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Further results on the radio number of trees
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Abstract

Let G be a finite, connected, undirected graph with diameter diam(G) and d(u, v)
denote the distance between u and v in G. A radio labeling of a graph G is a
mapping f : V (G) → {0, 1, 2, ...} such that |f(u) − f(v)| ≥ diam(G) + 1 − d(u, v)
for every pair of distinct vertices u, v of G. The radio number of G, denoted by
rn(G), is the smallest integer k such that G has a radio labeling f with max{f(v) :
v ∈ V (G)} = k. In this paper, we determine the radio number for three families of
trees obtained by taking graph operation on a given tree or a family of trees.
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1 Introduction

A number of graph labelings have a root in channel assignment problem. In the
channel assignment problem, we seek to assign channels to transmitters such
that it satisfies all interference constraints. This well explored problem is also
studied using graph coloring. In a graph, a set of transmitters is represented
by vertices of a graph; two vertices are adjacent if transmitters are very close
and at distance two apart if transmitters are close in a network. Notice that
two transmitters are classified as very close if the interference is unavoidable
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and close if the interference is avoidable between them. Motivated by this
problem Griggs and Yeh [9] introduced the following L(2, 1)-labeling problem:
An L(2, 1)-labeling (or distance-two labeling) of a graph G = (V (G), E(G)) is
a function f from the vertex set V (G) to the set of non-negative integers such
that |f(u)− f(v)| ≥ 2 if d(u, v) = 1 and |f(u)− f(v)| ≥ 1 if d(u, v) = 2. The
span of f is defined as max{|f(u)− f(v)| : u, v ∈ V (G)}, and the minimum
span over all L(2, 1)-labelings of G is called the λ-number of G, denoted by
λ(G). Observe that L(2, 1)-labeling deal with two level interference only. The
L(2, 1)-labeling and other distance-two labeling problems have been studied
by many researchers in the past two decades; see [5] and [20].

In 2005, Chartrand et al. [7] introduced the concept of radio labeling and
put the level of interference at largest possible-the diameter of graph. Denote
by diam(G) the diameter of G, that is, the maximum distance among all pairs
of vertices in G.

Definition 1.1 A radio labeling of a graph G is a mapping f : V (G) →
{0, 1, 2, . . .} such that for every pair of distinct vertices u, v of G,

d(u, v) + |f(u)− f(v)| ≥ diam(G) + 1.

The integer f(u) is called the label of u under f , and the span of f is defined
as span(f) = max{|f(u) − f(v)| : u, v ∈ V (G)}. The radio number of G is
defined as

rn(G) := min
f

span(f)

with minimum taken over all radio labelings f of G. A radio labeling f of G
is optimal if span(f) = rn(G).

Note that any optimal radio labeling must assign 0 to some vertex and
also in the case when diam(G) = 2 we have rn(G) = λ(G). Observe that
any radio labeling should assign different labels to distinct vertices. In fact,
a radio labeling induces an ordering u0, u1 ,...,up−1 (p = |V (G)|) of vertices
such that 0 = f(u0) < f(u1) < ... < f(up−1) = span(f).

The radio number of graphs is studied by limited group of authors. The
readers are advised to refer the following papers for the radio number of listed
graph families; [7,8,15,21] for paths and cycles, [13,14] for square of paths and
cycles, [3] for all graphs of order n and diameter n−2, [4] for distance graphs,
[1,2,12] about radio number of trees, [11] for complete m-ary trees, [10] for
level-wise regular trees, [16] for total graph of paths, [17] for strong product
P2 ⊠ Pn, [18] for linear cacti. One can also refer to the survey article [6] for
detail on the radio number of graphs.



The results presented in this paper are in continuation of our previous
work in [1,2]. If a tree or a family of trees satisfies condition of [2, Theorem
3.2] then we present three families of trees obtained by taking graph operation
on a given tree or a family of trees such that it also satisfies condition of [2,
Theorem 3.2]. We relate the radio number of it with the radio number of the
given tree or family of trees. Proofs of our results will be given in the full
version of this paper.

