, every vertex in B U Z has eccentricity 2, which is a contradiction.
Hence, no shortest path between two vertices in V] contains /.

Finally, since the neighbors of ¢; outside of V; form a clique, no shortest path between two vertices
in V] contains c¢;, which completes the proof of the claim. [J
Note that all 3n simplicial vertices in |J {z!, 22,2/} belong to S.

i€[n]
Since S contains at most n non-simplicial vertices, Claim [I] implies that, for every ¢ in [n], the set

S contains exactly one of the three vertices in {x;, z;, Z;}, and that these are the only non-simplicial

vertices in S. Now, Claim [2] implies that, for every j in [m], there is some i € [n] such that
e cither Cj contains the literal z; and the vertex z; belongs to S
e or C; contains the literal Z; and the vertex Z; belongs to S.

Therefore, setting the variable z; to true if and only if the vertex z; belongs to S yields a satisfying

truth assignment S for C, which completes the proof. O

As pointed out in the introduction, the correctness proof in [9] contains a gap. In lines 14 and 15 on

page 322 of [9] it says

“At iteration i+ 1, the verter x;41 is a simplicial vertex in Giy1. We first claim that there

exists no functional dependency of the form zt — x;1q in X.”

Consider applying the algorithm from [9] to the graph in Figure 2l In iteration 1, it would decide to
add z1 to K. In iteration 2, it would decide not to add w9 to K, because of ¢ — xo. Furthermore,
because of t — xo and z, 19 — x3, it would replace z,x9 — x3 within X with z,¢ — x3. Therefore, in

iteration 3, 3 would actually contain z,t — 3, contrary to the claim cited above.

— e e,

X1 T2 XT3 t z

Figure 2: A small chordal graph.
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