2 Preliminaries and earlier work on rn(T)

A tree T is a connected graph that contains no cycle. For a tree T , denote
vertex set and edge set by V (T ) and E(T ). The order of a tree T is the
number of vertices in it. The distance d(u, v) between two vertices u and v

is the length of a shortest path connecting them. The diameter of a graph G

is max{d(u, v) : u, v ∈ V (G)}. For a vertex v ∈ V (G), the neighborhood of
v denoted by N(v), is the set of vertices adjacent to v. Terms and notations
not defined here are used in the sense of [19].

The first result on the radio number of trees was given by Chartrand et al.
in [7,8]. They gave an upper bound for the radio number of paths and trees.
Later, Liu and Zhu gave the exact radio number of paths in [15]. The lower
bound for the radio number of trees and different necessary and sufficient
condition to achieve the lower bound is given by Liu [12] and Bantva et al.
[2]. The radio number for particular trees is determined by many authors;
see [1,3,10,11]. In spite of these efforts, the problem of determining the exact
value of the radio number for trees is still open. However, for present work,
our main concern is with [12] and [1,2] and hence we present the results of it
with necessary terms and notations.

In [12], author gave a lower bound for the radio number of trees and
presented necessary and sufficient condition to achieve this lower bound. She
also presented a class of trees, namely spiders, achieving this lower bound in
[12]. She defined several terms and notations in [12] to give this lower bound.
First we present these terms and notations which are as follows. In [12], author
viewed T as rooted at a single vertex w and defined the level function on V (T )
from fix root w by Lw(u) = d(w, u) for any u ∈ V (T ). For any two vertices u
and v, if u is on the (w, v)-path, then u is an ancestor of v, and v is descendent
of u. If u be a neighbor of w then the subtree induced by u together with all
the descendent of u is called a branch at u. Two branches are called different
if they are induced by two different vertices adjacent to w. The weight of T
from v ∈ V (T ) is defined as wT (v) =

∑

v∈V (T ) d(u, v) and the weight of T as



w(T ) = min{wT (v) : v ∈ V (T )}. A vertex v ∈ V (T ) is a weight center of T
if wT (v) = w(T ). We denote the set of weight centers of T by W (T ). In [12],
it is proved that every tree T has either one or two weight centers, and T has
two weight centers, say, W (T ) = {w, w

′

}, if and only if w and w
′

are adjacent
and T − ww

′

consists of two equal-sized components. Using these terms and
notations Liu presented the following result in [12].

Theorem 2.1 [12] Let T be an m-vertex tree with diameter d. Then

rn(T ) ≥ (m− 1)(d+ 1) + 1− 2w(T ).(1)

Moreover, the equality holds if and only if for every weight center w∗, there
exist a radio labeling f with f(u0) = 0 < f(u1) < ... < f(um−1), where all
the following hold (for all 0 ≤ i ≤ m− 2);
(1) ui and ui+1 are in different branches (unless one of them is w∗);
(2) {u0, um−1} = {w∗, v}, where v is some vertex with Lw∗(v) = 1;
(3) f(ui+1) = f(ui) + d+ 1− Lw∗(ui)− Lw∗(ui+1).

Bantva et al.[2] modified the lower bound given by Liu and gave more
useful necessary and sufficient condition. They viewed T as rooted at its
weight center W (T ): if W (T ) = {w}, then T is rooted at w; if W (T ) = {w,
w

′

} (where w and w
′

are adjacent), then T is rooted at w and w
′

in the sense
that both w and w

′

are at level 0. They called two branches are different if
they are at two vertices adjacent to the same weight center (which is same as
in [12]), and opposite if they are at two vertices adjacent to different weight
centers. The later case occurs only when T has two weight centers. They
defined the level of u in T as

L(u) := min{d(u, x) : x ∈ W (T )}, u ∈ V (T )(2)

and the total level of T as

L(T ) :=
∑

u∈V (T )

L(u).(3)

Define

ε(T )=







1, if T has only one weight center,

0, if T has two (adjacent) weight centers.

Using these terms and notations, Bantva et al. presented the following results
in [2].

Lemma 2.2 [2] Let T be a tree with order p and diameter d ≥ 2. Denote
ε = ε(T ). Then

rn(T ) ≥ (p− 1)(d+ ε)− 2L(T ) + ε.(4)



Theorem 2.3 [2] Let T be a tree with order p and diameter d ≥ 2. Denote
ε = ε(T ). Then

rn(T ) = (p− 1)(d+ ε)− 2L(T ) + ε(5)

holds if and only if there exists a linear order u0, u1, . . . , up−1 of the vertices
of T such that

(a) u0 = w and up−1 ∈ N(w) when W (T ) = {w}, and {u0, up−1} = {w,w
′

}
when W (T ) = {w,w

′

};

(b) the distance d(ui, uj) between ui and uj in T satisfies (0 ≤ i < j ≤ p− 1)

d(ui, uj) ≥

j−1
∑

t=i

(L(ut) + L(ut+1))− (j − i)(d+ ε) + (d+ 1).(6)

Moreover, under this condition the mapping f defined by

f(u0) = 0(7)

f(ui+1) = f(ui)− L(ui+1)− L(ui) + (d+ ε), 0 ≤ i ≤ p− 2(8)

is an optimal radio labeling of T .

Using Theorem 2.3, Bantva et al. determined the radio number for banana
trees, firecracker trees and a special class of caterpillars in [2]. Bantva et al.
also noticed in [2] that the radio number of paths and complete m-ary tree
can also be determined using Theorem 2.3.

3 Main results

In this section, we present some more results on radio number of trees us-
ing Theorem 2.3. For this purpose we continue to use the terminology and
notation defined in the previous section.

Now we consider a tree T of order n0 and diameter d0 with weight center
w0. In case of families of trees, we consider trees Ti (1 ≤ i ≤ k) of order ni

and diameter di with weight center wi. If T∗ is any tree obtained by taking
graph operation on T or family of trees Ti then we take |T∗| = n and diam(T∗)
= d. A k-star is a tree consisting of k leaves and another vertex joined to all
leaves by edges. A k-double star is a tree which is formed by joining k edges
to each of the two vertices of K2. We define Twk

to be the tree obtained by
identifying weight center wi of trees Ti, 1 ≤ i ≤ k with a single vertex w. Note
that the weight center of Twk

is w and |Twk
| = kni − k + 1. We define TSk

to
be the tree obtained by taking k copies of a tree T and identifying a weight
center w of each of them with each leaf of k-star. The weight center of TSk

is



w and |TSk
| = kn0 + 1. We define TDk

to be the tree obtained by taking 2k
copies of tree T and identifying a weight center w of each of them with each
leaf of k-double star. Note that TDk

has two adjacent weight centers and |TDk
|

= 2(kn0 + 1).

Theorem 3.1 If Theorem 2.3 hold for Ti, 1 ≤ i ≤ k then Theorem 2.3 holds
for Twk

and

rn(Twk
) =

k
∑

i=1

[rn(Ti) + (ni − 1)(d− di)]− k + 1.(9)

Theorem 3.2 If Theorem 2.3 holds for T then Theorem 2.3 holds for TSk

and

rn(TSk
) = k[rn(T ) + n0(d− d0 − 2) + d0] + 1.(10)

Theorem 3.3 If Theorem 2.3 holds for T then Theorem 2.3 holds for TDk

and

rn(TDk
) = 2k[rn(T ) + n0(d− d0 − 3) + d0] + d.(11)

Proofs and illustrations of Theorem 3.1 to 3.3 will be provided in full
version of this paper.
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